
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 5

Cellular Learning Automata and Its Applications

Amir Hosein Fathy Navid and
Amir Bagheri Aghababa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52953

1. Introduction

Cellular Automata are mathematical models for systems consisting of large number of sim‐
ple identical components with local interactions. Cellular Automata is a non-linear dynami‐
cal system in which space and time are discrete. It is called cellular because it is made up of
cells like points in a lattice or like squares of checker boards, and it is called automata be‐
cause it follows a simple rule.

Informally, a d-dimensional Cellular Automata consists of an infinite d-dimensional lattice
of identical cells. Each cell can assume a state from a finite set of states. The cells update
their states synchronously on discrete steps according to a local rule [4]. The new state of
each cell depends on the previous states of a set of cells, including the cell itself, and consti‐
tutes its neighbourhood. The state of all cells in the lattice is described by a configuration. A
configuration can be described as the state of the whole lattice [11].

Cellular Automata provided a potential solution and is probably the most popular techni‐
que to model the dynamics of many processes, since they can predict complex global space
pattern dynamic evolution using a set of simple local rules.

However, Cellular Automata is usually associated to bi-dimensional matrixes of rectangular
identical cells that are not the most adequate to model and tessellate a real world geograph‐
ic area.

Regular grids, or more particularly: rectangular grids are the standard grid structure that is
used in previous Cellular Automata studies. Broadly, a regular grid assumes that the struc‐
ture of the cell grid and the number of neighbours are homogenous for every location in the
cellular space. This assumption seems highly implausible as an empirical description of the
geographical or social space that underlies the processes typically studied in Cellular Au‐

© 2013 Navid and Aghababa; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

tomata modelling, like opinion formation or neighbourhood segregation. However, to our
knowledge there are virtually no insights into how regular vs. irregular grid structures af‐
fect cellular dynamics [14].

Cellular Automata extensions using Voronoi spatial models have been previously proposed
to overcome this problem. In these approaches one uses convex cells with different sizes and
shapes that can provide a much more adequate terrain partition.

A different problem lies in the fact that, on regular Cellular Automata, each cell has a finite
set of possible states, and transition between states is a crisp function of present cell state
and neighbour cells state. Crisp data modelling and crisp transition mechanisms have
known limitations when one trying to model and simulate real-world processes where un‐
certainty and imprecision is present and cannot simply be ignored [28].

The most prominent reason is that Cellular Automata can be seen as multi-agent system
based on locality with overlapping interaction structures. In this perspective, Cellular Au‐
tomata is attractive as a modelling framework that may provide a better understanding of
micro/macro relations.

We will give some background specific to the study of cellular automata, and then back‐
ground from other fields that are necessary for the work here [17].

We will then conclude with some potential questions that merit future investigation, and
where appropriate we will discuss potential consequences of such questions.

2. Irregular Cellular Automata

Practically all social science applications of cellular modelling use a regular grid as the un‐
derlying network structure. More in particular, the standard grid structure used is a rectan‐
gular regular grid. Other regular grids could be hexagonal or triangular structures. In
general, we denote grids as regular where all inner cells (i.e. cells that are not at the border
of the grid) have the same number of neighbours, whatever our neighbourhood definition
may be - von Neumann neighbourhood or a Moore neighbourhood of a given size. On a
regular torus, this definition generalises even to border cells [7].

Regular Cellular Automata has cells with identical shape and size. Since geographic features
in nature are usually not distributed uniformly, regular spatial tessellation obviously limits
modelling and simulation potential of regular Cellular Automata. In order to overcome this
limitation, several authors have extended the Cellular Automata model to irregular cells.
The most successful approaches use the Voronoi spatial model [10].

A Cellular Automata is a system composed by several identical automata, physically organ‐
ized as a 2 dimensional array of rectangular cells, where each cell is considered an autom‐
aton, A, with a set of rules, T, which gets its inputs from its own state and from neighboring
cells states V:

Emerging Applications of Cellular Automata86

~ (, ,)A S T V (1)

Figure1 shows the regular cellular Automata with regular cells.

The Voronoi spatial model is a tessellation of space that is constructed by decomposing the
entire space into a set of Voronoi regions around each spatial object. By definition, points in
the Voronoi region of a spatial object are closest to the spatial object than to any other spatial
object [5]. The generations of Voronoi regions can be considered as ‘expanding’ spatial ob‐
jects at a unique rate until these areas meet each other. The mathematical expression of the
Voronoi region is defined as:

() { | (,) (,), , 1... }i i jV p p d p p d p p j i j n= £ ¹ = (2)

In this equation, the Voronoi region of spatial object pi, V(pi), is the region defined by the set
of locations p in space where the distance from p to the spatial object pi, d(p, pi), is less than
or equal to the distance from p to any other spatial object pj. In figure 2, the Voronoi based
Cellular Automata is shown.

Voronoi region boundaries are convex polygons. Points along a common boundary between
Voronoi regions are equidistant to the corresponding spatial objects. Objects which share a
common boundary are neighbors to each other in the Voronoi spatial model [5, 12].

In this section, Irregular Cellular Automata has been defined in context but for a better un‐
derstanding, we have also explained Voronoi diagrams concept and modelling irregular
grid structures using a Voronoi diagram further in this section.

Figure 1. Regular Cellular Automata

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

87

Figure 2. Voronoi Based Cellular Automata

2.1. Voronoi Diagrams

We begin with a description of elementary, though important, properties of the Voronoi dia‐
gram that will suggest some feelings for this structure. We also introduce notation used
throughout this paper.

In this section, we introduce concepts of Voronoi Diagrams and describe necessary steps to
create them. A naive approach to construct a Voronoi diagram is to determine the region for
each point using Euclidean distance [16]. For points p= (x p , y p) and q= (x q , y q) in the plane,
equation 3 denote their Euclidean distance.

2 2(,) () ()p q p qd p q x x y y= - + - (3)

By pq̄ , we denote the line segment from p to q. To draw Voronoi diagram, we use perpen‐
dicular bisectors of point set on the 2D space as it is shown in figure 3.

Figure 3. Divided plane with perpendicular bisector of two points

Emerging Applications of Cellular Automata88

Given a set of S points p 1 , p 2 ,..., p n in the plane, a Voronoi diagram divides the plane into n
Voronoi regions with the following properties:

• Each point p i lies in exactly one region.

• If a point q∉S lies in the same region as p i, then the Euclidian distance from p i to q will
be shorter than the Euclidian distance from p j to q, where p j is any other point in S.

The points p 1 ,..., p n are called Voronoi sites. The Voronoi diagram for two sites p i and p j

can be easily constructed by drawing the perpendicular bisector of line segment piq̄ j .

Such diagrams would consist of two unbounded Voronoi regions, denoted by V(p i) and V(p

j), in equation 4. In general, a Voronoi region V(p i) is defined as the intersection of n − 1
half-planes formed by taking the perpendicular bisector of the segment for all where i ≠ j .

1 2() () () ... ()i i i i nV p H p p H p p H p p= Ç Ç Ç (4)

In this notation, H(p i p j) refers to the half-plane formed by taking the perpendicular bisec‐
tor of p i p j in figure 4. We know that the intersection of any number of half-planes forms a
convex region bounded by a set of connected line segments. These line segments form the
boundaries of Voronoi regions and are called Voronoi edges. The endpoints of these edges
are called Voronoi vertices [8, 12].

Figure 4. Create half-plane by perpendicular bisector

The points on Voronoi edges of Voronoi diagram are in equal distance of Voronoi sites p i

and p j. You can see an example of Voronoi diagram in Figure 5.

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

89

Figure 5. Voronoi diagrams of collection points on plane

Equation (5) shows the Voronoi region of p with respect to S, for p, q∈S .

,

(,) (,)
q S q p

V p S H p q
Î ¹

= I (5)

Finally, the Voronoi diagram of S is defined by equation 6.

, ,

() (,) (,)
p q S p q

Voronoi S V p S V q S
Î ¹

= ÇU (6)

By definition, each Voronoi region is the intersection of n – 1 open half-planes containing the
site p.

2.2. Properties of Voronoi Diagrams

• The number of Voronoi vertices is at most 2n − 5.

• The number of Voronoi edges is at most 3n − 6.

• Each Voronoi vertex is the common intersection point of exactly three edges.

• If site p i ∈ S is the nearest neighbor of site p j ∈ S, then the Voronoi regions V(p i) and V(p

j) will share a common edge.

• Region V(p) is unbounded iff p is an extreme point of S. That is, p will be part of the con‐
vex hull of S.

Emerging Applications of Cellular Automata90

Given a triangle Δabc, the perpendicular bisector of each edge will intersect at a common point
q called the circumcenter. The circumcenter is equi-distant from points a, b, c and these points
all lie on a circle with q as its center. This circle is called the circumcircle for triangle Δabc [16].

Figure 6. The circumcircle with circumcenter q

If a circumcircle is empty in its interior then in a Voronoi diagram:

• a, b, c would be Voronoi sites

• q would be a Voronoi vertex

• The perpendicular bisectors of Δabc would be Voronoi edges.

Figure 7. Voronoi Diagrams with (a) 10 random points (b) 10 simultaneous points

Figure 7 shows, on the left, the Voronoi regions corresponding to 10 randomly selected
points in a square; the density function is constant. The dots are the Voronoi generators and

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

91

the circles are the centroids of the corresponding Voronoi regions. Note that the generators
and the centroids do not coincide. On the right, the 10 dots are simultaneously the genera‐
tors for the Voronoi tessellation and the centroids of the Voronoi regions.

2.3. Constructing Voronoi Diagrams

2.3.1. Naive Approach

A naive approach to construct a Voronoi diagram is to determine the region for each site one
at a time. Since each region is the intersection of n− 1 half-planes, we can use an O(n log n)
half-plane intersection algorithm to determine this region. Repeating for all n points, we
have an O(n2 log n) algorithm.

2.3.2. Divide and Conquer

To construct a Voronoi diagram using the divide and conquer method, first partition the set
of points S into two sets L and R based on x-coordinates. Next, construct the Voronoi dia‐
grams for the left and right subset V(L)and V(R). Finally, merge the two diagrams to pro‐
duce V(S). If the merge step can be carried out in linear time, then the construction of V(S)
can be accomplished in O(n log n) time [16].

2.4. Irregular Grids in a Cellular Automaton

To model irregular grid structures, we use a Voronoi diagram. The crosses in Voronoi dia‐
gram are the generators of the grid. The edges of the resulting polygons are points with
equal distance to their neighboring generators [10].

Figure 8. Neighborhoods of three different cells in an irregular field. Focal cells are gray and neighbor cells are red.

Emerging Applications of Cellular Automata92

Figure 8 shows a decisive feature of irregular grids: even the cells inside the grid have differ‐
ent numbers of next neighbors. The figure shows locations of three different cells with 6, 8
and 12 next neighbors in an irregular grid. We define a next neighbor cell here as a cell that
has a common border (not just a common edge) with the focal cell. Notice that this defini‐
tion implies a von Neumann neighborhood on a rectangular grid. More in general, it has
been found in simulation analyses that in a Voronoi graph, the number of neighbor cells
varies between 3 and 14 [10].s

The idea of irregular cellular automata was suggested in mid 80s, but due to the computa‐
tionally intensive operations required to search irregular neighborhood, it has been paid less
attention to since then. In an informal way, Irregular Cellular Automata is a configuration of
points in the space with no prior restriction. Each point has a number of other points as its
neighbors such as figure 8. [8].

3. Learning Automata Concepts

In this section, we present the learning automata concept, cellular learning automata and ir‐
regular cellular learning automata.

3.1. Learning Automata

Learning Automaton is a simple entity which operates in an unknown random environ‐
ment. In a simple form, the automaton has a finite set of actions to choose from, and at each
stage its choice (action) depends upon its action probability vector. For each action chosen
by the automaton, the environment gives a reinforcement signal with fixed unknown proba‐
bility distribution. The automaton then updates its action probability vector depending on
the reinforcement signal at that stage, and evolves to some final desired behavior [1].

Learning Automata is an abstract model which randomly selects one action out of its finite
set of actions and performs it on a random environment. Environment, then evaluates the
selected action and responses to the automata with a reinforcement signal. Based on the se‐
lected action and received signal, the automata updates its internal state and selects its next
action. Figure 9 depicts the relationship between an automata and its environment.

Environment can be defined by the triple E={α, β, c} where α={α 1 , α 2 …, α r } represents a
finite input set, β={β 1 , β 2 , …, β r } represents the output set, and c={c 1 , c 2 , …, c r } is a set of
penalty probabilities where each element c i of c corresponds to one input action α i. Learn‐
ing automata are classified into fixed structure stochastic, and variable structure stochastic
[17, 18]. In the following, we consider only variable structure automata.

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

93

Figure 9. Relationship between learning automata and its environment

A variable structure automata is defined by the quadruple {α, β, p, T} in which α={ α 1 , α 2 ,
…, α n } represents the action set of the automata, β={ β 1 , β 2 , …, β r } represents the input
set, p={p 1 , p 2 , …, p r } represents the action probability set, and finally p(n+1)=T[α(n), β(n),
p(n)] represents the learning algorithm. This automaton operates as follows. Based on the ac‐
tion probability set p, automaton randomly selects an action α i, and performs it on the envi‐
ronment. Having received the environment’s reinforcement signal, automaton updates its
action probability set based on equation (7) for favorable responses, and on equation (8) for
unfavorable ones [18].

(1) () .(1 ())
(1) () . ()

i i i

j j j

p n p n a p n
p n p n a p n j j i

+ = + -

+ = - " ¹
(7)

(1) (1). ()

(1) (1) ()
1

i j

j j

p n b p n
bp n b p n j j i
r

+ = -

+ = + - " ¹
-

(8)

In these two equations, a and b are reward and penalty parameters, respectively. For a = b,
learning algorithm is called L R-P, for a << b, it is called L RεP, and for b=0 it is called L R-I. For
more information about learning automata the reader may refer to Learning automata that
are, by design, ”simple agents for doing simple things”. The full potential of a Learning Au‐
tomata is realized when multiple automata interact with each other. Interaction may assume
different forms such as tree, mesh, array and etc. Depending on the problem that needs to be
solved, one of these structures for interaction may be chosen. In most applications, full inter‐
action between all Learning Automatons is not necessary and is not natural. Local interac‐

Emerging Applications of Cellular Automata94

tion of Learning Automatons which can be defined in a form of graph such as tree, mesh, or
array, is natural in many applications.

On the other hand, Cellular Automata are mathematical models for systems consisting of
large numbers of simple identical components with local interactions. Cellular Automata
and Learning Automata are combined to obtain a new model called Cellular Learning Au‐
tomata (CLA). This model is superior to Cellular Automata because of its ability to learn and
also is superior to single Learning Automata because it is a collection of Learning Autom‐
atons which can interact with each other.

3.2. Cellular Learning Automata

Cellular Learning Automata is a mathematical model for dynamical complex systems that
consists of large number of simple components. The simple components have learning capa‐
bility and act together to produce complicated behavioral patterns. A Cellular Learning Au‐
tomata is a Cellular Automata in which a Learning Automata will be assigned to its every
cell [4]. The learning automaton residing in each cell determines the state of the cell on the
basis of its action probability vector. Like Cellular Automata, there is a rule that Cellular
Learning Automata operates according to it. The rule of Cellular Learning Automata and
the actions selected by the neighboring Learning Automatons of any cell determine the rein‐
forcement signal to the Learning Automata residing in that cell. In Cellular Learning Au‐
tomata, the neighboring Learning Automatons of any cell constitute its local environment.
This environment is non-stationary because of the fact that it changes as action probability
vectors of neighboring Learning Automatons vary [7].

The operation of cellular learning automata could be described as follows: At the first step,
the internal state of every cell is specified. The state of every cell is determined on the basis
of action probability vectors of the learning automata residing in that cell. The initial value
of this state may be chosen on the basis of past experience or at random. In the second step,
the rule of Cellular Learning Automata determines the reinforcement signal to each learning
automaton residing in that cell. Finally, each learning automaton updates its action probabil‐
ity vector on the basis of supplied reinforcement signal and the chosen action. This process
continues until the desired result is obtained (figure 10). Formally a d−dimensional Cellular
Learning Automata is given below.

A d−dimensional cellular learning automata is a structure A = (Z d , Φ, A, N, F), here

1. Zd is a lattice of d−tuples of integer numbers.

2. Φ is a finite set of states.

3. A is the set of Learning Automatons each of which is assigned to each cell of the Cellu‐
lar Automata.

4. N = {x̄1, x̄2, ..., x̄m} is a finite subset of Z d called neighborhood vector where m̄ repre‐

sents the number of neighboring cells and x̄ i∈Z d .

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

95

The neighborhood vector determines the relative position of the neighboring cells from any
given cell u in the lattice Z d. The neighbors of a particular cell u are set of cells
{u + x̄ i | i =1, 2, ..., m̄} . We assume that there exists a neighborhood function N̄ (u) mapping
a cell u to the set of its neighbors according to equation (9).

1 2() { , ,..., }mN u u x u x u x= + + + (9)

Figure 10. Cellular Learning Automata

A number of applications for Cellular Learning Automata have been developed recently such
as rumor diffusion,image processing, modeling of commerce networks, fixed channel assign‐
ment in cellular networks, and VLSI Placement to mention a few (Beigy & Meybodi, 2004).

The Cellular Learning Automata can be classified into two types of synchronous and asynchro‐
nous. In synchronous Cellular Learning Automata, all cells are synchronized with a global
clock and executed at the same time [10]. It is shown that the synchronous Cellular Learning
Automata converges to a globally stable state for a class of rules called commutative rules. In
some applications such as image processing, a type of Cellular Learning Automata in which
the action of each cell in next stage of its evolution not only depends on the local environ‐
ment (actions of its neighbors) but it also depends on the external environments.

3.3. Irregular Cellular Learning Automata

Irregular Cellular Learning Automata is a generalization of Cellular Learning Automata
which removes the restriction of rectangular grid structure in traditional Cellular Learning
Automata. This generalization is expected because there are applications which cannot be
adequately modeled with rectangular grids [10].

Emerging Applications of Cellular Automata96

In an informal way, Irregular Cellular Automata is a configuration of points in the space
with no prior restriction. The few examples of Irregular Cellular Automata all use Voronoi
polygons or the related Delaunay triangulation to divide space and determine the neighbors
of each point. Voronoi polygons divide space into regions surrounding objects such that any
point in an object's polygon is closer to that object than to any other object, while Delaunay
triangulation is a triangulation of the points in a Voronoi diagram where the circumcircle of
each triangle is an empty triangle.

An Irregular Cellular Learning Automata is a combination of Irregular Cellular Automata
and Learning Automata (Figure 11). We define Irregular Cellular Learning Automata as an
undirected graph in which each vertex represents a cell which is equipped with a learn‐
ing automaton.

Figure 11. Irregular Cellular Learning Automata, LA means Learning Automata in each neighbor cell.

The Learning Automaton residing in a particular cell determines its state (action) on the ba‐
sis of its action probability vector. Like Cellular Learning Automata, there is a rule that the
Irregular Cellular Learning Automata operate according to it. The rule of the Cellular Learn‐
ing Automata and the actions selected by the neighboring Learning Automatons of any par‐
ticular Learning Automata determine the reinforcement signal to the Learning Automata
residing in a cell. The neighboring Learning Automatons of any particular Learning Autom‐
ata constitute the local environment of that cell. The local environment of a cell is non-sta‐
tionary because the action probability vectors of the neighboring Learning Automatons vary
during evolution of the Irregular Cellular Learning Automata.

An Irregular Cellular Learning Automata is formally defined below.

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

97

An Irregular Cellular Learning Automata is a structure A = (G <E, V>, Φ, A, F), where

• G is an undirected graph, with V as the set of vertices and E as the set of edges.

• Φ is a finite set of states.

• A is the set of Learning Automata each of which is assigned to one cell of the Irregular
Cellular Learning Automata.

• : jF bF ®
 is the local rule of the irregular cellular learning automata in each vertex j

where
{ (,) } { }j i ji j EF = F Î + F

 is the set of states of all neighbors of j,and β is the
set of values that the reinforcement signal can take. β computes the reinforcement signal
for Learning Automata based on the actions selected by the neighboring Learning Autom‐
ata.

Note that in the definition of Irregular Cellular Learning Automata, no explicit definition of
neighborhood of each cell is given. This is because neighborhood in Irregular Cellular
Learning Automata is implicitly defined in definition of the graph G.

In what follows, we consider Irregular Cellular Learning Automata with n cells. The learn‐
ing automaton A i which has a finite action set αi is associated to cell i (for i=1, 2, …, n) of the
Irregular Cellular Learning Automata. Let the cardinality of αi be m i. The state of the Irregu‐
lar Cellular Learning Automata represented by p= (p 1 , p 2 ,..., p n), where p i=(p i1, p i2,..., p imi)
is the action probability vector of A i. The operation of the Irregular Cellular Learning Autom‐
ata takes place as the following iterations. At iteration k, each learning automaton chooses an
action. Let αi ∈ α be the action chosen by A i. Then all learning automata receive a reinforce‐
ment signal. Let β i∈β be the reinforcement signal received by A i. This reinforcement signal
is produced by the application of local rule F(Φ i)→β. Finally, each Learning Automata updates
its action probability vector on the basis of the supplied reinforcement signal and the chosen
action by the cell. This process continues until the desired result is obtained.

There are some applications that apply Irregular Cellular Learning Automata such as Image
Processing, Graph Coloring, Social Modeling, Clustering and Sensor network applications like
Channel Assignment and Routing. In the following, we introduce a sensor network application.

4. Intrusion Detection in Wireless Sensor Network Using Irregular
Cellular Learning Automata

4.1. Wireless Sensor Networks

A Wireless Sensor Network contains hundreds or thousands of sensor nodes. Basically, each
sensor node comprises sensing, processing, transmission, mobilizer, position finding sys‐
tem, and power units (some of these components are optional like the mobilizer). By defini‐

Emerging Applications of Cellular Automata98

tion the nature of ad hoc networks is dynamically changing. Hence security is hard to
achieve due to the dynamic nature of nodes. Routing protocols for WSNs are designed
based on the assumption that all participating nodes are completely cooperative. In a closed
MANET, all mobile nodes cooperate with each other towards a common destiny, such as
emergency search/rescue or military and law enforcement operations. In an open MANET,
different mobile nodes with different goals share their resources in order to ensure global
connectivity [9, 15]. Lately, significant research efforts have focused on improving the secur‐
ity of ad hoc networks. In WSNs, nodes are both routers and terminals. Due to the lack of a
routing infrastructure all the nodes have to cooperate to ensure successful communication.
Clearly, cooperation means ensuring correct routing establishment mechanisms, the protec‐
tion of routing information and the security of packet forwarding. One major challenge that
was neglected previously is that of making wireless sensor network robust against MAC
layer misbehaviors. Significant applications of WSNs include establishing survivable, effi‐
cient, dynamic communication for emergency/rescue operations, disaster relief. Security is a
critical problem when implementing WSN. The fast detection of malicious nodes is vital in
mobile ad hoc networks, since they rely on the cooperation of nodes for routing and for‐
warding. Also, cooperation of misbehaving nodes can seriously degrade the performance
and jeopardize the functionality of network.

4.2. Intrusion Detection Protocols

The security difference between wired infrastructure networks and wireless sensor net‐
works motivated researchers to model an intrusion detection system that can handle the
new security challenges such as securing routing protocols [21]. We only list here some of
the existent research work that is related to our approach.

Sterne et al. proposed a dynamic intrusion detection hierarchy that is potentially scalable to
large networks with using clustering [24]. This method is similar with Kachirski and Guha,
but it can be structured in more than two levels. Thus, nodes on first level are cluster-heads
and nodes on the second level are leaf nodes. In this model, every node has the task of moni‐
toring, logging, analyzing, properly responding to intrusions detection if there is enough
evidence, and alert or report to cluster-heads. The cluster-heads, in addition, must also per‐
form:

1. data fusion/integration and data filtering,

2. computations of intrusion, and

3. security management.

Sumalatha and Reddy proposed an approach for misbehavior detection [25]. Detection sys‐
tem is implemented based on fuzzy logic concept and the DSR has been used as routing pro‐
tocol. Every node implements an instance of the detection system and runs it in two phases.
In the initial phase, the detecting system learns about the normal behavior of nodes with re‐
spect to the DSR protocol. Then, the node may leave the protected environment and enters

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

99

the second phase where node finds some of the nodes as malicious and captures each node
parameters such as number of route requests, number of route replies and number of up‐
dates at each node in the network. These parameters are used for input of the fuzzy infer‐
ence system and also are fuzzified at the beginning in order to make fuzzy values. To find
the crisp value of the calculated trust, trust is assigned to each node in the ad hoc network.
This process mainly contains fuzzification, inference by rule base construction and defuzzifi‐
cation processes. The Defuzzification is the process of conversion of fuzzy output set into a
single number. In this approach, the authors have used these numbers to detect the mali‐
cious nodes in the network. In one of recent works, the authors suggested learning automa‐
ta-based protocol for intrusion detection (LAID) in wireless sensor networks [27]. LAID
functions in a distributed manner and uses the learning automata to optimize the selection
of paths in which sampling has to be performed. The system, in essence, tries to identify or
approximate the location of the attacker and, thus, it catches the malicious packets sent by
the attacker. LAID protocol is not energy-aware and it may not be always practically ideal
for resource-constrained networks such as distributed WSN.

Further, another learning automata-based intrusion detection protocol (S-LAID) has been
proposed [28]. S-LAID functions in a distributed manner with each node functioning inde‐
pendently without any knowledge about the adjacent nodes. S-LAID assumes that the sys‐
tem budget is configured prior to its installation. In this protocol, the authors considered
that sampling of a packet consumes energy. In S-LAID, each node continuously samples its
interface at a minimum sampling budget. According to S-LAID algorithm if malicious pack‐
ets are found and the detection rate is higher than the penalty threshold, then the sampling
rate is increased. The learning functions calculate the sampling rate that should be used dur‐
ing the next instant by the automaton. In order to maintain efficiency and increase lifetime,
the authors have bound the value by the sampling rate. They also have used the rate control
algorithm to moderate the increase in the sampling rate.

4.3. Irregular Cellular Learning Automata-based Intrusion Detection Protocols

In this protocol, the entire network is divided into multiple clusters. Nodes are placed into
clusters with one cluster-head for each cluster (Figure 12). Each cluster-head node is aware
of its cluster information. The authenticity of a node is mostly determined by the nodes that
are in same cluster. Each node has an IDS agent for detecting potential abnormalities in
packets forwarding process. To reduce the overhead of intrusion detection process, nodes in
a cluster will cooperate to select a cluster-head node based on learning automata residing in
each node for handling the detection process for the whole cluster. Data packets may tra‐
verse between different clusters. The process of misbehaving nodes detection is performed
in 3 sequential phases.

• Phase 1: Detection of misbehaving nodes by cluster-head node in same cluster.

• Phase 2: Confirmation of misbehaving nodes by neighbor nodes.

• Phase 3: Reward or penalize misbehaving node by neighbor nodes.

Emerging Applications of Cellular Automata100

Figure 12. Network Model

To configure the routing in network, each node constructs its probability vector {p 1 , p 2 ,…,
p n }. Each node sends its Id and energy level to its cluster-head and neighbor nodes to form
the clusters. Neighbor nodes construct their local routing tables upon receiving this packet.
For each received packet, an entry for the node Id in the packet is created in routing table,
and initial preference for that node is calculated as follows:

()

1

1,2,3,...

i
m

j
j

EnergyLevelp i
EnergyLevel

i j
and
i

=

=

¹

=

å
(10)

Where p i is the probability of selecting the i th neighbor node, EnergyLevel i is the energy lev‐
el of the i th neighbor node and m is the total number of neighbor nodes. Indeed each node in
the network gets the preference of all nodes that are in the same clusters and sends this pref‐
erence to its cluster-heads.

1. Phase 1

Systematically, in our protocol, we attach an IDS agent to each mobile node. These IDS
agents run independently and monitor local activities to detect abnormal behaviors. We as‐
sume the local IDS agent is tamper resistant. Several software tamper resistance techniques
have been proposed that are very hard to crack and suitable for our approach. In this meth‐
od, we have considered two level architecture for each node. The first layer is the internal
IDS agent. IDS agent can be divided into the following components: the data collection mod‐
ule (DCM), the data transmission quality (DTQ) module, the cluster aggregation and fusion
module (CAFM), and the intrusion response module. A diagram is given in Figure 13.

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

101

The second layer is the ICLA. This layer is a combination of the detection engine module
and learning automata residing in each node.

Data Collection Module (DCM)

The functionality of the data collection module is to collect security related data via monitor‐
ing local activities and local behaviors of neighbor nodes. We define misbehaving nodes as
those that have aberrations in data exchange patterns. We have used the bucket as a specific
count of packets that are transmitted from one node to the other. At the end of every bucket,
Data collection modules send the gathered information and statistics to CAFM. This infor‐
mation determines the behavior of the node and its neighbors that are sending and receiving
data packets.

Figure 13. Internal Model for the IDS Agent

Data Transmission Quality (DTQ Function)

This module has a function to measure the quality of a communication node. In our Method,
the DTQ function measures changes in the environment and sends a probability to a higher
layer. This probability is calculated as follow:

Emerging Applications of Cellular Automata102

() ()
()1 2

1,2,3,...

i iSTB EnergyLevelp i
Er IEnergy N SEnergy

i

l l= ´ +
- ´

=

(11)

In this function, EnergyLevel i is the level of the energy of the i th neighbor node. IEnergy is the
initial energy in each node, and SEnergy is the required energy to transmit data. N is the
number of Data packets or the bucket size. Er() is probability of error in the channel. λ1 and
λ2 declare the effect of nodal behavior and node’s energy respectively. Also STB i () is the
stability of the nodal behavior. This quantity is measured as follows:

i
i

i i

numberoffcrwardedpackets
STB

numberoffcrwardedpackets numberoffrecievedpackets
=

+

å
å å

(12)

Every node measures the number of received acknowledgments from the neighbor nodes it
has tried to transmit to. This statistic is STB().

2. Phase 2

Cluster Aggregation and Fusion Module (CAFM)

If a node is inter-cluster node or normal node, it sends the gathered data from the neighbor‐
ing nodes to detection engine on second level. It can send the alarms and reports to its clus‐
ter-head based on voting request. While if the node is a cluster-head node, then the CAFM
module receives the alarms and reports from inter-cluster nodes. Also, CAFM module of the
cluster-head node allows the voting or prevents it by aggregation and fusion of the received
alarms and reports. When the CAFM module of each cluster-head node receives the vote re‐
quest packet, it votes for the suspect node. Voting process is performed base on the results
that are calculated by the detection engine of inter-cluster nodes. At the end of the voting
process, CAFM module of the cluster-head node sends the number of votes (V m) to its detec‐
tion engine.

Detection Engine Module

The detection engine identifies the misbehaving nodes according to the received informa‐
tion from CAFM module. The detection engine set a threshold (τ) according to equation
(13). This threshold is determined based on the behavior and energy level of all nodes that
are participating in voting process. In this equation, we use STB and energy level of each
node because these values show the quality of node behavior properly.

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

103

()

()
1 2

1 1

1,2,...

i i
M M

j j
j j

STB EnergyLevel

STB EnergyLevel

i
i j

t g g

- -

= ´ + ´

=
¹

å å
(13)

In equation (6), STB i () is the stability of the nodal behavior which can be calculated by
equation (6). EnergyLevel i is the level of the energy of the i th neighbor node. M is the total
number of nodes that participate in the voting. γ1 and γ2 are numbers between zero and one.
According to the information of CAFM module, if the detection engine finds one or more
values of STB in the table that are less than the threshold (τ), then it realizes that there may
be one or more misbehaving nodes in its cluster. So it sends a vote request message about
the suspect nodes to the CAFM module. In addition, the detection engine module makes a
decision in cooperating with ICLA based on the number of vote response messages gathered
by CAFM module. According to the results of voting, the node M is a well-behaving one
and should be rewarded or it is a misbehaving one and should be punished.

3. Phase 3

CAFM module of the cluster-head will gather all the vote responses about suspect node M.
CAFM module then sends the number of gathered vote response messages (V m) to the de‐
tection engine module. According to the number of voting for the suspect node's authentici‐
ty, a decision is made as follow:

• If more than 80 percent of the participating nodes in the voting give a positive vote to sus‐
pect node M, then this node will be exclude from participating in the routing. Moreover,
neighbor nodes of M add node M to their black lists.

• If less than 80 percent and more than 50 percent of the participating nodes in the voting
give a positive vote to suspect node M, then this action will be penalized by learning au‐
tomata residing in the node N with b=0.2 according to L R-P learning algorithm.

• If less than 50 percent and more than 30 percent of the participating nodes in the voting
give a positive vote to suspect node M, then this action will be penalized by learning au‐
tomata residing in the node N with b=0.4 according to L R-P learning algorithm.

• If less than 30 percent of the participating nodes in the voting give a positive vote to sus‐
pect node M, then this action will be rewarded by learning automata residing in the node
N with a=0.6 according to L R-P learning algorithm.

Intrusion Response Module

The Intrusion Response Module efficiently penalizes misbehaving nodes based on updated
statistics which are created and sent to intrusion response module by learning automata.
The intrusion response module performs the following actions according to received statis‐
tics. First, it receives the updated STB values (equation 5) from the second layer and saves

Emerging Applications of Cellular Automata104

them in STB table. Second, if the specific node is a cluster-head node, the intrusion response
module sends the order of penalization or dismissal of the suspected node to all cluster no‐
des. Therefore, misbehaving nodes won’t be permitted to participate in routing process.

4.4. Evaluation the Proposed Protocol

In this section, we have implemented the proposed protocol by MATLAB and Glomosim
simulator, a scalable discrete event simulator developed by UCLA.

Simulation settings

The network area size is 2000*2000 (in m2). The mobility model is the random waypoint
model. The minimum speed is 5 m/s, and the maximum speed is 15 m/s. We have used the
IEEE 802.11 for distributed wireless sensor networks as the MAC layer protocol. The num‐
ber of nodes varies from 1000 to 3000 nodes. Radio bandwidth is 250000(in bps). Initial ener‐
gy level of each node is 5(mW) and radio transmit power is 10 (in dBm). The size of all data
packets is set to 512 bytes. The duration of each simulation is 1800 seconds. The values of γ1

and γ2 are considered 0.5 in our simulations.

Simulated Attacks

In our simulation, we have implemented and used the following attacks:

• Black-hole attack: In this attack, a misbehaving node uses the routing protocol to adver‐
tise itself as having the shortest path to the node whose packets it wants to intercept. The
attacker will then receive the traffic which is destined for other nodes, and then it can
drop or modify the packets.

• Denial of Service: A node prevents itself from receiving and forwarding data packets to
their destinations.

• Malicious Flooding: In this attack, the misbehaving node pumps a great deal of useless
and garbage packets to the network. In this way, it corrodes the resources of the network
such as bandwidth and energy.

• Packet dropping: A node conditionally or randomly drops data packets which are sup‐
posed to be forward.

Simulation Results

The results of simulation in figure 14 show the percentage of detection rate with variation of
misbehaving nodes’ percentage. In this simulation, the number of nodes is 100 and the num‐
ber of clusters is 10. Obviously, at first, the percentage of detection rate in all attacks has de‐
creased, and afterwards with increase of misbehaving nodes’ percentage the detection rate
has increased either. The important reason for this behavior is the application of ICLA. In
voting process, gathered information of neighbor nodes is increased which have participat‐
ed in voting. In fact, the system learns abnormal behavior by increase of gathered informa‐
tion of learning automata from its environment. Therefore, the misbehaving nodes will be
detected accurately. Because of using the energy and behavior factors for detecting the mali‐

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

105

cious nodes in black-hole attack, the results for black-hole attack are detected accurately.
Consequently these results are better than that of other attacks with higher population of
misbehaving nodes.

Figure 14. Detection rate vs. percentage of misbehaving nodes

Figure 15 shows the false positive rate with variation in percentage of the misbehaving no‐
des. In this simulation, the number of nodes is 100 and the number of clusters is 10. In this
figure, first, the percentage of false positive rate has increased and then the false positive
rate has decreased with increasing the percentage of misbehaving nodes. The learning au‐
tomaton in each node gathers the information from the environment and this causes detec‐
tion of misbehaving nodes to be performed properly. So the percentage of false positive rate
has decreased after obvious quantity of 40%.

Figure 15. False positive rate vs. percentage of misbehaving nodes

Emerging Applications of Cellular Automata106

In figure 16, we have shown the results of simulation and have discussed the detection rate
with variation in number of clusters. In this simulation, detection rate will be decreased with
increasing the number of clusters. Because of the constant total number of nodes in the net‐
work and the increase of clusters’ number, the number of nodes in each cluster will be de‐
creased. Therefore, the action probability vector in each cluster-head will be decreased, and
this causes the detection rate to decrease in each cluster. As it is shown in this figure, after a
specific number of clusters (10), the learning rate has increased, and, thus the detection rate
has increased too. In this state, ICLA performs very well.

Figure 16. Detection rate vs. number of cluster

In figure 17, the simulation results of false positive rate in variation with number of clus‐
ters are illustrated. At first, false positive rate increases with increase of clusters’ number,
because as number of clusters increases, number of nodes inside each clusters decreases.
Therefore, the length of action probability vector in cluster-heads’ learning automata decreas‐
es, but after specific number of clusters (10) the false positive rate decreases due to increas‐
ing of learning rate increases. This decrease for denial of service attack has been more
noticeable than the other attacks because of ICLA application in detecting attacks and no‐
dal behavior.

In the next simulation, we have evaluated the effects of mentioned attacks on energy con‐
sumption of network in our method. Figure 18 shows the average energy consumption with
variation in number of nodes. For all attacks, energy consumption has increased with in‐
crease of nodes’ number. Moreover, average energy consumption for malicious forwarding
attack is lower than black-hole attack, and the average energy consumption of black-hole at‐
tack is lower than other attacks. These results were predictable, because the proposed meth‐
od uses the energy level of each node for detecting malicious flooding and black-hole
attacks. In addition, the proposed protocol uses each node’s behavior for black-hole attack
and this causes the energy consumption to increase.

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

107

Figure 17. False positive rate vs. number of clusters

Figure 18. Average energy consumption in the network vs. number of nodes

5. Conclusion

In this Chapter, we have disscussed Cellular Learning Automata which has standard as‐
sumption of a rectangular grid structure. Then we have represented Irregular Cellular
Learning Automata which are the models cause to develop tools that allow us use both rec‐
tangular and even irregular grids within one and the same Cellular Automata modeling
framework. Of course, we are aware that the regularity of the grid structure is but one of a
number of idealizations used in Cellular Automata modeling. For example, it has been dis‐
cussed controversially whether and under what conditions a simple influence dynamics

Emerging Applications of Cellular Automata108

similar to our model of spatial collective action can be robust with respect to variation in si‐
multaneous vs.

We applied these tools to intrusion detection protocols which is an application from sensor
networks. This is a novel approach which used of Irregular Cellular Learning Automata to
detect suspect nodes by using and analyzing nodes’ behavior during routing process and
nodes’ energy level. It also implements Irregular Cellular Learning Automata to detect ab‐
normal behaviors. Afterwards, our method starts its voting process in which it decides to
reward or penalize suspect node based on learning automata reports. The simulations show
that our proposed method not only has a proper detection rate but also is an energy-aware
protocol in detecting malicious nodes.

Author details

Amir Hosein Fathy Navid1* and Amir Bagheri Aghababa2

*Address all correspondence to: Amir.Fathy.n@qiau.ac.ir

1 Islamic Azad University, Hamedan Beranch, Bahar, Hamedan, Iran

2 Islamic Azad University East Tehran Branch, Tehran, Iran

References

[1] Abolhasani, S. M., Meybodi, M. R., & Esnaashari, M. (2007). LABER: A Learning Au‐
tomata Based Energy-aware Routing Protocol for Sensor Networks. IKT conference,
Tehran, Iran.

[2] Al-Karaki, J. N., & Kamal, A. E. Routing techniques in wireless sensor networks: a
survey. IEEE Wireless Communications, 6-28, 11.

[3] Ankit, M., Arpit, M., Deepak, T. J., Venkateswarlu, R., & Janakiram, D. (2006). Tiny‐
LAP: A Scalable learning automata-based energy aware routing protocol for sensor
networks. Communicated to IEEE Wireless and Communications and Networking Confer‐
ence, Las Vegas, NV USA.

[4] Beigy, H., & Meybodi, M. R. (2004). A mathematical framework for cellular learning
automata. Advances on Complex Systems Nos. 3-4, September/December, New Jer‐
sey,., 7, 295-320.

[5] Carvalho, J. P., Carola, M., & Tomé, A. B. (2002). Using Rule-Based Fuzzy Cognitive
Maps to Model Dynamic Cell Behavior in Voronoi Based Cellular Automata. FCT-
Portuguese Foundation for Science and Technology, Lisboa, Portugal.

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

109

[6] Chang, J. H., & Tassiulas, L. (2004). Maximum lifetime routing in wireless sensor net‐
works. IEEE/ACM Trans. on Networking August., 12(4), 609-619.

[7] Esnaashari, M., & Meybodi, M. R. (2007). Irregular Cellular Learning Automata and
Its Application to Clustering in Sensor Networks. Proceedings of 15th Conference on
Electrical Engineering (15th ICEE), Tehran, Iran May., 15-17.

[8] Fathy Navid, A. H. (2010). SELARP: Scalable and Energy-aware Learning Automata-
based Routing Protocols for Wireless Sensor Networks. Proceedings of SENSOR‐
COMM2010, IEEE, Venis, Italy.

[9] Fathy, Navid. A. H., & Seyyed, Javadi. S. H. (2009). Energy Aware Routing Protocol
for WSN Using Irregular Cellular Learning Automata. IEEE Symposium on Industri‐
al Electronics and Applications (ISIEA2009), Kuala Lumpur, Malaysia, October , 4-6.

[10] Flache, A., & Hegselmann, R. (2002). Do Irregular Grids make a Difference? Relaxing
the Spatial Regularity Assumption in Cellular Models of Social Dynamics. JASSS,
Journal of Artificial Societies and Social Simulation of 26), 11/4/2002., 4(4)

[11] James, C., & Kingsbery Jr, . (2006). Excluded Blocks in Cellular Automata. WILLIAMS
COLLEGE Williamstown, Massachusetts.

[12] Klein, R., & Aurenhammer, F. (2001). Voronoi diagrams. D. Forschungsgemein schaft
Editor.

[13] Papadimitriou, I., & Georgiadis, L. (2005). Energy-aware routing to maximize life‐
time in wireless sensor networks with mobile sink. 13th International Conference on
Software, Telecommunications and Computer Networks, SoftCOM2005 September.,
120-126.

[14] Schiff, J.L. (2005). Introduction to cellular automata. http://psoup.math.wise.edu/
491October2008.

[15] Shah, R., & Rabaey, J. (2002). Energy aware routing for low energy ad hoc sensor net‐
works. Proceedings of the IEEE Wireless Communications and Networking Confer‐
ence (WCNC) Orlando, FL, March., 143-150.

[16] Souvaine, D., Horn, M., & Weber, J. (2005). Voronoi diagrams, Computational Geom‐
etry. Tufts University Editor, Spring.

[17] Narendra, K. S., & Thathachar, M. A. L. (1989). Learning automata: an introduction.
Prentice Hall.

[18] Thathachar, M. A. L., & Sastry, P. S. (2002). Varieties of learning automata: an over‐
view. IEEE Transaction on Systems, Man, and Cybernetics-Part B: Cybernetics, 32(6).

[19] Zeng, X., Bagrodia, R., & Gerla, M. (1998). GloMoSim: a library for parallel simula‐
tion of large-scale wireless networks. in: PADS.

[20] Esnaashari, M., Meybodi, M. R., & Sabaei, M. (2007). A novel method for QoS sup‐
port in sensor networks. CSICC2007, Tehran, I. R. Iran,., 740-747.

Emerging Applications of Cellular Automata110

[21] Mitrokotsa, A., Mavropodi, R., & Douligeris, C. (2006). Intrusion Detection of Packet
Dropping Attacks in Mobile Ad Hoc Networks. Proceedings of the International Confer‐
ence on Intelligent Systems And Computing: Theory And Applications, Ayia Napa, Cyprus,
111-118.

[22] Otrok, H., Debbabi, M., Assi, C., & Bhattacharya, P. (2007). A Cooperative Approach
for Analyzing Intrusions in Mobile Ad hoc Networks. Proceedings of the 27th Interna‐
tional Conference on Distributed Computing Systems Workshops, (ICDCSW2007).

[23] Mishra, A., Nadkarni, K., & Patcha, A. (2004). Intrusion Detection in Wireless Ad
Hoc Networks. IEEE Wireless Communications, IEEE press., 48-60.

[24] Sterne, D., Balasubramanyam, P., et al. (2005). A General Cooperative Intrusion De‐
tection Architecture for MANETs. Proceedings of the 3rd IEEE International Workshop
on Information Assurance (IWIA2005), 57-70.

[25] Sumalatha, V., & Reddy, P. C. (2009). A Novel Approach for Misbehavior Detection
in Ad hoc Networks. International Journal of Cryptography and Security January,
17-24., 2(1)

[26] Kachirski, O., & Guha, R. (2002). Intrusion Detection Using Mobile agents in wireless
Ad hoc Networks. Proceedings of the IEEE workshop on Knowledge Media Networking,
153-158.

[27] Misra, S., Krishna, P. V., & Abraham, K. I. (2011). A simple learning automata-based
solution for intrusion detection in wireless sensor networks. Wireless Communication
and Mobile Computing [11], 426-441.

[28] Misra, S., Abraham, K. I., et al. (2009). LAID: a learning automata-based approach for
intrusion detection in wireless sensor networks. Security and Communication Networks,
2(2), 105-115.

[29] Kari, J. (2004). Theory of cellular automata: a survey. FIN-20014, Turku, Finland.
Elsevier, 1 October.

Cellular Learning Automata and Its Applications
http://dx.doi.org/10.5772/52953

111

