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1. Introduction

Osteoporosis is a disease entity characterized by the progressive loss of bone mineral density
(BMD) and the deterioration of bone microarchitecture, leading to the development of frac-
tures. Its classification encompasses two large groups, primary and secondary osteoporosis [1].

Primary osteoporosis is the disease’s most common form and results from the progressive loss
of bone mass related to aging and unassociated with other illness, a natural process in adult
life; its etiology is considered multifactorial and polygenic. This form currently represents a
growing worldwide health problem due in part, to the contemporary environmental condi-
tions of modern civilization. Risk factors that are considered as “modifiable” also play an
important role and include physical activity, dietary habits and eating disorders. Furthermore,
there is another group of associated risk factors that are considered “non-modifiable”,
including gender, age, race, a personal and/or family history of fractures that in turn, indirectly
reflect the degree of genetic susceptibility to this disease [2-4]. Secondary osteoporosis
encompasses a large heterogeneous group of primary conditions favoring osteoporosis
development. Table 1 summarizes some of the disease entities associated to primary and
secondary osteoporosis.

1.1. Genetic aspects of primary osteoporosis

This form of osteoporosis results from the interaction of several environmental and genetic
factors, leading to difficulties in its study. It is not easy to define the magnitude of the effect of
genetic susceptibility since it is a trait determined by multiple genes whose products affect the
bone phenotype; moreover, the environmental factors compromising bone mineral density are
also difficult to analyze. However, in spite of these barriers, research suggests that inherited
factors affect BMD in ranges between 40 — 70% in the spine, 70 — 85% in the hip and 50 — 60%
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Type of osteoporosis Causes
Primary Multifactorial, polygenic. Senile/Involutional
Secondary Drugs compromising bone quality: anticonvulsants, antidepressants,

anticoagulants, antacids with aluminum, aromatase inhibitors, barbiturates,
cimetidine, corticosteroids, glucocorticoids, birth control pills, cancer drugs,
gonadotropin releasing hormone (GnRH), loop diuretics, methotrexate,

phenobarbital, phenothiazines, among others.

Other entities: nephropathies, malabsorption syndromes, neoplasias,
rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, any process

leading to decreased mobility or prolonged immobility.

Metabolic diseases: diabetes, hyperthyroidism, hyperparathyroidism.

Hypogonadism: Turner and Klinefelter syndromes.

Behavioral disorders: anorexia nervosa, depression, prolonged physical
inactivity, malnutrition, high caffeine intake, smoking and/or chronic

alcoholism.

Monogenic diseases: osteogenesis imperfecta, glioma syndrome, osteoporosis.

Table 1. Osteoporosis classification.

in the wrist. Bone density studies in monozygotic (MZ) and dizygotic (DZ) twins suggest that
spinal and femoral neck BMD concordance is higher (6-8:1) in MZ versus DZ twins. Other
studies have estimated that fracture predisposition heritability per se ranges between 25 -35%
and up to 40% of patients with osteoporotic fractures have a positive family history of fractures,
thus reflecting the great influence of genetic factors in this disease. On the other hand, the
geometry and length of the femoral neck, the bone’s properties on ultrasound, growth speed
and bone remodeling variations are also dependent on genetic factors. The genes associated
with the bone phenotype are distributed throughout the human genome and located in
practically all chromosomes; their products fulfill specific functions and contribute in different
manners to the genetic control of the bone tissue phenotype [5-12]. Some of these genes and
their products are presented in Table 2 [13-23].

It is important to mention that the mechanisms conditioning the hereditary susceptibility
to osteoporosis are determined, among other factors, by the presence of mutations or
genetic polymorphisms (natural genomic variations) in one or several genes involved in
bone phenotype genetic control. These polymorphisms follow a well-defined inheritance
pattern and their distribution is different among racial groups and populations. There are
several reports in the world literature, of associations between specific genetic variants and
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osteoporosis development or the risk of fractures; these risks may vary according to the
fractures’ anatomic location [3, 4, 24-30]

Product Function Genes

Matrix components COL1A1, COL1A2, OPN

Hormones and their receptors ESR1, ESR2, AR, VDR, PTHR1, CASR, PTH, CYP1A1, PRL, LEP,
LEPR, INS, INSR

Participants in osteoblastogenic proccesses ALOX12, ALOX15, BMP4, BMP7, IGF-1 LRP5, LRP6, SOST

Participants in osteoclastogenic proccesses P53, RANK, RANK-L

Citokines and their receptors IL1a, IL1B, IL6, TNF, TNFR2

Other MTHFR, APOE

Table 2. Genes involved in bone metabolism.

2. Mendelian diseases and osteoporosis

The description in the literature of some genetic diseases of monogenic inheritance and whose
phenotype includes the loss or increase in bone mineral density and even fractures, has
suggested and even proved that bone phenotype has an important genetic component. These
diseases include idiopathic osteoporosis, osteogenesis imperfecta in all its variants, osteopet-
rosis, pycnodysostosis and the osteoporosis syndrome associated to pseudoglioma, among
others. In some cases of severe osteoporosis, mutations in the estrogen and even the androgen
receptor genes have been detected.

2.1. Idiopathic juvenile osteoporosis

This is an unusual variety of osteoporosis whose frequency has not been precisely determined.
This disease may develop in females and males, usually around 7 — 10 years of age; children
present difficulty in gait, pain in the lower extremities, ankles, knees, occasionally in the hip
and fractures tend to develop particularly in long bones. Radiologically, it is characterized by
diffuse osteopenia, metaphyseal fractures — especially of the femur -, and vertebral collapse
that may lead to severe kyphoscoliosis or collapse of the thoracic cage. This disease is consid-
ered potentially reversible whereby in most cases, there is almost complete recovery of the
bone tissue; growth, however, may be compromised.

In these patients, it is important to exclude other disease entities or conditions manifest-
ing secondarily as osteoporosis. A differential diagnosis must be made with other genetic
diseases, particularly the different variants of osteogenesis imperfecta; this is relatively easy
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due to its clinical characteristics, lacking in idiopathic osteoporosis. The genetic basis of
this disease has of yet, not been established but it is possible that genetic mutations with
preferential tissue expression in bone and with great impact on the tissue’s phenotype,
may explain some of these cases [31, 32].

2.2. Osteogenesis imperfecta

Osteogenesis imperfecta, also known as “brittle bone disease”, has an estimated incidence of
approximately 1 in 20 000 births. It has great phenotypic variability, different patterns of
inheritance and a wide clinical spectrum ranging from very mild forms of the disease to severe
cases with an unfavorable prognosis. It is caused by the defective synthesis of one of the two
alpha chains of type I collagen (COL1A1 and COL1A2), leading to anomalies in these protein’s
structure; it is normally constituted by 3 coiled sub-units, two a1 chains and one a2 chain. This
type of collagen is considered the most abundant component of structural protein in bone as
well as in ligaments, tendons, sclerae and skin. Quantitative or qualitative defects in this
protein lead to bone fragility and hence, to an increased risk of fractures.

The genes encoding the al and a2 chains are located in the 17q21.31-q22 and 7q22.1 chromo-
somes, respectively. Aside from brittle bones, these patients may also present long bones with
no curvatures, severe deformities preventing appropriate gait and even standing, conductive
deafness due to malformations of the auditory canal, dentinogenesis imperfecta, joint hyper-
laxity and intervertebral disc herniation. Patients with severe forms of the disease have a long
history of fractures on mild impact and variable bone deformities. The most severe variants
may even lead to fractures in utero and pre or perinatal death. Tables 3 and 4 shows different
forms of the disease [33-35].

2.3. Osteoporosis — Pseudoglioma Syndrome (OPPG)

This syndrome is an autosomal recessive disease characterized by bone and visual
abnormalities including short stature, osteoporosis development during infancy, spontane-
ous fractures, scoliosis, platyspondyly and long bone deformities. A crucial associated
finding is the presence of pseudoglioma that may be associated to microcephaly, blind-
ness during childhood, cataracts and iris atrophy. Occasionally, some patients present
interventricular septal defects and mental retardation. This disease is conditioned by
mutations of the LRP5 gene, located on chromosome 11q13.4 and that encodes the low-
density lipoprotein receptor-related protein 5 (LRP5). It was initially believed that this
entity was another variant of osteogenesis imperfecta (OI) but the study of collagen in
patients with OPPG established that this protein was normal and the hypothesis was
discarded; however, this is still the most relevant differential diagnosis [36-41].

2.4. Neuromuscular disorders

Muscular dystrophies, peripheral neuropathies and muscle atrophies of hereditary origin,
represent broad groups of diseases that aside from their characteristic clinical stigmata, can be
associated with osteoporosis as one of their complications. As the disease progresses in these
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patients, there is increased difficulty and limitation in walking and periods of immobility
become progressively more prolonged leading to the gradual loss of the mechanical stimuli
that bone needs to maintain its strength and hence, favoring the development of osteoporosis.
As all Mendelian diseases, these neuromuscular abnormalities follow different inheritance
patterns and present phenotypic variability [42-44].

2.5. Inborn errors of metabolism

This group of genetic diseases encompasses a great number of inborn defects with repercus-
sions in several aspects of carbohydrate, amino acid, protein, vitamin, mineral, complex
molecule, neurotransmitter and energy metabolism. The genetic basis of most of these entities
hinges on gene mutations encoding proteins, particularly enzymes, leading to partial or
complete blockade of one or several metabolic processes. In these diseases, symptoms arise
for different reasons, including: a deficit of the products generated by the compromised
enzymatic reaction, accumulation of the precursor immediate to the defect, an increase in
alternative products due to increased activation of alternate metabolic pathways or inhibition
of these alternate pathways due to the accumulated substrate. In most cases, inheritance of
these diseases is autosomal recessive and less frequently, X-linked recessive.

In cases of metabolic errors, osteoporosis tends to develop for different reasons: in some cases,
it is secondary to nutritional deficiencies, progressive neurologic or muscular impairment or
as a consequence of the therapeutic measures taken in the management of the primary disease:
their secondary effects directly compromise bone quality (steroids, antiseizure drugs, etc.). The
number of monogenic diseases whose phenotype may include osteoporosis is large and are
shown in Tables 3-5, according to their Mendelian inheritance pattern [45-56].

Disease Gene Product Genomic Reference
Location
Hutchinson-Gilford progeria LMNA Prelamin-A/C 1922 57,58
syndrome; HGPS precursor (LMNA)
Osteogenesis imperfecta, Type I; Ol1 COLTA1 Collagen, type I, alpha  17g21.33 33,34
1 (COL1A1)
Osteogenesis imperfecta, Type Il; 012 COL1A1 Collagen, type I, alpha  17g21.33 33,59
1 (COL1A1)
COLTA2 Collagen, type I, alpha  7g21.3
2 (COL1A2)
Osteogenesis imperfecta, Type lll; 013  COL1A1 Collagen, type |, alpha  17921.33 33,60
1 (COL1AT)
COLTA2 Collagen, type I, alpha  7921.3
2 (COL1A2)

Marfan syndrome; MFS FBN1 Fibrillin 1 (FBN1) 15921.1 61,62
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Disease Gene Product Genomic Reference
Location
Loeys-Dietz syndrome, TGFBR1 Transforming growth  9g22.33 63,64
Type 1A; LDSTA factor-beta receptor,
Type | (TGFBR1)
Loeys-Dietz syndrome, TGFBR2 Transforming growth  3p24.1 65, 66
Type 1B; LDS1B factor-beta receptor,
Type Il (TGFBR2)
Loeys-Dietz syndrome, TGFBR2 Transforming growth  3p24.1 63, 65
Type 2B; LDS2B factor-beta receptor,
Type Il (TGFBR2)
Loeys-Dietz syndrome, Type 3; LDS3 MADH3/ Mothers against 15922.33 67,68
SMAD3 decapentaplegic
homolog 3
(Drosophila) (SMAD3)
Ehlers-Danlos syndrome, Type | COL5A2 Collagen, type V, 2932.2 69,70
alpha 2 (COL5A2)
COL5A1 Collagen, type V, 9g34.3
alpha 1 (COL5AT1)
COL1TA1 Collagen, type I, alpha  17g21.33
1 (COL1AT)
Ehlers-Danlos syndrome, Type |l COL5A1 Collagen, type V, 9934.3 70,71
alpha 1 (COL5AT1)
COL5A2 Collagen, type V, 2932.2
alpha 2 (COL5A2)
Pseudohypoparathyroidism, GNAS GNAS complex locus  20g13.32 72,73
Type IA; PHPTA (GNAS)
[Gs, alpha subunit,
included]
Pseudohypoparathyroidism, GNAS GNAS complex locus  20g13.32 73,74
Type IC; PHP1C (GNAS)
[Gs, alpha subunit,
included]
Pseudopseudohypopara-thyroidism; ~ GNAS GNAS complex locus ~ 20g13.32 73,75
PPHP (GNAS)
[Gs, alpha subunit,
included]
Epiphyseal dysplasia, multiple, 1; COMP Cartilage oligomeric 19p13.11 76,77

EDM1

matrix protein
(COMP)
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Disease Gene Product Genomic Reference
Location
Prader-Willi syndrome; PWS NDN Necdin homolog 15911.2 78,79
SNRPN /PWCR (mouse) (NDN) 15g11.2

Small nuclear

ribonucleoprotein-

associated protein N

(SNRPN/PWCR)
Hajdu-Cheney syndrome; HICYS NOTCH2 Neurogenic locus 1p12-p11 80, 81

Notch homolog

protein 2 (NOTCH2)
Nephrolithiasis/osteoporosis, SLC34A1 Sodium-dependent 5935.3 82,83
hypophosphatemic, 1; NPHLOP1 phosphate transport

protein 2A

(SLC34A1/ .NPT2A)
Nephrolithiasis/osteoporosis, SLC9A3R1/ Na(+)/H(+) exchange  17¢25.1 84-86
hypophosphatemic, 2; NPHLOP2 NHERF regulatory cofactor

NHE-RF1 (SLC9A3R1/

NHERF)
Cardiomyopathy, dilated, with LMNA Prelamin-A/C 1922 87,88
hypergonadotropic hypogonadism precursor (LMNA)
Dyskeratosis congenita, autosomal TERC Telomerase RNA 3026.2 87,88
dominant, 1; DKCA1 component (TERC)

(RNA)
Dyskeratosis congenita, autosomal TERT Telomerase reverse 5p15.33 89,90
dominant, 2; DKCA2 transcriptase (TERT)
Dyskeratosis congenita, autosomal TINF2 TERF1-interacting 14912 91,92
dominant, 3; DKCA3 nuclear factor 2

(TINF2)
Pigmented nodular adrenocortical PRKARTA cAMP-dependent 17924.2 93,94
disease, primary, 1; PPNAD1 protein kinase type I-

alpha regulatory

subunit (PRKARTA/

TSE1)
Pigmented nodular adrenocortical PDET1A Dual 3',5'-cycliccAMP ~ 2g31.2 95,96
disease, primary, 2; PPNAD2 and -GMP

phosphodiesterase

11A (PDE11A)
Hyperostosis corticalis generalisata, LRP5 Low density 11g13.2 97,98

benign form of worth, with torus

palatinus

lipoprotein receptor-
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Disease Gene Product Genomic Reference

Location

related protein 5

(LRP5)
Van Buchem disease, LRP5 Low density 11913.3 99, 100
Type 2; HVB2 lipoprotein receptor-

related protein 5

(LRP5)
Osteopetrosis, autosomal dominant LRP5 Low density 11913.3 101,102
1, OPTA1 lipoprotein receptor-

related protein 5

(LRP5)
Osteopetrosis, autosomal dominant CLCN7 H(+)/Cl(-) exchange 16p13.3 103,104
2; OPTA2 transporter 7 (CLCN7)
ACTH-independent macronodular GNAS GNAS complex locus  20g13.32 105, 106
adrenal hyperplasia; AIMAH (GNAS)

[Gs, alpha subunit,

included]
Hyper-IgE recurrent infection STAT3 Signal transducerand  17g21.2 107,108
syndrome, autosomal dominant activator of

transcription 3

(STAT3)
Coronary artery disease, autosomal LRP6 Low density 12p13.2 109, 110
dominant 2; ADCAD2 or CADO lipoprotein receptor-

related protein 6

(LRP6)
Avascular necrosis of femoral head, COL2A1 Collagen, type Il 12913.11 111,112
primary; ANFH alpha 1 (COL2A1)
Spondyloepimetaphyseal dysplasia KIF22 Kinesin-like protein 16p11.2 113,114
with joint laxity Type 2; SEMDJL2 KIF22 (KIF22)
Spondyloepiphyseal dysplasia, TRPV4 Transient receptor 12924.11 115,116
Maroteaux type (pseudo-Morquio potential cation
syndrome, Type 2) channel, subfamily Vv,

member 4 (TRPV4)
Hypophosphatasia, adult ALPL Alkaline phosphatase, 1p36.12 117,118

liver/bone/kidney or
alkaline phosphatase,
tissue-nonspecific
isozyme (ALPL)
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Disease Gene Product Genomic Reference
Location
Cleidocranial dysostosis; CLCD RUNX2 Runt-related 6p21.1 119,120
transcription factor 2
(RUNX2)
Trichorhinophalangeal syndrome, TRPS1 Zinc finger 8g23.3 121,122
type |; TRPS1 transcription factor
Trps1(TRPS1)
Table 3. Autosomal dominant diseases with bone mineral density loss.
Disease Gene Product Genomic Reference
location
Vitamin D hydroxylation-deficient CYP27B1 25-hydroxy-vitamin 12913 123,124
rickets, Type 1A; VDDR1A D-1 alpha
hydroxylase,
mitochondrial
(CYP27B1)
Hemochromatosis; HFE HFE (C282Y'y Hereditary 6p22.2 125,126
H63D) hemochromatosis
protein (HFE)
BMP2 [HFE Bone morphogenetic  20p12.3
hemochromatosi  protein 2 (BMP2)
s, modifier of]
Beta-Thalassemia beta- Hemoglobin subunit  11p15.4 47,48
Thalassemia:HBB  beta (HBB)
Thalassemia, Locus control region,  11p15.5
Hispanic gamma- beta (LCRB)
delta-beta: LCRB
Osteoporosis-pseudoglioma LRP5 Low density 11913.2 127,128
syndrome; OPPG lipoprotein receptor-
related protein 5
(LRP5)
Homocystinuria due to cystathionine  CBS/HIP4 Cystathionine beta- 21922.3 45, 46
beta-synthase deficiency synthase (CBS)
Homocysteinemia MTHFR (C677T) Methylenetetrahydro  1p36.6 129,130
folate reductase
(MTHFR)
CBS Cystathionine beta- 21922.3
synthase (CBS)
MS/MTR Methionine synthase 1923

(MTR/METH)
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Disease Gene Product Genomic Reference
location
Homocysteinemia MTHFR (C677T) Methylenetetrahydro  1p36.6 33,131,132
folate reductase
(MTHFR)
CBS Cystathionine beta- 21922.3
synthase (CBS)
MS/MTR Methionine synthase 1923
(MTR/METH)
Osteogenesis imperfecta, Type IX; PPIB Peptidyl-prolyl cis- 15922.31 35,133
(6]°] trans isomerase B
[Osteogenesis imperfecta type I-B, Il (PPIB)
or IV PPIB related]
Propionic acidemia PCCA Propionyl-CoA 13932.3 134,135

carboxylase alpha
chain, mitochondrial
(PCCA)

PCCB Propionyl-CoA 3922.3
carboxylase beta

chain, mitochondrial

(PCCB)
Ehlers-Danlos syndrome, type VI, PLOD1 Procollagen-lysine,2-  1p36.22 69, 136
EDS6 oxoglutarate 5-
dioxygenase 1
(PLOD1)
Hypertrophic osteoarthropathy, HPGD 15-hydroxy- 4934.1 137,138
primary, autosomal recessive, 1; prostaglandin
PHOAR1 dehydrogenase [NAD
+] (HPGD)
Pituitary adenoma, ACTH-secreting; AIP AH receptor- 11913.2 139, 140
CubP interacting protein
(AIP)
Gaucher disease, Type |; GDI GBA Glucosylceramidase 1922 49, 50
(GLCM/GBA)
Paget disease, juvenile; JPD TNFRSF11B Tumor necrosis factor  8924.12 141,142
receptor superfamily,
member 11b
(TNFRSF11B)
Pycnodysostosis; PKND CTSK Cathepsin K 1921.3 143,144
Lipodystrophy, congenital PTRF Polymerase | and 17921.2 145, 146
generalized, type 4; CGL4 transcript release

factor (PTRF)
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Disease Gene Product Genomic Reference
location

Niemann-Pick disease, Type A SMPD1 Sphingomyelin 11p15.4 147,148
phosphodiesterase 1,
acid lysosomal
(SMPD1/ASM)

Niemann-Pick disease, Type B SMPD1 Sphingomyelin 11p15.4 147,149
phosphodiesterase 1,
acid lysosomal
(SMPD1/ASM)

Lathosterolosis SC5DL Lathosterol oxidase 11923.3 150, 151
(SC5DL)

Mucopolysaccharidosis Type IVA GALNS N-acetyl- 16q24.3 152-154

(Morquio syndrome A) galactosamine-6-
sulfatase (GALNS)

Mucopolysaccharidosis Type IVB GLB1 Beta-galactosidase 3p22.3

(Morquio syndrome B) (BGAL)

Fibromatosis, juvenile hyaline; JHF ANTXR2 Anthrax toxin 4021 155, 156
receptor 2
(ANTXR2)

Aromatase deficiency CYP19A1 Cytochrome P450 15021.2 157,158
19A1 (CYP19AT)

Diastrophic dysplasia SLC26A2 Sulfate transporter2 5932 159, 160
(S26A2)

Desbuquois dysplasia; DBQD CANT1 Soluble calcium- 17925.3 161,162
activated
nucleotidase 1
(CANTT)

Torg-winchester syndrome MMP2 72 kDa type IV 16912.2 163, 164
collagenase (MMP2)

Geroderma osteodysplasticum; GO GORAB RAB6-interacting 1924.2 165, 166
golgin (GORAB)

Lysinuric protein intolerance; LPI SLC7A7 Y+L amino acid 14911.2 167,168
transporter 1 (YLAT1)

Cerebroretinal microangiopathy with ~ CTC1 CST complex subunit ~ 17p13.1 169,170

calcifications and cysts; CRMCC CTC1

Exudative vitreoretinopathy 4; EVR4 LRP5 Low density 11913.2 171,172
lipoprotein receptor-
related protein 5
(LRP5)

Nestor-Guillermo progeria syndrome;  BANF1 Barrier to 11913.1 173,174

NGPS

autointegration
factor 1 (BANF1)
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Disease Gene Product Genomic Reference
location

Dyskeratosis congenita, autosomal NOLA3 /NOP10  H/ACA 15914 175,176

recessive, 1; DKCB1 ribonucleoprotein

complex subunit 3
(NOP10/ NOLA3)

Macrocephaly, alopecia, cutis laxa, RIN2 Ras and Rab 20p11.23 177,178
and scoliosis interactor 2
(RIN2)
Hypertrophic osteoarthropathy, HPGD 15- 4934.1 137,179
primary, autosomal recessive, 1; hydroxyprostaglandin
PHOAR1 dehydrogenase
[NAD+] (PGDH)
Multiple joint dislocations, short B3GAT3 Galactosylgalactosylx ~ 11g12.3 180, 181
stature, craniofacial dysmorphism, ylosylprotein 3-beta-
and congenital heart defects glucuronosyltransfera
se3
(B3GAT3)
Hyalinosis, infantile systemic; ISH ANTXR2 Anthrax toxin 4921.21 182,183
receptor 2
(ANTXR2)
Ovarian dysgenesis 1; ODG1 FSHR Follicle stimulating 2p16.3 184,185
hormone receptor
(FSHR)
Epiphyseal dysplasia, multiple, with EIF2AK3 Eukaryotic translation  2p11.2 186, 187
early-onset diabetes mellitus initiation factor 2

alpha kinase 3

(EIF2AK3)
Cerebrooculofacioskeletal syndrome  ERCC6 DNA excision repair 10911.23 188, 189
1; COFS1 protein ERCC-6
Wilson disease; WND ATP7B Copper-transporting 13914.3 190, 191
ATPase 2 (ATP7B)
Werner syndrome; WRN WRN/RECQL2 Werner syndrome 8p12 192,193

ATP-dependent
helicase (WRN /

RECQL2)
Rothmund-thomson syndrome; RTS RECQL4 ATP-dependent DNA  8q24.3 194,195
helicase Q4 (RECQL4)
Schwartz-Jampel syndrome, Type 1; HSPG2 Basement 1p36.12 196, 197
SJS1 membrane-specific

heparan sulfate
proteoglycan core
protein (HSPG2)
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Disease Gene Product Genomic Reference
location
Perrault syndrome; prlts HSD17B4 Peroxisomal 5g23.1 198, 199
multifunctional
enzyme type 2
(HSD17B4)
Glycogen storage disease la; GSD1A  G6PC Glucose-6- 17921.31 200, 201
phosphatase,
catalytic subunit
(G6PC)
Glycogen storage disease Ib; GSD1B SLC37A4 Glucose-6-phosphate  11g23.3 200, 201
translocase
(SLC37A4)
Cranioectodermal dysplasia 1; CED1 IFT122 Intraflagellar 3921.3 202,203
transport protein 122
homolog (IFT122)
Cerebrotendinous xanthomatosis; CYP27A1 Sterol 26-hydroxylase, 2935 204, 205
CTX mitochondrial
(CYP27A1/CP27A)
Arthropathy, progressive WISP3 WNT1-inducible- 6921 206, 207
pseudorheumatoid, of childhood; signaling pathway
PPAC protein 3 (WISP3)
Genitopatellar syndrome; GTPTS KAT6B Histone 10g22.2 208, 209
acetyltransferase
KAT6B
Congenital disorder of glycosylation,  TMEM165 Transmembrane 4912 210, 211
Type Ilk; CDG2K protein 165
(TMEM165/TM165)
Cutis laxa, autosomal recessive, Type  FBLN5 Fibulin-5 (FBLN5) 14932.12 212,213
IA; ARCLTA
Cutis laxa, autosomal recessive, Type  PYCR1 Pyrroline-5- 17925.3 166,214
|I1B; ARCL2B carboxylate reductase
1, mitochondrial
(PYCR1/P5CR1)
Cutis laxa, autosomal recessive, Type ~ PYCR1 Pyrroline-5- 17925.3 212,215
I11B; ARCL3B carboxylate reductase
1, mitochondrial
(PYCR1/P5CR1)
Niemann-Pick disease, Type B SMPD1 Sphingomyelin 11p15.4 149,216
phosphodiesterase
(SMPD1)
Trichothiodystrophy, photosensitive;  ERCC3 TFIIH basal 2q14.3 217,218

TTDP

transcription factor
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Disease Gene Product Genomic Reference

location

complex helicase XPB
subunit (ERCC3)

GTF2H5 General transcription  6925.3
factor IIH, subunit 5
(GTF2H5)

ERCC2 TFIIH basal 19913.32

transcription factor

complex helicase XPD

subunit (ERCC2)
Cerebral autosomal recessive HTRA1 Serine protease 10926.13 219,220
arteriopathy with subcortical infarcts HTRA1

and leukoencephalopathy; CARASIL

Weill-Marchesani syndrome 1; WMS1  ADAMTS10 A disintegrin and 19p13.2 221,222
metalloproteinase

with thrombospondin

motifs 10
(ADAMTS10/ATS10)
Laron syndrome GHR Growth hormone 5p13-p12 223,224
receptor (GHR)
Mandibuloacral dysplasia with type A LMNA Prelamin-A/C 1922 225,226
lipodystrophy; MADA precursor (LMNA)
Keutel syndrome MGP Matrix Gla protein 12p12.3 227,228
(MGP)
Hypophosphatasia, childhood ALPL Alkaline phosphatase, 1p36.12 229,230

liver/bone/kidney or
alkaline phosphatase,
tissue-nonspecific
isozyme (ALPL / PPBT)

Fanconi-Sickel syndrome; FBS SLC2A2 Solute carrier family 3926.2 231,232
2, facilitated glucose
transporter member
2 (SLC2A2 / GTR2)

Lactose intolerance, adult type MCM6 DNA replication 2921.3 233,234
licensing factor
MCM6
Trichohepatoenteric syndrome 1; TTC37 Tetratricopeptide 5915 235,236
THES1 repeat domain 37
(TTC37)
Costello syndrome HRAS GTPase HRas (HRAS/  11p15.5 237,238

RASH) (HRAS / RASH)
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Disease Gene Product Genomic Reference
location
Adrenal hyperplasia, congenital, due ~ CYP21A2 Steroid 21- 6p21.33 239, 240
to 21-hydroxylase deficiency hydroxylase
(CYP21A2)
Table 4. Autosomal recessive diseases with bone mineral density loss.
Disease Gene Product Genomic Reference
location
Hypophosphatemic rickets, X-linked PHEX Phosphate-regulating  Xp22.11 241,242
dominant; XLHR or HYP neutral
endopeptidase
(PHEX/PEX)
Androgen insensitivity syndrome; AIS AR Androgen receptor Xq12 243,244
(AR)
Fragile X mental retardation FMR1 Fragile X mental Xq27.3 245,246
syndrome retardation protein 1
(FMR1)
Fabry disease GLA Galactosidase, alpha  Xqg22.1 51,52
(AGAL)
Occipital horn syndrome; OHS ATP7A Copper-transporting ~ Xg21.1 247,248
ATPase 1 (ATP7A)
Menkes disease ATP7A Copper-transporting  Xg21.1 249,250
ATPase 1 (ATP7A)
Dyskeratosis congenita, X-linked; DKC1 H/ACA Xq28 251,252
DKCX ribonucleoprotein
complex subunit 4
(DKCT)
Hyperglycerolemia GK Glycerol kinase (GK) Xp21.2 253,254
(glycerol kinase deficiency; GKD)
Premature ovarian failure 2B; POF2B FLI22792 / Protein POF1B Xg21.1- 255, 256
POF1B q21.2
Terminal osseous dysplasia; TOD or FLNA Filamin-A (FLNA) Xq28 257,258

ODPF

Table 5. X-linked recessive diseases with bone mineral density loss.

2.6. Genetic diseases of chromosomal origin and osteoporosis

Within the different categories of genetic diseases, we can include numeric or structural
chromosomal abnormalities. Two of the most common chromosomal diseases are Turner’s
syndrome and Klinefelter’s syndrome, both associated to X chromosome aneuploidy; in the
tirst case, there is complete or partial absence of an X chromosome and less frequently, it can
be caused by structural anomalies in the short arms of the X chromosome. In Klinefelter’s
syndrome, there is an additional X chromosome and occasionally, there may be more than one
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extra X chromosome. In both syndromes, the phenotypic spectrum includes gonadal dysgen-
esis, in Turner’s syndrome there are fibrous bands instead of ovaries and in Klinefelter’s, the
testicles are hypoplastic, leading in both cases to hypogonadism and a partial or complete
deficit in the sex hormones that would normally be produced by the ovaries and testicles. Due
to their lack, the development of normal secondary sexual characteristics is stunted and the
various metabolic processes dependent on the hormones are also compromised. One of these
metabolic processes occurs in bone [259-262].

Undoubtedly, bone metabolism is complex and the processes of osteoblastogenesis, osteo-
clastogenesis and remodeling must occur in a balanced manner; it is important to mention that
the entire family of steroid hormone receptors (estrogen, androgen, vitamin D and retinoids),
are expressed in bone, both in osteoblasts and osteoclasts as well as in chondrocytes. Within
this microenvironment, the action of these hormones on their receptors is key to appropriate
skeletal development; as a matter of fact, individuals with genetic mutations encoding any of
these receptors develop, among other manifestations, bad quality bone mass. These hormones
and their receptors play a pivotal role in female and male bone growth and may also favor
epiphyseal closure at the end of the growth period. It is known that one of effects of steroid
hormones on bone metabolism is resorption inhibition since they promote osteoclast apoptosis
and decrease the frequency of remodeling unit activation. Therefore, the integral treatment of
both entities includes hormone replacement that to a certain extent, will improve bone mass
and will prevent or delay the development of osteoporosis [263, 264].

3. Conclusion

Bone metabolism and the large amount of processes that it involves, such as osteoblastogen-
esis, osteoclastogenesis and bone remodeling, must be kept in constant balance. Each one
of these aspects of the physiology of bone shows a particular gene expression patterns,
which may even differ according to conditions and tissue needs. As previously men-
tioned the number of genes involved is very large and sometimes their expression might
be modified by multiple environmental conditions. It is important to mention that the
expression of these genes is ubiquitous and is not restricted to the bone tissue, which
explains why the phenotypic characteristics of a large number of monogenic and some
polygenic entities include alterations on bone mineral density and on the microarchitec-
ture of this tissue; this includes several degrees of osteopenia,osteoporosis or increased bone
mineral density. Even a good number of these genes have been identified through the study
of human disease whose phenotype includes altered bone mineral density. Without a doubt,
the investigation of several processes that regulate bone metabolism will continue generat-
ing new knowledge that will allow better understanding of bone physiology and physiopa-
thology of multiple diseases and possibly new therapeutic options in diseases which
compromise the quality and function of the bone.
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Nomenclature

OPN-Osteopontin

ESR1-Estrogen Receptor Alpha

ESR2-Estrogen Receptor Beta

AR-Androgen Receptor

VDR-Vitamin D Receptor
PTHR1-Parathohormone Receptor
PTH-Parathormone

CASR-Calcium Sensing Receptor
CYP1A1-Cytochrome P450, Subfamily A, Polypeptide 1
PRL-Prolactin

LEP-Leptin

LEPR-Leptin Receptor

INS-Insulin

INSR-Insulin Receptor

ALOX12-Arachidonate 12-Lipoxygenase
ALOX15-Arachidonate 15-Lipoxygenase
BMP4-Bone Morphogenetic Protein 4
BMP7-Bone Morphogenetic Protein 7
IGF-1-Insulin-Like Growth Factor 1 (Somatomedin C)
SOST-Sclerostin

P53-Protein 53

RANK-Receptor Activator Of Nf-Kb2
RANK-L.-Receptor Activator Of Nf-Kb2 Ligand
IL1B-Interleucin 1 Beta

IL6-Interleucin 6

TNF-Tumor Necrosis Factor

TNFR2-Tumor Necrosis Factor Receptor
APOE-Apolipoprotein E
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