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1. Introduction

Microbial growths and their use for environmental purposes, such as bio-degradations, are

widely studied in the industry and research centres. Several models of microbial growth

and bio-degradation kinetic have been proposed and analysed in the literature. The Monod’s

model is one of the most popular ones that describes the dynamics of the growth of a biomass

of concentration X on a single substrate of concentration S in batch culture [15, 18]:

Ṡ = −µ(S)

Y
X, Ẋ = µ(S) X . (1)

where the specific growth rate µ(·) is:

µ(S) = µmax
S

Ks + S
, (2)

with µmax, Ks and Yare repsectively the maximum specific growth rate, the affinity constant

and the yield coefficient. Other models take explicitly into account a lag-phase before the

growth, such as the Baranyi’s [1–3] or the Buchanam’s [6] ones. These models are well suited

for the growth phase (i.e. as long as a substantial amount of substrate remains to be converted)

but not after [18], because the accumulation of dead or non-viable cells is not taken into

account. Part of the non-viable cells release substrate molecules, in quantities that are no

longer negligible when most of the initial supply has been consumed. The on-line observation

of the optical density of the biomass provides measurements of the total biomass, but not of

the proportion among dead and viable cells. Some tools allow the distinction between viable

and dead cells but do not detect non-viable non-dead ones [22].

In this work, we consider an extension of the model (1) considering both the accumulation of

dead cells and the recycling of part of it into substrate, and tackle the question of parameters
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and state reconstruction. To our knowledge, this kind of question has not been thoroughly

studied in the literature. Models of continuous culture with nutrient recycling have already

been studied [4, 5, 9, 12–14, 16, 20, 21, 24, 25] but surprisingly few works considers batch

cultures. A possible explanation comes from the fact that only the first stage of the growth,

for which cell mortality and nutrient recycling can be neglected, is interested for industrial

applications. Nevertheless, in natural environment such as in soils, modelling the growth end

is also important, especially for biological decontamination and soil bioremediation.

Moreover, we face a model for which the parameters are not identifiable at steady state. Then,

one cannot apply straightforwardly the classical estimation techniques, that usually requires

the global observability of the system. Estimation of parameters in growth models, such as

the Baranyi’s one, are already known to be difficult to tackle in their differential form [11]. In

addition, we aim here at reconstructing on-line unmeasured state variables (amounts of viable

and non-viable cells), as well as parameters. For this purpose, we propose the coupling of two

non-linear observers in cascade with different time scales, providing a practical convergence

of the estimation error. Design of cascade observers in biotechnology can be found for instance

in [17, 23], but with the same time scale.

2. Derivation of the model

We first consider a mortality rate in the model (1):

Ẋ = µ(S)X − mX

where parameter m > 0 becomes not negligible when µ(S) takes small values. In addition,

we consider an additional compartment Xd that represents the accumulation of dead cells:

Ẋd = δmX,

where the parameter δ ∈ (0, 1) describes the part of non-viable cells that are not burst. We

assume that the burst cells recycle part of the substrate that has been assimilated but not yet

transformed. Then, the dynamics of the substrate concentration can be modified as follows:

Ṡ = −µ(S)

Y
X + λ(1 − δ)mX,

where λ > 0 is recycling conversion factor. It appears reasonable to assume that the factor λ

is smaller that the growth one:

Assumption A1.
1

Y
> λ.

In the following we assume that the growth function µ(·) and the yield coefficient Y of the

classical Monod’s model are already known. Typically, they can be identified by measuring

the initial growth slope on a series of experiments with viable biomass and different initial

concentrations, mortality being considered to be negligible during the exponential growth.

We aim at identifying the three parameters m, δ and λ, and on-line reconstructing the variables
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X and Xd, based on on-line observations of the substrate concentration S and the total biomass

B = X + Xd.

Without any loss of generality, we shall assume that the growth function µ(·) can be any

function satisfying the following hypotheses.

Assumption A2. The function µ(·) is a smooth increasing function with µ(0) = 0.

For sake of simplicity, we normalise several quantities, defining

s = S, x = X/Y, xd = Xd/Y, a = (1 − δ)m and k = λY .

Then, our model can be simply written as

⎧

⎨

⎩

ṡ = −µ(s)x + kax,

ẋ = µ(s)x − mx,

ẋd = mx − ax,

(3)

along with the observation vector y =

(

s

x + xd

)

. Typically, we consider known initial

conditions such that

s(0) = s0 > 0, xd(0) = 0 and x(0) = x0 > 0 .

Our purpose is to reconstruct parameters m, a and k and state variable x(·) or xd(·), under

the constraints m > a and k < 1, that are direct consequences of the definition of a and

Assumption A1. Moreover, we shall assume that a priori bounds on the parameters are known

i.e.

(m, a, k) ∈ [m−, m+]× [a−, a+]× [k−, k+] . (4)

3. Properties of the model

Proposition 1. The dynamics (3) leaves invariant the 3D-space D = R
3
+ and the set

Ω =

{

(s, x, xd) ∈ D | s + x +
(m − k a)

(m − a)
xd = s0 + x0

}

.

Proof. The invariance of R
3
+ is guaranteed by the following properties:

s = 0 ⇒ ṡ = k a x ≥ 0,

x = 0 ⇒ ẋ = 0,

xd = 0 ⇒ ẋd = (m − a) x ≥ 0.

Consider the quantity M = s + x +
(m − k a)

(m − a)
xd . One can easily check from equations (3) that

one has Ṁ = 0, leading to the invariance of the set Ω.

Let s̄ be the number s̄ = µ−1(m) or + ∞ .
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Proposition 2. The trajectories of dynamics (3) converge asymptotically toward an equilibrium point

E� =

(

s�, 0,
m − a

m − ka
(s0 + x0 − s�)

)

with s� ≤ min(s0 + x0, s̄).

Proof. The invariance of the set Ω given in Proposition 1 shows that all the state variables

remain bounded. From equation ẋd = (m − a)x with m > a, and the fact that xd is bounded,

one deduces that x(·) has to converge toward 0, and xd(·) is non increasing and converges

toward x�d such that x�d ∈ [0, (s0 + x0)(m − a)/(m − ka)]. Then, from the invariant defined by

the set Ω, s(·) has also to converges to some s� ≤ s0 + x0. If s� is such that s� > s̄, then from

equation ẋ = (µ(s)− m)x, one immediately see that x(·) cannot converge toward 0.

4. Observability of the model

We recall that our aim is to estimate on-line both parameters and unmeasured variables x, xd ,

based on the measurements. One can immediately see from equations (3) that parameters

(m, a, k) cannot be reconstructed observing the system at steady state. Nevertheless,

considering the derivative µ′ of µ with respect to s and deriving the outputs:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẏ1 = (−µ(y1) + k a) x,

ẏ2 = (µ(y1)− a) x,

ÿ1 = (µ(y1)− m) ẏ1 − µ′(y1) x ẏ1,

ÿ2 = (µ(y1)− m) ẏ2 + µ′(y1) x ẏ1.,

one obtains explicit expression of the parameters and unmeasured state variable as functions

of the outputs and its derivatives, away from steady state:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

m = µ(y1)−
ÿ1 + ÿ2

ẏ1 + ẏ2
,

x =
ÿ2 − (µ(y1)− m)ẏ2

µ′(y1)ẏ1
,

xd = y2 − x,

a = µ(y1)−
ẏ2

x
,

k =
µ(y1)

a
+

ẏ1

a x
,

(5)

from which one deduces the observability of the system.

5. Design of a practical observer

Playing with the structure of the dynamics, we are able to write the model as a particular

cascade of two sub-models. We first present a practical observer for the reconstruction of the

parameters a and k using the observation y1 only, but with a change of time that depends

on y1 and y2. We then present a second observer for the reconstruction of the parameter m

100 Biomass Now – Cultivation and Utilization



Design of a Cascade Observer for a Model of Bacterial Batch Culture with Nutrient Recycling 5

and the state variables x and xd, using both observations y1 and y2 and the knowledge of the

parameters a and k. Finally, we consider the coupling of the two observers, the second one

using the estimations of a and k provided by the first one. More precisely, our model is of the

form

Ż = F(Z, P) , y = H(Z)

where F is our vector field with the state, parameters and observation vectors Z, P and y of

dimension respectively 3, 3 and 2. We found a partition

Z =

(

Z1

Z2

)

, P =

(

P1

P2

)

s.t.

{

dimZ1 = 1, dimP1 = 2

dimZ2 = 2, dimP2 = 1

y =

(

y1

y2

)

=

(

H1(Z1)

H2(Z2)

)

and the dynamics is decoupled as follows

Ż1 =
1

dφ(y)

dt

F1(Z1, P1)

Ż2 = F2(Z2, y1, P1, P2)

with dφ(y)/dt > 0. Moreover, the following characteristics are fulfilled:

i. (Z1, P1) is observable for the dynamics (F1, H1) i.e. without the term dφ(y)/dt,

ii. (Z2, P2) is observable for the dynamics (F2, H2) when P1 is known. Then, the consideration

of two observers F̂1(·) and F̂2(P1, ·) for the pairs (Z1, P1) and (Z2, P2) respectively, leads to the

construction of a cascade observer

d
dτ

(

Ẑ1

P̂1

)

= F̂1(Ẑ1, P̂1, y1),

d
dt

(

Ẑ2

P̂2

)

= F̂2(P̂1, Ẑ2, P̂2, y2)

with τ(t) = φ(y(t)) − φ(y(0)), that we make explicit below. Notice that the coupling of

two observers is made by P̂1, and that the term dφ(y)/dt prevents to have an asymptotic

convergence when lim
t→+∞

τ(t) < +∞.

Definition 1. An estimator Ẑγ(·) of a vector Z(·), where γ ∈ Γ is a parameter, is said to have a

practical exponential convergence if there exists positive constants K1, K2 such that for any ǫ > 0

and θ > 0, the inequality

||Ẑγ(t)− Z(t)|| ≤ ǫ + K1e−K2θt, ∀t ≥ 0

is fulfilled for some γ ∈ Γ.

In the following we shall denote by sat(l, u, ι) the saturation operator max(l, min(u, ι)).
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5.1. A first practical observer for k and a

Let us consider the new variable

τ(t) = y1(0)− y1(t) + y2(0)− y2(t)

that is measured on-line. From Proposition 1, one deduces that τ(·) is bounded. One can also

easily check the property

dτ

dt
= (1 − k) a x(t) > 0 , ∀t ≥ 0 .

Consequently, τ(·) is an increasing function up to

τ̄ = lim
t→+∞

τ(t) < +∞ (6)

and τ(·) defines a diffeomorphism from [0,+∞) to [0, τ̄). Then, one can check that the

dynamics of the variable s in time τ is decoupled from the dynamics of the other state

variables:
ds

dτ
= α − βµ(s)

where α and β are parameters defined as combinations of the unknown parameters a and k:

α =
k

1 − k
,

β =
1

a(1 − k)

and from (4) one has (α, β) ∈ [α−, α+]× [β−, β+]. For the identification of the parameters α,

β, we propose below to build an observer. Other techniques, such as least squares methods,

could have been chosen. An observer presents the advantage of exhibiting a innovation vector

that gives a real-time information on the convergence of the estimation.

Considering the state vector ξ =

[

s
ds

dτ

d2s

dτ2

]T

, one obtains the dynamics

dξ

dτ
= Aξ +

⎛

⎝

0

0

ϕ(y1, ξ)

⎞

⎠ with y1 = Cξ ,

ϕ(y1, ξ) =
ξ2

3

ξ2
+ ξ2ξ3

µ′′(y1)

µ′(y1)
,

and the pair (A, C) in the Brunovsky’s canonical form:

A =

⎛

⎝

0 1 0

0 0 1

0 0 0

⎞

⎠ and C =
(

1 0 0
)

. (7)
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The unknown parameters α and β can then be made explicit as functions of the observation

y1 and the state vector ξ:

α = lα(y1, ξ) = ξ2 −
ξ3µ(y1)

ξ2µ′(y1)
,

β = lβ(y1, ξ) = − ξ3

ξ2µ′(y1)
.

One can notice that functions ϕ(y1, ·), lα(y1, ·) and lβ(y1, ·) are not well defined on R
3, but

along the trajectories of (3) one has ξ3/ξ2 = −βµ′(y1) and ξ2 = α − βµ(y1), that are bounded.

Moreover Assumption A2 guarantees that µ′(y1) is always strictly positive . We can consider

(globally) Lipschitz extensions of these functions away from the trajectories of the system, as

follows:

ϕ̃(y1, ξ) = ξ3

(

h1(y1, ξ) +
µ′′(y1)

µ′(y1)
h2(y1, ξ)

)

,

l̃α(y1, ξ) = ξ2 − h1(y1, ξ)
µ(y1)

µ′(y1)
,

l̃β(y1, ξ) = − h1(y1, ξ)

µ′(y1)

with

h1(y1, ξ) = sat

(

−β+µ′(y1),−β−µ′(y1),
ξ3

ξ2

)

,

h2(y1, ξ) = sat
(

α− − β+µ(y1), α+ − β−µ(y1), ξ2

)

.

Then one obtains a construction of a practical observer.

Proposition 3. There exist numbers b1 > 0 and c1 > 0 such that the observer

dξ̂

dτ
= Aξ̂ +

⎛

⎜

⎜

⎜

⎜

⎝

0

0

ϕ̃(y1, ξ̂)

⎞

⎟

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎜

⎝

3θ1

3θ2
1

θ3
1

⎞

⎟

⎟

⎟

⎟

⎠

(ξ̂1 − y1)

(α̂, β̂) =
(

l̃α(y1, ξ̂), l̃β(y1, ξ̂)
)

(8)

guarantees the convergence

max
(

|α̂(τ)− α|, |β̂(τ)− β|
)

≤ b1e−c1θ1τ ||ξ̂(0)− ξ(0)|| (9)

for any θ1 large enough and τ ∈ [0, τ̄).

Proof. Consider a trajectory of dynamics (3) and let O1 = {y1(t)}t≥0. From Proposition 1, one

knows that the set O1 is bounded.

Define Kθ1
= −

(

3θ1 3θ2
1 θ3

1

)T
. One can check that Kθ1

= −P−1
θ1

CT, where Pθ1
is solution of

the algebraic equation

θ1Pθ1
+ ATPθ1

+ Pθ1
A = CTC.
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Consider then the error vector e = ξ̂ − ξ. One has

de

dτ
= (A + Kθ1

C)e +

⎛

⎜

⎜

⎝

0

0

ϕ̃(y1, ξ̂)− ϕ̃(y1, ξ)

⎞

⎟

⎟

⎠

where ϕ̃(y1, ·) is (globally) Lipschitz on R
3 uniformly in y1 ∈ O1. We then use the result in [10]

that provides the existence of numbers c1 > 0 and q1 > 0 such that ||e(τ)|| ≤ q1e−c1θ1τ ||e(0)||
for θ1 large enough. Finally, functions l̃α(y1, ·), l̃β(y1, ·) being also (globally) Lipschitz on R

3

uniformly in y1 ∈ O1, one obtains the inequality (9).

Corollary 1. Estimation of a and k with the same convergence properties than (9) are given by

k̂(τ), â(τ) = sat

(

k−, k+,
α̂(τ)

1 + α̂(τ)

)

, sat

(

a−, a+,
1 + α̂(τ)

β̂(τ)

)

Remark. The observer (8) provides only a practical convergence since τ(t) does not tend

toward +∞ when the time t get arbitrary large. For large values of initial x, it may happens

that µ(t) > t for some times t > 0. Because the present observer requires the observation y1

until time τ, it has to be integrated up to time min(τ(t), t) when the current time is t.

5.2. A second observer for m and x

We come back in time t and consider the measured variable z = y1 + y2. When the parameters

α and β are known, the dynamics of the vector ζ =
[

z ż z̈
]T

can be written as follows:

ζ̇ = Aζ +

⎛

⎜

⎜

⎝

0

0

ψ(y1, ζ, α, β)

⎞

⎟

⎟

⎠

with z = Cζ

and ψ(y1, ζ, α, β) =
ζ2

3

ζ2
+ ζ2

2µ′(y1)(βµ(y1)− α)

Parameter m and variable x(·) can then be made explicit as functions of y1 and ζ:

m = lm(y1, ζ) = µ(y1)−
ζ3

ζ2
, x = −βζ2

Functions ψ(y1, ·, α, β) and lm(y1, ·) are not well defined in R
3 but along the trajectories of the

dynamics (3), one has ζ3/ζ2 = µ(y1)− m and ζ2 = −x/β that are bounded. These functions

can be extended as (globally) Lipschitz functions w.r.t. ζ:

ψ̃(y1, ζ, α, β) = h3(y1, ζ)ζ3 + min(ζ2
2, z(0)2/β2)µ′(y1)(βµ(y1)− α)

l̃m(y1, ζ) = µ(y1)− h3(y1, ζ)

(10)
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with

h3(y1, ζ) = sat

(

µ(y1)− m+, µ(y1)− m−,
ζ3

ζ2

)

.

Proposition 4. When α and β are known, there exists numbers b2 > 0 and c2 > 0 such that the

observer

d

dt
ζ̂ = Aζ̂ +

⎛

⎜

⎜

⎜

⎜

⎝

0

0

ψ̃(y1, ζ̂, α, β)

⎞

⎟

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎜

⎝

3θ2

3θ2
2

θ3
2

⎞

⎟

⎟

⎟

⎟

⎠

(ζ̂1 − y1 − y2)

(m̂, x̂) =
(

l̃m(y1, ζ̂),−βζ̂2

)

(11)

guarantees the exponential convergence

max (|m̂(t)− m|, |x̂(t)− x(t)|) ≤ b2e−c2θ2t||ζ̂2(0)− ζ2(0)||

for any θ2 large enough and t ≥ 0.

Proof. As for the proof of Proposition 3, it is a straightforward application of the result given

in [10].

5.3. Coupling the two observers

We consider now the coupling of observer (11) with the estimation (α̂, β̂) provided by observer

(8). This amounts to study the robustness of the second observer with respect to uncertainties

of parameters α and β.

Proposition 5. Consider the observer (11) with (α, β) replaced by (α̃(·), β̃(·)) such that

(α̃(t), β̃(t)) ∈ [α−, α+]× [β−, β+], ∀t ≥ 0 ,

then there exists positive numbers b̄2, c̄2, d̄2 such that for any ǫ > 0 there exists θ2 large enough to

guarantee the inequalities

|m̂(t)− m| ≤ ǫ + b̄2e−c̄2t||ζ̂(0)− ζ(0)|| (12)

|x̂(t)− x(t)| ≤ ǫ + d̄2|β̃(t)− β|+ b̄2e−c̄2t||ζ̂(0)− ζ(0)|| (13)

for any t ≥ 0.

Proof. As for the proof of Proposition 3, we fix an initial condition of system (3) and consider

the bounded set O1 = {y1(t)}t≥0. The dynamics of e = ζ̂ − ζ is

ė = (A + Kθ2
C)e + (ψ̃(y1, ζ̂, α̃, β̃)− ψ̃(y1, ζ, α, β))v
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where (A, C) in the Brunovsky’s form (7), v =
(

0 0 1
)T

and Kθ2
= −P−1

θ2
CT with

Pθ2
=

⎛

⎜

⎝

θ−1
2 −θ−2

2 θ−3
2

−θ−2
2 2θ−3

2 −3θ−4
2

θ−3
2 −3θ−4

2 6θ−5
2

⎞

⎟

⎠
(14)

solution of the algebraic equation

θ2Pθ2
+ ATPθ2

+ Pθ2
A = CTC. (15)

Consider then V(t) = ||e(t)||2Pθ2
= eT(t)Pθ2

e(t). Using (15), one has

V̇ = −θ2eTPθ2
e − eTCTCe + 2δeT Pθ2

v

≤ −θ2||e||2Pθ2
+ 2δ||e||Pθ2

||v||Pθ2

(16)

where δ = |ψ̃(y1, ζ̂, α̃, β̃)− ψ̃(y1, ζ, α, β)|.

One can easily compute from (14) ||v||Pθ2
=

√
6θ−5/2.

From the expression (10) and the (globally) Lipschitz property of the map ζ 
→ ψ̃(y1, ζ, α, β)
uniformly in y1 ∈ O1, we deduce the existence of two positive numbers c and L such that

δ ≤ |ψ̃(y1, ζ̂, α̃, β̃)− ψ̃(y1, ζ̂, α, β)|+ |ψ̃(y1, ζ̂, α, β)− ψ̃(y1, ζ, α, β)|
≤ |ψ̃(y1, ζ̂, α−, β+)− ψ̃(y1, ζ̂, α+, β−)|+ L||e||
≤ c + L||e||

(17)

Notice that one has ||e||Pθ2
= θ2||ẽ||P1

with ẽi = θ−i
2 ei and ||ẽ||2 ≥ θ−6

2 ||e||2 for any θ2 ≥ 1.

The norms || · ||P1
and || · || being equivalent, there exists a numbers η > 0 such that ||ẽ||P1

|| ≥
η||ẽ||, and we deduce the inequality

||e||Pθ2
≥ ηθ−5/2

2 ||e|| . (18)

Finally, gathering (16), (17) and (18), one can write

d

dt
||e||Pθ2

≤
(

− θ2

2
+

√
6L

η

)

||e||Pθ2
+
√

6θ−5/2
2 c

For θ2 large enough, one has −θ2/2 +
√

6L/η < 0 and then, using again (18), obtains

d

dt
||e|| ≤

(

− θ2

2
+

√
6L

η

)

||e||+
√

6

η
c

from which we deduce the exponential convergence of the error vector e toward any arbitrary

small neighbourhood of 0 provided that θ2 is large enough.

The Lipschitz continuity of the map lm(·) w.r.t. ζ uniformly in y1 ∈ O1 provides the inequality

(12).
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For the estimation of x(·), one has the inequality

|x̂ − x| = |β̂ζ̂2 − βζ2| ≤ |β̂ − β||ζ2|+ β+|ζ̂2 − ζ2|

provided the estimation (13), the variable ζ2 being bounded.

Corollary 2. At any time t > 0, the coupled observer

dξ̂

ds1
= Aξ̂ +

⎛

⎜

⎜

⎜

⎜

⎝

0

0

ϕ̃(y1, ξ̂)

⎞

⎟

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎜

⎝

3θ1

3θ2
1

θ3
1

⎞

⎟

⎟

⎟

⎟

⎠

(ξ̂1 − y1)

dζ̂

ds2
= Aζ̂+

⎛

⎜

⎜

⎜

⎜

⎝

0

0

ψ̃(y1, ζ̂, α̂(s2), β̂(s2))

⎞

⎟

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎜

⎝

3θ2

3θ2
2

θ3
2

⎞

⎟

⎟

⎟

⎟

⎠

(ζ̂1− y1− y2)

integrated for s1 ∈ [0, min(t, τ(t))] and s2 ∈ [0, t], with

τ(t) = y1(0)− y1(t) + y2(0)− y2(t),

α̂(s2) = sat(α−, α+, l̃α(y1(min(s2, τ(t)))), ξ̂(min(s2, τ(t)))),

β̂(s2) = sat(β−, β+, l̃β(y1(min(s2, τ(t)))), ξ̂(min(s2, τ(t)))),

provides the estimations

m̂(t) = l̃m(y1(t), ζ̂(t)) ,

(x̂(t), x̂d(t)) =
(

−β̂(t)ζ̂2(t), y2(t) + β̂(t)ζ̂2(t)
)

.

The convergence of the estimator is exponentially practical, provided θ1 and θ2 to be sufficiently large.

6. Numerical simulations

We have considered a Monod’s growth function (2) with the parameters µmax = 1 and

Ks = 100 and the initial conditions s(0) = 50, x(0) = 1, xd(0) = 0. The parameters to be

reconstructed have been chosen, along with a priory bounds, as follows:

parameter δ k m

value 0.2 0.2 0.1

bounds [0.1, 0.3] [0.1, 0.3] [0.05, 0.2]

Those values provide an effective growth that is reasonably fast (s(0) is about Ks/2), and a

value τ̄ (see (6)) we find by numerical simulations is not too small. For the time interval

0 ≤ t ≤ tmax = 80, we found numerically the interval 0 ≤ τ ≤ τmax = τ(tmax) � 37.22

(see Figure 1). For the first observer, we have chosen a gain parameter θ1 = 3 that provides
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Figure 1. Graphs of function τ and observations y1, y2.

a small error on the estimation of the parameters α and β at time τmax (see Figures 2 and 3).

These estimations have been used on-line by the second observer, with θ2 = 2 as a choice
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Figure 2. Internal variables ξ̂ of the first observer in time τ (variables ξ of the true system in thin lines).
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Figure 3. On-line estimation of parameters α and β.

for the gain parameter. On Figures 4 and 5, one can see that the estimation error get small

when the estimations provided by the first observer are already small. Simulations have

been also conducted with additive noise on measurements y1 and y2 with a signal-to-noise
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ratio of 10 and a frequency of 0.1Hz (see Figures 6 and 7). In presence of a low frequency
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Figure 6. Estimation of the parameters α, β and m in presence of measurement noise.

noise (as it can be usually assumed in biological applications), one finds a good robustness of

the estimations of parameters α, β and variables x and xd. Estimation of parameter m is more

affected by noise. This can be explained by the structure of the equations (5): the estimation of

m is related to the second derivative of both observations y1 and y2, and consequently is more

sensitive to noise on the observations.
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Figure 7. Estimation of the state variables x and xd in presence of measurement noise.

7. Conclusion

The extension of the Monod’s model with an additional compartment of dead cells and
substrate recycling terms is no longer identifiable, considering the observations of the
substrate concentration and the total biomass. Nevertheless, we have shown that the model
can be written in a particular cascade form, considering two time scales. This decomposition
allows to design separately two observers, and then to interconnect them in cascade. The
first one works on a bounded time scale, explaining why the system is not identifiable at
steady state, while the second one works on unbounded time scale. Finally, this construction
provides a practical convergence of the coupled observers. Each observer has been built
considering the variable high-gain technique proposed in [10] with an explicit construction
of Lipschitz extensions of the dynamics, similarly to the work presented in [19]. Other choices
of observers techniques could have been made and applied to this particular structure. We
believe that such a decomposition might be applied to other systems of interest, that are not
identifiable or observable at steady state.
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