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1. Introduction 

The bioprocess advancement is determined by the living cells capabilities and 

characteristics, the bioreactor performance as well as by the cultivation media composition 

and the main parameters evolution. The high metabolic network complexity inside the cells 

often determine very sophisticated, non-linear growth and product formation kinetics, with 

further consequences on the bioprocess behavior, but at the same time on the product 

quality and yield. 

The key issue of this rather complicated situation is the use of modeling and further on of 

computer assisted control as a powerful tool for bioprocess improving. The process models, 

as relationships of the input, output and inner variables, though incomplete and simplified, 

can be effective to describe the phenomena and the influences of great importance for 

control, optimization and better theoretical knowledge. The function of any biological model 

is to describe the metabolic reactions rates and their stoichiometry on the basis of bioreactor 

conditions, with the main difficulties-the identification of principal factors affecting cellular 

growth and bioproduct formation, and the building up of a suitable model structure for the 

intracellular processes. 

Moreover the scheduling, supervision and automatic control in modern bioprocessing is 

done by advanced process control systems, where all the functions are implemented in 

software (in accordance with the Figure 1). The main bioprocess control attributes are: 

handling of off-line analyses; recipe and scheduling; high level overall control; state and 

parameters estimation; simulation; prediction; optimization. 

For the industrial developments the central and manifold objective of the computer control 

is the realization of the economic interests in assuring high operational stability, process 

reproducibility and increased product yield together with the maintaining of rigorous safety 

and the implementation of the GMP or environmental regulations, important requests in 

modern biomanufacture imposed by the product quality improving needs. 
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Figure 1. General presentation of the computerized bioprocess control [2] 

2. Instruments and techniques for bioprocess variables determination 

and monitoring 

To achieve the biological potential of cells, the optimal environmental conditions must be 

maintained in the bioreactor for cell growth / product formation, at least with regard to the 

key parameters. Generally speaking, biological systems are influenced by different process 

variables, which have a direct influence on cell metabolism. Sensors for these variables are 

(typically) inserted into specially designed ports on the bioreactor. As bioreactors increase in 

size (i.e. in the industry field), the mixing problems become usual and probe location 

becomes problematic. To accurately outline large fermenters, probes may be collected from 

several locations. 
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A. Direct physical determinations 

The existence of defined and optimal environmental conditions for biomass and product 

formation means that different physical and chemical parameters require to be kept constant 

or conforming to an optimal evolution trend during the process, i.e. any deviation from a 

specified optimum might be corrected by a control system.  

The standard direct physical determinations are3: (1) temperature; (2) pressure (over 

pressure); (3) agitator shaft power and rate of stirring; (4) foam; (5) gas and liquid flow; (6) 

weight. 

Temperature determination is important for bioprocess evolution as well as other process 

operations (i.e. sterilization, concentration, and purification). The temperature measurement 

is made in the range +20oC to +130oC through mercury-in-glass thermometers, bimetallic 

thermometers, pressure bulb thermometers, thermocouples, metal-resistance thermometers 

or thermistors; all of them must be steam-sterilizable at 120oC. The most popular are the 

Pt100 resistance thermometers. 

Pressure measurements may be needed for several reasons; the most important of them is 

the safety. Industrial and laboratory equipment is designed to withstand a specified 

working pressure plus a factor of safety. Also, the measurement of pressure is important in 

media sterilization. Moreover, the pressure will influence the solubility of gases and 

contribute to the maintenance of sterility, when a positive pressure is present. The standard 

measuring sensor is the membrane pressure gauge based on strain or capacitance 

measurements.  

The formation of foam can create serious problems in no controlled situations: loss of broth, 

clogging of gas analyzers, infections, etc. It is a common practice to add an antifoam agent 

when the culture starts foaming above a certain predetermined level. A standard foam 

sensing consists in an electrical conductivity / capacitance / heat conductivity probe. 

A number of mechanical antifoam devices have been made, including discs, propellers, 

brushes attached to the agitator shaft above the surface of the broth. Unfortunately, most of 

the mechanical devices have to be used in conjunction with an antifoam agent, without 

negative influence on the bioprocess behavior. 

B. Direct chemical determinations 

The regular chemical determinations are [3]: (1) pH; (2) redox potential; (3) dissolved 

oxygen concentration (pO2); (4) exit-gas analysis; (5) on-line analysis of other chemical 

factors (ion-specific sensors, enzyme electrodes, microbial electrodes, mass spectrometers, 

fluorimeters).  

In most processes there is a need for pH monitoring and control if maximum yield of a 

product is to be obtained. The pH may be further controlled by the addition of appropriate 

quantities of alkaline or acid solutions, depending of the characteristic pH trend evolution. 

Normally, the pH drift is only in one direction. pH measurement is carried out using a 

combined glass reference electrode that will withstand repeated sterilization at temperature 

of 120oC and pressures of 138kN/m2.  
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In most aerobic fermentations it is essential that the dissolved oxygen concentration does 

not fall below a specified minimal level. If in small fermenter the most used electrodes are 

galvanic, the polarographic electrodes are more commonly used in pilot or production 

bioreactors. For an increase of precision, they are both pressure and temperature 

compensated. 

C. On-line analysis of other chemical compounds  

Ion-specific sensors have been developed to measure NH3+, Ca2+, K+, Mg2+, PO43-, etc. 

However, none of these probes are steam sterilizable.  

The mass spectrometer [4] can be used for in-line analysis since it is very versatile, but 

unfortunately expensive. It does allow for monitoring of gas partial pressures (O2, CO2, CH4, 

etc.), dissolved gases (O2, CO2, CH4, etc.), concentrations of volatiles (methanol, ethanol, 

acetone).  

The fluorimetric measurements [5,6] are very specific and rapid, but their use in bioprocess 

is quasi-limited nowadays. Hence, the measurement of NAD (provided it remains at a 

constant concentration in cells) would be an ideal method for continuous measurement of 

microbial biomass concentration. 

The biosensor [7] is based on a biological receptor, which is coupled to an electronic 

transducer that converts the biological signal into an electrical signal by measuring voltage, 

current, light, temperature. Biosensors can be used to measure the concentration of different 

substrates / metabolites in the culture broth. In order to avoid the possible effects on growth 

/ product formation (i.e. inhibition), the biological receptor can be immobilized on a separate 

membrane or on the transducer surface. Enzyme electrodes are the most applied, normally 

for in-line determinations (no steam sterilizable). The specific enzyme is immobilized on a 

membrane held in close contact to a pH or oxygen electrode. Also microbial electrodes 

using immobilized whole cells have been used for determination of sugars, acetic acid, ethyl 

alcohol, vitamin B, nicotinic acid, glutamic acid and cephalosporin. Generally speaking, the 

biosensors have been investigated with limited success. Hence, only the glucose biosensors 

have been fully applied. The main difficulties in developing an on-line biosensor are the 

thermal stability of the immobilized biomaterial, i.e. inactivation during sterilization, and 

the limited linear range inherent to biologic species. 

It is to consider two most recent directions of development regarding the bioprocess 

variables monitoring and control [8]: (a) realization of miniaturized sensors for the in situ 

measurement of temperature, pH or dissolved oxygen; (b) use of analyzers not yet applied 

for on-line process monitoring in biotechnology, but of real interest: the continuous air-

segmented flow analyzer (CFA); the flow injection analyzer (FIA); and the High 

Performance Liquid Chromatography (HPLC). 

3. The mathematical modeling of the aerobic bioprocess 

The aerobic bioprocess modeling is an useful tool to accomplish several important tasks [2]: 

(a) it can be the basis for adequate optimization and control technique applications; (b) it can 
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provide the necessary information about the features of the chosen bioprocessing system; (c) 

it synthesizes the characteristics of the specified living cells’ evolution and hence, it is the 

best technique to predict the process efficiency. 

The models show the complex biosystems attributes; so they must be as possible as 

extensive and non-speculative. Moreover the models are an acceptable compromise between 

the presentation of processes in detail, with considerable number of parameters, and the use 

of few parameters, easy to apply and estimate. 

Most important properties of a biological mathematical model were defined in the Edwards 

and Wilke’ postulates [2]: (a) it is capable to represent all the culture phases; (b) it is flexible 

enough to approximate different data types without the insertion of significant distortions; 

(c) it must be continuously derivable; (d) it must be easy to operate, once the parameters 

evaluated; (e) each model parameter is to have a physic significance and must be easy to 

evaluate. 

The attempts to realize high global models were not successful: firstly, due to the 

impossibility to measure on-line the great number of bioprocess parameters, and secondly, 

due to the high degree of complexity. Finally several types of models can represent the 

evolution of the aerobic bioprocess. The most important categories will be presented further 

on. 

1. The unstructured global models are in use nowadays as the main tool for both the 

bioprocess modeling, but also for being applied in overall computer control [2]. Their limit 

is they are a simplified representation of the bioprocess behavior: conforming to this concept 

the bioprocess evolution depends directly and only on the macroscopic variables 

representing the working conditions in the bioreactor. Therefore the unstructured models 

are essentially kinetic equations that describe the variation of substrate or product 

concentrations and of a unique biological state variable-the cell concentration, and can also 

express the influences of some important process variables (pH, pO2, temperature, and 

others), and only sometimes they are balance equations. 

Generally speaking [9], one considers that the specific growth rate (
1 dX

X dt
  ) is the key 

variable for cell growth, substrate consumption and product formation. The specific growth 

rate is time dependent and dependent on different physical, chemical and/or biological 

parameters (substrate concentration-S, cell concentration-X, product concentration-P, pH, 

temperature-T, dissolved oxygen concentration-C, and different inhibitors-I).  

Conforming to the literature assumptions [10], the specific growth rate dependence upon 

different process parameters can be considered as follows:  

  , , , , , ,....,f S X P pH C I t   (1) 

a. =(S) Kinetic models with growth limitation through substrate concentration (without 

inhibition) Main model equations [2, 11] are presented in Table 1. 
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Model equation Constants Authors Comments 

max( )
S

S
S

K S





             (2)

max=max specific 

growth rate [1/h] 

KS = saturation 

constant [g/L] 

Monod 

equation (1942, 

1949) 

Empirically derived from 

the Michaelis & Menten 

equation 

max( )
n

n
S

S
S

K S


 


                 (3)

 Moser equation 

(1988) 

Analogy with a Hill 

kinetic (n>0) 

max( )
S D

S
S

K K S
 

 
 (4)

KD=diffusion 

constant 

Powell equation 

(1958) 

Influence of cell 

permeability, substrate 

diffusion and cell 

dimensions through KD 

parameter 

Table 1. Models =(S) 

There are also some models, which utilize the substrate concentration in more complex 

structures. Nyholm (1976) introduces a dual function for substrate utilization: consumption 

(including assimilation and dissimilation in the liquid phase) and growth (substrate 

utilization for growth): 

  deglim rade
kk

e aS S S  (5) 

Se is the substrate for growth and Sa the substrate used for consumption. The growth rate is 

linked to the intracellular concentration of limiting substrate (Sint/X) and to preserved 

substrates (i.e. inorganic ions or vitamins, not decomposed through cell metabolism) with 

application in wastewater bio treatment: 

 
lim deg

int

int
e radS S

S

X r r
dS

dt

     (6) 

b. =(X, S) The influence of cell and substrate concentrations upon the specific growth 

rate2, 11 

 

Model equation Constants Authors Comments 

max( ) (1 )xX k X                      (7) kX=kinetic constant Verhulst 

(1845) 

It is known as growth 

logistic model 

0

max

0

( , )

S

X
S

YX S
X

K S
Y

 



 

           (8)

So=substrate initial 

concentration 

Y=substrate/cell yield.

Meyrath 

(1973) 

It is based on Monod 

kinetics.  



 
Bioprocess Modeling and Control 153 

0 max

0 0
0 max max

0 0
max 0 max

exp( )

exp( )

(exp( ) 1)x

N N t

N t

m N t



 
 




 

 (9)

N=population density

m=limiting size of the 

population (the 

carrying capacity) 

Verhulst 

– Pearl 

kinetics 

Logistic growth: 

combination between 

the population trend 

to growth according 

to a geometric 

progression and the 

environment tendency 

to limit the excessively 

high densities of the 

population 

max
X

S

K X S
 


        (10) KX=kinetic constant Contois 

(Contois –

Fujimoto) 

equation 

(1959):

If S = constant, the 

only dependence 

remains  = f(X). 

Table 2. Models =(X, S) 

c. Growth kinetics with substrate inhibition  

In most cases, the kinetic model equations are derived (like the Monod model) from the 

inhibition theory of enzymatic reactions. Consequently they are not generally valid and can 

be applied in connection with experimental acceptability [2, 11]. 

 

Model equation Constants 

definition 

Authors 

name 

Comments 

max

1 1

11 S S

ii

S

K SS K S

KS K

  
  

          (11) Ki = 

inhibition 

constant 

Andrews 

model (1968)

Substrate 

inhibition in a 

chemostat 

max 2

(1 )
l
S

S l
S

S
S

K

S
S K

K

 





                           (12)

Ksl= 

inhibition 

constant 

Webb model 

(1963) 

 

max

,

1

1 ( ) jS

j i S

K S

S K

 
 

                         (13) Ki,S= 

inhibition 

constant 

Yano model 

(1966) 

 

,

max
i S

S

K

S

S
e

K S
 






                                    (14)
 Aiba model 

(1965) 

 

Table 3. Growth kinetics with substrate inhibition 

d.  = f(S, P) Growth kinetic with product inhibition [2, 11] 

Hinshelwood (1946) detected product inhibition influences upon the specific growth rate: 

linear decrease, exponential decrease, growth sudden stop, and linear/exponential decrease 
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in comparison with a threshold value of P. The first type (Hinshelwood - Dagley model):  

 max( , ) (1 )
S

S
S P kP

K S
  


  (15) 

where: k = inhibition constant (considering the product concentration influence). 

 

Model equation Constants definition Authors name 

max 1 2( ) ( )P K P K              (16) K1, K2 = constants (>0) Holzberg model (1967) 

max
max

( ) (1 )
P

P
P

                   (17)
Pmax = maximum product 

concentration.  

Ghose and Tyagi model 

(1979) 

1 ( )
max( ) K P tP e                        (18)

K1 = constant Aiba (1982): 

max( , ) KP

S

S
S P e

K S
  


         (19)

 Aiba and Shoda model 

(1989) 

Table 4. Models  = f(S, P) 

e. The influence of dissolved oxygen (as a second substrate) upon the specific growth rate  

In some cases it is needed to consider the dissolved oxygen as a second substrate. The most 

used equation is the kinetic model with double growth limitation, (S, C) [2, 11] 

i. Olsson model: 

 max( , )
S C

S C
S C

K S K C
 

 
  (20) 

where: KC = oxygen saturation constant. 

ii. Williams’ model, which also quantifies the P influence (KP=P saturation constant; K1, K2, 

K3, K4=modeling constants): 

   1 2
3 4, ,

S P C

K S K P C
S C P K C K

K S K P K C


   
               

  (21) 

f. (S1, S2) Kinetic models based on different substrates  

Besides the case when the dissolved oxygen is considered as a second substrate, there are 

many cases when two or more carbon sources are taken into consideration. There are two 

typical situations: (1) the cells grow through the sequential (consecutive) substrate 

consumption (diauxic growth), where a simple Monod model can be applied; (2) the cells 

grow through the simultaneous consumption of substrates (e.g. wastewater treatment); in 

this case, the mathematical modeling is more complex. 
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g. Unstructured kinetic models for product formation  

The product formation kinetic is taken into account in conjunction with the growth kinetic. 

Nowadays, the Gaden [3] classification is still useful. Based on this categorizing, four kinetic 

types can be defined: 

Type 0: This production type occurs even in resting cells that use only a little substrate for 

their own metabolism. The microbial cells function only as enzyme carriers. Some examples 

are provided by steroid transformation and vitamin E synthesis by Saccharomyces cerevisiae. 

Type 1: Type-1 situations include processes in which product accumulation is directly 

associated with growth; in this case the product formation is linked to the energy 

metabolism. Examples include fermentation to produce alcohol and gluconic acid and 

situations in biological wastewater treatment. 

Type 2: Type-2 bioprocesses include fermentations in which there is no direct connection 

between growth and product formation (for example, penicillin and streptomycin 

synthesis). 

Type 3: This production type includes those having a partial association with growth and 

thus, an indirect link to energy metabolism (e.g. citric acid and amino acid production) 

Afterward there are now more advanced models, the structured and the segregated models. 

2. In case of the structured models [12, 13] the biotic phase is not any more viewed as a 

homogenous component, but they provide information about the physiological state of the 

cells, their composition and regulatory adaptation to the environment. Conforming to this 

concept the cell mass is structured in several intracellular compounds and functional 

groups, which are connected to each other and to the environment by fluxes of material and 

information. The structured models can be: multi compartment models, genetically 

structured models, and biochemical structured models. 

A case study of the biochemical structured model is the modeling of Penicillin V 

biosynthesis: The model of Penicillin V biosynthesis [2] is a tool for both: the understanding 

of the kinetic function of the precursors, the dissolved oxygen, enzymes activities, formation 

of metabolic intermediates and by-products (the determination of the metabolic step 

responsible for the global rate limitation can be a basis for the genetic engineering 

modification of the enzyme expression involved in this metabolic reaction); the bioprocess 

computer control. 

First it is the metabolic pathway with the L-Cysteine, L-Valine and α-Aminoadipic Acid 

(AAA) as the initial substrates, which can form together Tripeptide ACV (α-α-aminoadipyl-

L-cysteinyl-D valine). The further cyclisation reaction of Tripeptide ACV to Isopenicillin N 

(IPN) is oxygen dependent. The following reactions can be done directly in one step or in 

two steps. In this second case the intermediate is the 6-Aminopenicillanic Acid (6-APA), 

with the precursors Phenylacetic Acid (PAA) for Penicillin G or Phenoxyacetic Acid (POA) 

for Penicillin V, to be incorporated into the Penicillin molecule during the last step. It is also 

possible in parallel with Penicillin G and Penicillin V formation that 6-APA is alternatively 
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carboxylated with CO2 to form 8-HPA (8-hydroxy-Penicillinic Acid).The model for Penicillin 

V biosynthesis is presented in Table 5. 

 

Metabolic step Kinetic equation 

ACV formation by ACV 

Synthetase 1 1

1 1

11
ACVS

ACVCYS VALAAA

ACVAAA CYS VAL

r k X
CK KK

KC C C

  
      
 

          (22) 

Isopenicillin N formation by 

IPN Synthetase 2 2

(1 )

ACV
IPNS

Glut
ACV o o

L

C
r k X

C
C K C

K

 
 

                                   (23) 

Formation of 6-APA from IPN 

by Isopenicillin N 

Amidohydrolase (IAH) 

3 3
IPN

IAH
IPN IPN

C
r k X

C K



                                                         (24) 

Formation of Penicillin V 

from activated side chain 

precursor and 6-APA by Acyl-

CoA and 6-APA 

Acyltransferase (AT) 

4 4
6

6

1

1
AT

APA POA POA

APA POA CoA

r k X
K K

C C




 
 

                                (25) 

One step conversion of IPN to 

Penicillin V 5 5

1

1
AT

IPN POA POA

IPN POA CoA

r k X
K K

C C




 
 

                                  (26) 

Carboxylation of 6-APA to 8-

HPA (first order kinetics if 

CO2 concentration is 

considered as constant) 

 

6 6 6.AT APAr k X C                                                                     (27) 

Cleaving of Penicillin V to 6-

APA and Phenoxyacetic Acid 

by Penicillin Amidase (PA) 

(reversible reaction of 

Penicillin formation) 

 

7 7 . PenV
PA

PenV PenV

C
r k X

C K



                                                      (28) 

where X=the activity of the corresponding enzyme 

Table 5. Model for Penicillin V biosynthesis 

The parameters values from the above model were determined in a fed-batch bioprocess; it 

was found that the IPNS enzyme is metabolic flux limiting and further on the ACVS 

enzyme. As the IPN formation from Tripeptide ACV is dependent on the O2 concentration, 

the dissolved oxygen concentration superior to 45% from the saturation can increase 

productivity. 

3. The segregated models [12, 13] can describe more complex phenomena like: alterations or 

disturbances in the physiology and cell metabolism; cells ‘morphological differentiation; 

genome mutations; spatial segregations of growth regions; cells aggregation; mixed cultures 
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(including the competition between two or more species for the same substrate). On the 

contrary the unstructured and structured models have the limit to consider a homogenous 

population of cells and only one species in the bioreactor. The segregated models can be 

built by using ordinary differential equations to describe the behavior of several classes of 

independent/correlated cells. Each cell class behavior can be described by both unstructured 

and structured models. 

4. Metabolic modeling 

The most sophisticated modeling tool is that introduced by the metabolic engineering. This 

approach relies upon the concept of metabolic pathways as sequences of specific enzyme-

catalyzed reaction steps converting substrates into cells’ products. The manipulation of 

metabolic pathways to improve the cellular properties and especially the yield or the 

productivity of some important metabolites is of interest. So the metabolic engineering is 

recently developed with the purpose of generating information for the oriented modification 

of the enzymatic, regulatory or transport activities of the cells. The information will be used 

to build upgraded cells by the further application of the recombinant DNA technology. 

The determination and the correct interpretation of the structure and the control 

mechanisms of metabolic networks are the first critical tasks of the metabolic engineering in 

order to fulfill the goal of rational pathway manipulation [14]. The main accent is towards 

considering the metabolic network as a whole and not the individual reactions. Due to the 

increased complexity of these networks and of the corresponding regulatory mechanisms 

the physiological state (metabolic steps characteristics at specific genetic and environmental 

conditions) of the cells is determined by the in vivo metabolic fluxes and their control. 

The flux can be defined as the rate of material processing through a whole metabolic 

pathway. The value of the flux does not introduce information about the activity of the 

enzymes from the considered pathway, but it represents only their contribution regarding 

the substrate conversion into the final metabolite of this pathway.  

The quantification of the metabolic fluxes is the principal objective realized by the 

techniques of Metabolic Flux Analysis (MFA) [15]. Metabolite balancing is the first 

operation in the determination of fluxes, done with the major hypothesis that the 

intracellular fluxes can be evaluated by measuring the extracellular fluxes. The metabolite 

balancing is performed by using a stoichiometric model for the intracellular reactions and 

by applying a mass balance around each intracellular metabolite, without any enzyme 

kinetic information. The general defining relationship is of matrix form: 

 S v r   (29) 

where:  S=stoichiometric matrix of the metabolic network 

 v=vector of unknown fluxes 

 r=vector of measured metabolite extracellular concentrations, whereas the 

metabolite intracellular concentrations is 0. 
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The rows number is representing the number of metabolites in the pathway and the number 

of columns is equal to the unknown number of fluxes at steady state condition. The 

resulting system is normally underdetermined as the number of reactions is normally 

greater than the metabolite number. There are also various network structure characteristics 

(metabolic branch, reversible reactions, and metabolic cycles) that can increase the system 

degree of freedom. 

So beside the metabolic balancing constraints additional constraints are needed to solve the 

equations system. If finally there are more constraints than the freedom degree, the system 

becomes over determined and redundant equations are to be used to test the consistency of 

the overall balances. The supplementary constraints can be obtained by using other 

information regarding the intracellular biochemistry and/or by applying others techniques 

[15]. 

So, another tool to perform MFA is the Linear Programming (LP) [14, 16]. Conforming to this 

method the metabolic fluxes are determined by simultaneously accomplishing 2 conditions: 

to be in line with the metabolic balances constraints and to optimize a certain objective 

function. So it is to formulate the mathematical problem: 

 Minimize i ic v c v   

 Subject to S v r   (30) 

where: c= vector of the weight factors of fluxes in the objective function. 

The objective functions can be: maximize the metabolite production rate or cells’ growth 

rate; minimize the ATP production rate or substrate uptake rate; maximize growth rate for a 

given metabolite formation rate. 

Another source of additional constraints is usually the introduction of certain types of 

supplementary measurements. The most useful tool of this type is the application of 

isotopic tracer methods. In isotopic tracer techniques there is a substrate in the cells labeled 

with an easily detectable isotope of a specific atom, normally 14C , but especially 13C , stable 

and non radioactive isotopes, to be detected by Nuclear Magnetic Resonance (NMR). 

The isotope distribution among the metabolites from a network for a certain labeled 

substrate and known biochemistry is a function of the in vivo metabolic fluxes. This 

distribution can be obtained by studying the NMR spectra or by measuring the mass 

isotopomer (the molecules of the same metabolite, but with different labeling characteristics) 

distribution by Gas / Liquid Chromatography coupled with Mass Spectrometry (GC / LC-MS). 

The general model for the determination of metabolic flux distribution is presented in the 

Fig. 2. The implementation of such flux quantification methods seems simple, but due to the 

high integrated networks complexity is rather an intensive computer application. There are 

now important studies of metabolic modeling used to improve the metabolite production in 

aerobic bioprocesses [17-22].  
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4. Bioprocess control 

The bioprocess control has different goals and objectives, function of bioprocess 

characteristics and imposed performances. In spite of high non-linearity linear control 

theory and basic controllers (on/off, PID) are still applied in most industrial applications.  

More sophisticated control should rely on models able to correctly represent the biosystems 

behavior. Due to the complexity of the biological systems, basic models, which are nice to 

use and help to simplify the underlying mathematics, are not able to reflect the real 

situations. The large sets of parameters from the complex models need to be experimentally 

identified, and consequently the e, and consequently the experiments should be carefully 

designed to provide this valuable information. Taking into account the time-to-market, 

which must be as short as possible the accepted control solution could be suboptimal based 

on classical robust control. 

Bioprocess reproducibility and living cell systems variability reduction from run to run is to 

be carefully studied. The media composition optimization and the successful application of 

PAT (process analytical technologies combining the techniques for in-process monitoring, 

data-based modeling process control) will contribute to the quality of production 

improvement. 

In bioindustry, bioprocesses are subject to a number of local and / or supervisory control 

structures. Local controllers are used to get the set-point control of different physical / 

chemical parameters (e.g. temperature, pH and dissolved oxygen concentration), while 

supervisory control is necessary for optimizing the feed in a fed batch process or the 

dilution rate in a continuous one [23]. 

Various simple feed-control strategies have been applied in the past [12, 24, 25]: (a) Simple 

indirect feedback methods: nutrients (indirect variable) are fed to the bioreactor by an on-off 

controller when a direct (on-line measured) variable deviates from its set point, e.g., feeding 

of ammonium by monitoring the pH (pH-stat), or nutrient feeding to keep the dissolved 

oxygen concentration constant (DO-stat). (b) Predetermined feeding strategies; this is a feed-

forward strategy based on prior process knowledge, e.g., exponential feeding to grow at a 

constant biomass-specific growth rate. (c) Direct feedback; a substrate concentration can be 

directly controlled by nutrient feeding when it is measured on-line by sensors inside or 

outside the bioreactor. (d) Feed control by state estimation; the estimation of key-process 

parameters from on-line measurements can be applied and the control is based on the 

evolution of the growth rate or the substrate concentration. 

Other advanced feed-control strategies may be applied when additional process information 

is available: feed-forward model-based control; feedback model-based control (an extended Kalman 

filter simultaneously estimates a state variable and adapt the controller); fuzzy control; neural-

network control (for predictive control); expert systems (for supervisory control). 

A. Bioprocess control with a priori model (model based process control) 

The bioprocess control based on a priori model (BCAPM) can be seen as the on-line 

application of optimal control, where control actions are regularly re-calculated based on a 
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global process model and process information. The global model is used to calculate optimal 

control actions by a prediction of future outputs over a limited time horizon.  

 

Figure 2. Determination of metabolic flux distribution [14] 

For the time being, the unstructured deterministic models (the cells are considered as black-

box units) are very used in the bioprocess control [26]. In the future an increase of the 

structured models role is expected, as a consequence of modern analysis methods 

development, as well as of the capacity to more adequately describe the phenomena.  

The basic concepts of BCAPM consider two main ideas [27, 28]: (1) the explicit use of an a 

priori model to predict the process output(s); (2) the calculation of the future control actions 

by minimizing a global objective function. 

The problem can be solved in different ways: (a) for a linear, time-invariant model, and in 

the absence of constraints, an explicit analytic solution of the above optimization problem 

can be obtained; (b) with linear constraints, the above optimization problem is a Quadratic-

Programming problem, which can be numerically solved; (c) in the presence of a nonlinear 

model or nonlinear constraints, a non-convex optimization problem must be solved at each 

sampling period. So iterative optimization algorithms, (e.g. the Nelder-Mead method) can 

be used in order to converge to local minima. 
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There are two major problems which limit the application of BCAPM to bioprocesses [29]: 

(1) the model must predict the process variables evolution with sufficient precision; (2) 

given a nonlinear process model, the nonlinear optimization problem is solved for each 

(sampling) period; hence, the bioprocess model must be linear during these time periods. 

The first item obstructs the application of BCAPM to complex or partially known systems, 

without defined global models. The second item blocks the application to performable 

systems; otherwise the control techniques are not properly used, due to the short sampling 

time periods (the second issue can be avoided by reason of large time constants 

characteristic to bioprocesses).  

Recent developments in on-line measurement techniques, parameter and state estimation, in 

addition to the search of improved quality control, motivated the development of BCAPM. 

Now the technique was upgraded with better results. For instance [30] the applied BCAPM 

for feed control in the production of monoclonal antibodies allows to improve the yield with 

43%.  

B. Bioprocess adaptive control 

When the process characteristics change during time, the operation conditions must also be 

changed: controller parameters and set point values. Moreover, optimal bioprocess 

evolution is commonly determined off-line, the process conditions are not perfectly known, 

and the process model is not well defined. Furthermore, it can be a lot of changes in process 

conditions in conjunction with different microorganisms’ life cycles (when the cell 

concentration increase in time in a batch bioprocess, the oxygen set point must be 

increased). Hence, there is a need for some feedback mechanisms based on on-line 

measurements. On-line adaptation is possible when the state variables can be measured 

online10 (directly using hardware sensors or indirectly by soft sensors [31, 32]). 

The adaptive control structures are based on the design of different estimation algorithms 

which are able to determine the off-line parameter values. Many control algorithms were 

developed based on minimal knowledge about bioprocess kinetics (the minimal modeling 

concept) [33-36]. 

A typical adaptive control system is presented below: 

 

Figure 3. Adaptive control structure  
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There are two classes of adaptive control (where the adaptation is attained on the basis of 

on-line parameter observers) [37]: (1) the process changes can be measured – therefore it is 

possible to systematically adjust the controller settings, based on the measured / anticipated 

bioprocess changes; (2) the process changes cannot be measured / predicted – hence the 

controller settings are automatically adjusted by a loop optimizer. 

C. Bioprocess control using Artificial Intelligence (AI)  

The limitations of the bioprocess control systems do not concern only the measurements or 

models, but at the same time much valuable human knowledge is only available in a 

qualitative heuristic form. 

Hence, it has been found that the knowledge-based control structures using the human 

decisional factor (i.e. a subjectively element) offer sometimes better results. Moreover, the 

computer performances are developed in the detriment of the general knowledge 

concerning life phenomena and do not promote advanced comprehension upon the 

metabolic routes of bioprocesses. Consequently, the intelligent techniques (i.e. neural nets, 

fuzzy structures, genetic algorithms or expert systems) are capable of simulating human 

expert-like reasoning and decision making, dealing with uncertainties and imprecise 

information [24].  

As the human perception about the bioprocess is commonly altered by the psychological 

factors, the intelligent control systems founded (only) on the human subjective knowledge is 

less valuable than the control systems who utilize the objective information fitted by a 

conceptual model. Hence, the literature recommends the intelligent control techniques 

utilization only if the control structure based on quantitative models fails. 

Frequently, different process parameters are controlled in order to follow predefined 

transitory trajectories. Such control strategies can be designed by a trial-and-error approach 

in combination with operator's experience and statistical analysis of historic data.  

a) One method for automatic bioprocesses control using AI is based on expert systems (ES) 

that reproduce the human operator’ rules of action. The literature presents several examples 

how to transfer the knowledge from operators into knowledge-rule bases [38]. An ES 

conceptual architecture is presented in Figure 4. 

The most used ES systems in bioprocess control are applied for supervisory control, or 

process monitoring and diagnosis.  

Moreover, the ES logic is used to translate human language into a mathematical description. 

The parameters tuning is then regulated by phase detection based on if...then rules, 

conditional statements representing heuristic reasoning in which if expresses the condition 

to be applied and then-the action to be done. Of course, at the same time, it is not possible to 

calculate optimal parameter' values with this method. For example [39] an ES was 

developed in order to supervise a conventional control system applied to fed-batch baker’s 

yeast cultivation and to surmount its limitation. Expert system BIOGENES can execute 

standard process control tasks, but also advanced control tasks: process data classification; 
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qualitative process state identification (metabolic state, process phase, substrate feeding); 

supervisory control through corrective actions.  

 

Figure 4. The expert system conceptual architecture 

One of the main limits in developing ES is the knowledge acquisition process due to: (1) the 

linguistic rules formulation by human experts, i.e. the analytical description of their actions 

during the bioprocess (manual) control; (2) the loss of information during the transfer 

between the bioprocess expert and the IT specialist; (3) the subjectivity of human expert 

regarding own decision / rules. 

b) Another AI technique, the fuzzy approach is based on fuzzy sets and fuzzy reasoning. In 

actual AI systems, fuzzy rules are often applied together with different types of models / 

parameter / state estimators. These fuzzy rules can be regarded as problem specific basis 

function system [40]. Any variable can be a fuzzy variable, particularly recommended when 

it is not possible to define its value in a given situation. One define fuzzy sets in the form of 

membership functions (between 0 and 1) in order to express what is likely to be considered 

as degree / level for a certain characteristic (high, medium, low). Relationships between 

fuzzy variables can be formulated with fuzzy logic operators (and, or, not) and processed by 

fuzzy logic. Fuzzy rules reflect the rules of thumb used in everyday practice and can be 

processed as if…then expressions. With a set of fuzzy rules, considered as universal process 

approximates, the behavior of a system can be described quite accurately. There are many 

applications: (a) hierarchical fuzzy models within the framework of orthonormal basis 

functions41 (Laguerre and Kautz functions); (b) several important use of fuzzy control in the 

Japanese bioindustry by the companies Ajinomoto, Sankyo or Nippon Roche [42]; (c) the 

control of the -amylase fed batch bioprocess with the recombinant E. coli to maintain 

glucose and ethanol at low concentrations with 2 fuzzy controllers for feed rate control: feed 

forward and feedback [43] (see Figure 5 below): 
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where:  F = real glucose feed rate [L/h] 

 µ = specific growth rate [h-1] 

 rs = specific glucose consumption rate [g/L/s] 

 YX/S = cellular yield [g/g] 

 pO2 = dissolved oxygen concentration [mg/L] 

Figure 5. Schematic presentation of the fuzzy control structure  

c) One can use artificial neural networks (ANN) to get predictions about biosystem behavior. 

The traditionally used format of ANN is the feed forward. Given a set of process 

measurements, the output of ANN can be estimated parameters or process variables. The 

weights applied to the process measurements as inputs are determined through the 

“training process” of the ANN [44]. To train the ANN it is to get complete process 

information, corresponding to the NN inputs and outputs, from the data gathered in a set of 

fermentation runs. This set defines “an experimental space” and the ANN will predict 

outputs accurately only within this range and not beyond it. 

Various applications were studied: (a) biomass and recombinant protein concentration 

estimation via feed forward NN for a fed batch bioprocess with a recombinant E. coli [45, 

46]; (b) two types of NN (input/output and continuous externally recurrent) can control the 

batch and fed batch piruvat production from glucose and acetate with a recombinant strain 

of E. coli [47]; (c) two NN also to control the submerged bioprocess of Monascus anka fungus 

cultivation (the temperature and the dissolved oxygen are the inputs and the controlled 

outputs are the glucoamylase activity and the concentration of the red pigment [48]; (d) NN 

based soft sensor for online biomass estimation in fed bioprocess for polyhydroxibutirate 

production [49]; (e) media formulation optimization with genetic algorithm evaluated by 

ANN [50]. 

d) Because all types of information must be used in order to improve the bioprocess control: 

mathematical / deterministic models, heuristic knowledge, rule-based reasoning, a new 

control structure is developed in the last years – i.e. hybrid control system (HCS). HCS acts on 

both parts of bioprocess control: conventional control systems (i.e. based on a priori model) 

merge with AI techniques, in a complementary way: if a priori (mathematical) model exists, 

it will be preferred; else the linguistic rules (i.e. expert systems / fuzzy techniques) will be 

used. 

Generally it is necessary to design a control system, which can to choose the (intelligent) 

control strategies, based on analytical models, in order to improve the control performances. 
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This is an Intelligent Control Structure (ICS) based on Hybrid Control Techniques (HCT). 

The most widely used hybrid structure combines balance equations with ANN: (a) balance 

equations for substrate and cell concentrations coupled with ANN for growth rate model in 

case of bakers ‘yeast fed batch cultivation [51]; (b) ANN is responsible for modeling the 

unknown kinetics in applications with the yeast Saccharomyces cerevisiae or activated sludge 

urban wastewaters bio treatment [52]; (c) batch bioprocess of animal cells [53]. 

5. Case study [54] 

The research objective of this case study was to develop an appropriate control method for a 

bioprocess and to implement it on a laboratory plant, namely the control of the fed batch 

cultivation of Hansenula polymorpha yeast for alcoholoxydase-containing biomass. At first, 

the process is described and a mathematical model is proposed and then the control strategy 

is defined and the intelligent control structure is designed. Finally, the control performances 

are tested through real data. 

A discontinuous fed-batch bioprocess for alcoholoxydase-containing biomass with the 

methylotrophic yeast Hansenula polymorpha CBS - 4732 was operated in an airlift lab - 

bioreactor The intracellular enzyme, to be separated further on, is used for obtaining a high-

specialized kit for methanol/ethanol determination. The yeast was cultivated on a complex 

medium with (NH4)2SO4, KH2PO4, Na2HPO4, MgSO4*7H2O, CaCl2, yeast extract or autolysed 

residual beer yeast as organic N source and microelements (Fe, B, Cu, I, Mn, Zn, Mo).  
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where: ES and EM are the substrate and medium loss by evaporation [g/h]; ρS and ρM are the 

substrate and medium densities [g/L]; YX/S is the substrate conversion yield referred to the 

biomass [g dry matter/ g substrate]; µ is the specific growth rate [1/h]; V is the volume of the 

cultivation medium in the bioreactor [L]; X and S are the biomass and substrate 

concentrations [g/L] and t is the time [h], µmax represents the maximum specific growth rate 

[1/h] and KS is the saturation constant [g/g]. The main process parameters were: continuous 

temperature control 37oC; a minimal level of pO2 - 10% from the saturation concentration 

was maintained during the exponential growth; continuous pH control between 4.5 - 5.0 by 

addition of NH4OH (12.5%); no foam control, if the main parameters are optimally 

controlled. The unique C source, the methanol was introduced function of the yeast growth 

rate in connection with the substrate consumption rate for avoiding the growth inhibition by 

substrate concentration. The developed model (1) is based on the mass-balance principle and 

on the hypothesis of a non-inhibitive substrate effect (i.e. the specific growth rate is defined by 
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the Monod equation). In line with the operation mode (fed-batch with discontinuous substrate 

feeding), there are discontinuous variations of the main variables due to: substrate feeding, 

medium feeding (to overcome the loss by evaporation or sample collection) or samples 

withdraws. That is why the following mass-balance equations are to be added to express each 

discontinuous modification for volume, and substrate or biomass concentrations: 
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 (32)  

where: Vk, Vk+1=volume before / after modification [L]; ASk, AMk=substrate volume and 

respectively medium volume adding [L]; PMk=sample withdraw [L]. The same notations are 

used for Sk, Sk+1 and Xk, Xk+1. We use: ρS = 800[g/L]., respectively ρM = 1000[g/L]. The 

identification of the model parameters was carried out based on measured values in order to 

minimize the modeling error. The identification procedure (i.e. Nelder-Mead algorithm) 

determines the optimum values for the following process parameters: ES, EM, µmax, KS and 

YX/S.  

For this bioprocess, the overall control objective is to obtain large biomass quantities, based 

on the assumption that high biomass concentration will assure the obtaining of important 

alcoholoxydase-active biomass. In this paper a control system based on fuzzy logic is 

proposed. It is well known that Fuzzy Control Systems (FCS) can manipulate incomplete 

and uncertain information about the process assuring high control performances [6-8]. The 

proposed FCS receives information about the state of the bioprocess expressed by the 

biomass and substrate concentrations. Based on this information, FCS computes the quantity 

of substrate to be added into the reactor. According to these observations the inputs of FCS 

are the biomass (X) and substrate (S) concentrations, and the output is the correction to be 

applied on the substrate addition. The rules of FCS are presented in Table 1. 

Rules evaluation by the inference engine is made according to the min-max inference rule 

and the output defuzzyfication is made based on the centroid defuzzyfication method. 

 

 Xk 

Sk 
S M L 

S Z PZ P

M NZ Z PZ

L N NZ Z

Table 6. The rule base 

6. Results & discussions 

The control loop was implemented in MATLAB, version 7.5. For control loop simulation the 

proposed mathematical model was used and the simulation results were compared with the 

experimental data.  
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Figure 6. Simulation results of the control loop: a) first experiment; b) second experiment; (‘-’ – 

simulation results; ‘x’ – experimental data) 

The simulation results show that the proposed fuzzy control system is capable of computing 

the substrate feedings needed for cell growth according to the biomass concentration 

increase. The evolution of the substrate concentration marks the substrate consumption and 

additions, as well as the increase of the additions along with cell growth. The biomass 

concentration obtained by simulation follow closely the experimental data. As a conclusion 

of this case-study, it can be accepted that the success of such a control implementation is 

critically dependent upon the technical operating conditions of the process. 

7. Conclusions 

The overview on the current status of bioprocess modeling and control focuses on three 

main topics: (i) unstructured versus structured and metabolic modeling; (ii) control based on 

common technique (model based control and adaptive control); (iii) control based on 

artificial intelligence. 

It is finally to underline that the framework of bioprocess modeling & control still offers 

interesting perspectives to obtain robust control solutions for the aerobic bioprocess. 

Moreover the future of bioprocesses’ optimal control will rely on applying the same concept: 
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the use of different modeling methods in conjunction with intelligent control techniques. If a 

simplified representation of the bioprocess exists (i.e. an a priori model), this optimal profile 

can serve as an initial trajectory for intelligent control algorithms when the complexity of the 

process representation is described in a subjective mode (by human expert).  
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