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1. Introduction

Gestational diabetes mellitus (GDM) is a human pregnancy disease characterized by elevation
of glucose levels (i.e., hyperglycemia) responsible for a several adverse perinatal outcomes
included macrosomia, fetal hypoglycemia, requirement of neonatal intensive care and
neonatal mortality, among others. Estimation of the epidemiological impact of GDM has
indicated that at least 1 out of 10 pregnant woman is being affected by GDM worldwide. In
addition, GDM causes not only short-term complication in both mother and fetus, but also is
associated with elevated risk for long-term complication such as cardiovascular disease,
obesity and diabetes. Even though it is not feasible to exclude the genetic component in the
elevated risk for metabolic/cardiovascular disease later in life, the general agreement is that
hyperglycemia generates an adaptive response in the fetus addressing to control the glucose
level, characterized by hyperinsulinemia. Part of this adaptive response, might also include
the elevation in the placental consumption of glucose and enhancement of the feto-placental
blood flow, especially in fetus large-for-gestational age (LGA). On the other hand, due to lack
of innervation in the placenta, the vascular tone is controlled by the regulation of the synthesis
and release of vasoactive substances from the endothelium like vasoactive molecules, nitric
oxide, adenosine, prostaglandin, among others. Interestingly, vasoactive molecules may also
regulate endothelial proliferation and migration, suggesting that they also affect the vessel
formation (i.e., angiogenesis). In this regard, several studies have shown that placenta from
GDM is characterized by hypervascularization and elevation in the pro-angiogenic signals
including the secretion and activity of the vascular endothelial growth factor (VEGF). In
addition, hyperglycemia also generates a status of oxidative stress, where free radicals derived
from oxygen (ROS) induces changes in the endothelial cell membranes producing an elevation
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in the cell permeability. Therefore, it is feasible that the adaptive response -useful for surviving
in a hostile medium (i.e, hyperglycemia) - may be imprinting in the fetus and once he/she is
exposed to other different conditions after delivery, this response might constitute a risk factor
for developing metabolic diseases. In this chapter, we will review the available literature focus
on the role of feto-placental endothelial dysfunction as the possible main factor in the gener‐
ation of short-term complication during GDM and speculate how it may program the response
of the sibling exposed to GDM.

2. Gestational diabetes: Definition and epidemiology

Pregnancy  is  a  physiological  state  where  occurs  a  series  of  complex  anatomical  and
functional  adaptation in  the  mother  to  facilitate  the  development  of  fetus.  For  instance,
during the normal pregnancy a “physiological” insulin resistance is necessary to provide
glucose to the growing fetus [1]. However, this normal adaptation is no longer occurring in
some conditions and generates a clearly pathological state of insulin resistance, which is
called Gestational Diabetes Mellitus (GDM). Therefore, GDM has been defined as any degree
of glucose intolerance with onset or first recognition during pregnancy [2]. Specifically, the
World Health Organization (WHO) has stated that GDM encompasses impaired glucose
tolerance and diabetes identified as fasting glucose level ≥ 7 mmol/L or ≥ 126 mg/dL; or 2
hours plasma glucose after oral glucose (75 g) tolerance test (OGTT) ≥ 7.8 mmol/L or ≥ 140
mg/dL [3]. Despite this recommendation, it has been worldwide accepted recently a new
diagnosis  criteria,  which  it  has  been  given  by  the  Diabetes  in  Pregnancy  Study  Group
(IADPSG) based on the OGTT (fasting glucose ≥ 5.1 mmol/L or ≥ 92 mg/dl, or a one hour
result of ≥ 10.0 mmol/L or ≥ 180 mg/dl, or a two hours result of ≥ 8.5 mmol/L or ≥ 153 mg/
dL),  which  is  still  controversial  based  on  the  analysis  of  the  risk  for  perinatal  adverse
outcomes  [2].  This  discrepancy  has  been  extensively  discussed  in  the  literature  but  the
general agreement is that adverse perinatal outcomes occur in lesser degrees of hyperglyce‐
mia than the recommended as diagnostic criteria by the WHO [4].

Prevalence of diabetes for all ages is increasing worldwide, including women in fertile age.
Therefore, it is not surprising that diabetes diagnosis before or during gestation has been
defined as a public health problem [5]. Epidemiologically speaking, it has been estimated that
near to 90% of the diagnosis of diabetes in pregnancy is actually GDM [5]. More precisely,
GDM affects from 1.4% to 25.5% of pregnancies, however, its incidence will depend on the
population, which it has been tested and the diagnostic criteria used [6,7]. Thus, taken into
account the origin of the population, it has been described that women from Asian, African
American, and Hispanic background exhibit twice the risk for being diagnosed of GDM
compared to those of non-Hispanic White origin, a phenomenon observed also in women in
the lowest socio-economical quartiles compared to women in the highest quartiles [8,9].

The underling mechanisms responsible for GDM are under investigation; however, likewise
to other causes of type 2 diabetes, GDM is characterized by a dysfunction in the pancreatic β
cell, which does not produce enough insulin to meet the increased requirements of late
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pregnancy. Mechanistic studies reveal at least three possibilities: 1) The presence of anti-islet
cell antibodies (<10% cases); 2) Genetic variants of monogenic forms of diabetes (1-5% cases),
and 3) Presence of obesity and chronic insulin resistance (>80% cases) [10]. In addition, it has
been described that the large majority of the insulin secretory defects present in the third
trimester of gestation, are actually manifesting before and soon after pregnancy [10,11]. In this
way, considering that a) obesity, is a condition of insulin resistance and a common risk factor
to GDM, and b) insulin secretion during pregnancy increases according to gestational age in
women with and without GDM [10]; it has been reinforced the concept that chronic deficiency
rather than gestational-acquired deficiency of insulin secretion is the underling cause for GDM.
Consequently, these evidences have broken the traditional vision of GDM pathogenesis, where
the imbalance in glucose level at the third trimester of gestation has been consider exclusively
as a defect in the “physiological” insulin resistance present in pregnant women.

With regard to insulin, it is well known that it reduces the elevated level of blood glucose;
however, insulin is also regulating the metabolism of amino acids and lipids. Indeed, selective
damage of β-cell in animal models generates a severe lipid defects that induce animal death
[12,13]. This idea reinforces the general agreement of hyperglycemia is not the unique feature
that may be taken into account during GDM management. In addition, it has been reported
that in general, hyperglycemia is resolved after birth; however, there are epidemiological
evidences showing that GDM constitutes a risk factor for development of diabetes mellitus
type 2 (DMT2), as well as it constitutes a risk factor for hypertension in both mother and
offspring. Thus, it has been estimated that about 10% of women with GDM have diabetes
mellitus soon after delivery; whereas the rest will develop diabetes mellitus at rates of 20-60%
within 5-10 years after the manifestation of GDM in the absence of specific interventions to
reduce their risk [10]. Therefore these evidences have suggested that metabolic defects in GDM,
characterized by hyperglycemia, and fundamentally, insulin deficiency (relative in GDM) are
maintained after birth being a risk factor for metabolic and cardiovascular diseases in the
mother and her sibling.

3. Fetal and neonatal outcomes in GDM

Gestational diabetes is associated with multiple adverse perinatal outcomes which include in
the mother, haemorrhage, hypertensive disorders, obstructed labor, infection/sepsis, and
maternal mortality [14]. Thus, in the Hyperglycemia and Adverse Pregnancy Outcomes
(HAPO) study [4], which included a large number of participants (23.316) in nine countries,
who were divided into 7 groups according with the fasting and glucose plasma level observed
during OGTT; and importantly considering a level of glycaemia lower than the WHO criteria,
showed a linear relationship between glucose level (both fasting and after OGTT) with the
occurrence of adverse perinatal outcomes such as birth weight and cord-blood serum C-
peptide level above the 90th percentile, cesarean section, neonatal hypoglycemia, premature
delivery, shoulder dystosia or birth injury, intensive neonatal care, hyperbilirubinemia, and
maternal pre-eclampsia. On the other hand, at the fetal side, this study describes that the higher
level of glucose, the higher risk (between 1.37 and 5.01) of elevated birth weight. Thus,
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considering data on the difference in the birth weight between the lowest and the highest
glucose categories was about 300g. Therefore, this study suggests that maternal hyperglyce‐
mia, even in the “normal” range according with the WHO criteria, is related to clinically
important perinatal disorders.

Considering this report, a recent meta-analysis [2] which included a large number of patient
(44.829), containing who were included in the HAPO study and using the criteria recom‐
mended by the WHO, showed that diagnosis of diabetes was associated with high risk
(RR=1.37 to 1.88) for presenting macrosomia, large for gestational age, perinatal mortality, pre-
eclampsia and cesarean delivery. When the authors excluded the HAPO study from their meta-
analysis, the relative risks for the analyzed perinatal outcomes were minimally altered.
Specifically, and considering the highest risk described in this meta-analysis, women with
GDM exhibited a high risk for macrosomia (RR=1.81) and large for gestational age (RR=1.73).
This association between GDM and macrosomia is particularly important for our discussion,
since it has been described that fetal growth defects are associated with long-term complica‐
tion, including obesity and diabetes [15,16]. Nevertheless, another highlight of this meta-
analysis is that reduction in the criteria for “hyperglycemia” recommended by the WHO,
should be considered for the next generation.

Although discrepancies in cut off value of glucose level for diagnosis of GDM, most of the
alterations observed in GDM have been related with “hyperglycemia”. For instance, it has been
shown that intraperitoneal injections of high glucose in early pregnancy were associated with
a modest but significantly increased placental weight and fetal weight [17]. Therefore, authors
suggest that increased fetal growth may be explained by a large placenta and delivery of more
nutrients to be transferred to the fetus. Since macrosomia is also present in “normo-glycemic”
pregnant women, it has been suggested that other factors rather than high glucose by itself
may take part in the pathophysiology of maternal and fetal-neonatal complication present in
GDM [18]. In this way, other clinical components in GDM, included metabolic alteration such
as insulin resistance, as well as high levels of cholesterol, triglycerides, adenosine, nitric oxide,
and several other factors may disrupt normal function of maternal, placental and fetal tissues.
Specifically, it is well accepted that hyperglycemia in the fetus exposed to GDM, generates a
compensatory elevation of insulin; which in turn, is not only affecting glucose level, but also
is acting as a growth factor. In addition, insulin is also regulating the transport of other
nutrients such as amino acids or other regulatory elements such as adenosine [19,20,21]. In
particular, it has been described that insulin increases the L-arginine uptake in human
umbilical vein endothelial cells (HUVEC), a phenomenon associated with generation of vein
relaxation and increasing Sp1-activated SLC7A1 (for human cationic amino acid transport type
1, hCAT-1) expression [22]. In addition, it has been described that insulin increases the activity
of neutral amino acid through the system A [23]. On the other hand, insulin recovers the
reduced adenosine transport mediated by the Equilibrative Nucleside Transport type 1
(ENT-1) in HUVEC, an effect that was associated with increased relaxation of the umbilical
vein [24]. Therefore, the general consensus is that the fetus’s tissues (and in particular the
placenta) are able to generate a compensatory response characterized by hyperinsulinemia,
and aimed to revert the deleterious effect of GDM (i.e., hyperglycemia) and ultimately improve
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fetal survive. In this context, it has been suggested that this adaptive response (i.e., fetal
programming) may not match with the extrauterine environment, in both early and later life,
and it would be responsible for either neonatal complications after birth or long-term diseases
[15]. In the next section, it will be reviewed some of these evidences and the mechanisms linked
with fetal programming in GDM.

4. Programming and GDM

Programming is defined as "the phenomenon whereby a stimulus occurring during a critical
window of development, namely the prenatal and early postnatal periods, which can cause
lifelong changes in the structure and function of the body” [25]. In this regard, the concept that
the intrauterine environment might affect health later life became evident with the surprising
observation that low birth weight was associated with increased cardiovascular disease 40
years later [15,16,26]. Numerous epidemiological studies extended these observations to
suggest a role for the intrauterine environment as a leading cause of schizophrenia, depression,
cardiovascular diseases, stroke, diabetes, cancer, pulmonary hypertension, osteoporosis,
polycystic ovarian syndrome, among others in adult life [27,28,29,30]. These observational
relationships are supported by animal experiments, which fetal growth manipulation by
changing maternal nutrition or reducing blood flow to the placenta resulted in obesity,
increased blood pressure and other cardiovascular abnormalities in the offspring later life [31].
As indicated, most of this observation included newborns with restricted growth but the
contrary phenomenon (i.e., macrosomia) is observed in GDM.

In addition, a clear association between maternal diseases (including GDM) and future
implication in health in the offspring has been affected by several confounding variables such
as genetic factors (a particular phenotype may be genetically transmitted to the offspring),
paternal implication (the father genotype may affect the phenotype), gender (hormonal
differences may induce a particular gender-linked phenotype), diagnosis criteria used for
maternal disease (in the particular case of GDM, the level of glycaemia), retrospective eviden‐
ces (most of the epidemiological analysis coming from retrospective rather than prospective
studies), among others. Despite those confounding factors, most of the available data in the
case of GDM supports a predominant role for intrauterine exposition to hyperglycemia as one
of the underling mechanisms for future chronic disease in the offspring exposed to this disease
[25]. Among the evidences that support this assumption, it has been described that children
born after a diabetic pregnancy in Indian Pima women exhibited a high (6-fold) prevalence of
type 2 diabetes than those who were born from a non-diabetic pregnancy. Interestingly, this
high prevalence persists after a multivariable analysis, taken into account paternal diabetes,
age of onset of parental diabetes in father and mother and obesity in the offspring [32]. Besides,
another study showed that the risk of diabetes was significantly higher (≈ 4 fold) in siblings
born after GDM than those who were born before the mother has been diagnosed with diabetes
[33]. In the next section we will highlight some of those evidences.

Offspring “exposed” to GDM shows a high risk for developing obesity, impaired glucose
tolerance, type 2 diabetes, malignant neoplasm and hypertension in adulthood
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[34,35,36,37,38,39]. For instance, initially, it has been reported that offspring (10-16 years)
“exposed” to maternal diabetes showed a higher prevalence (6-fold) of impaired glucose
tolerance and body mass index than controls non-exposed [40]. Furthermore, this finding was
confirmed in another study including children (1-9 years) who their mothers presented
pregestational insulin-dependent diabetes (IDDM) or GDM [41]. Following to this study,
prospective data from the Framingham Offspring Study [42], which included a large sample
(2.527 subjects), found that offspring (26-82 years) of women with diabetes showed a high risk
(≈3-fold) to impaired glucose tolerance and type 2 diabetes compared to individuals without
parental diabetes. This risk was almost three times higher in children belong to diabetic
mothers <50 years. Moreover, another study also confirms these findings, where offspring
“exposed” to GDM exhibited ≈ 7 folds increase in the prevalence of type 2 diabetes or impaired
glucose tolerance compared to offspring from non-diabetic pregnancy [39]. Interestingly, this
risk was even higher than offspring of women with type 1 diabetes who presented ≈ 4 fold risk
for being diabetic [39], reinforcing the idea that maternal intrauterine environment generates
a particular phenotype which is not explained only by heritage. Nevertheless, Clausen et al
(2009) have reported a high risk (≈ 2 fold) for developing overweight or metabolic syndrome
in offspring of women with GDM or type 1 diabetes compared to offspring from non-diabetic
pregnancies. It has been also reported that the higher hyperglycemia in the mother [36] or the
weight for gestational age in children exposed to GDM [43], the higher risk for metabolic
syndrome in the offspring in future life.

Moreover, GDM is also associated with high risk for cardiovascular diseases in the offspring.
Thus, in a large cohort study, it has been reported that children exposed to GDM had higher
systolic blood pressure (≈3 mm Hg) than non-exposed children [44]. Moreover, other study
[38], which also included children (5-9 years) “exposed” to maternal diabetes, reported a higher
level of insulin resistance (i.e., HOMA index) than control subjects. On the other hand, another
recent report including more than 1.7 million singleton born in Denmark found that sibling
(followed for up to 30 years) “exposed” to GDM exhibited a high risk for developing malignant
neoplasm (2.2-fold) and for diseases of the circulatory system (1.3-fold) [45]. Interestingly, a
significantly higher risk for those groups of diseases were also observed in children whose
mother had type 1 diabetes or pre-gestational type 2 diabetes. Therefore, a hyperglycemic
intrauterine environment seems to be part of the pathogenesis of chronic metabolic and
cardiovascular disease in the offspring of GDM [36,37,39].

The mechanisms linked with fetal programming during GDM have been associated with
hyperglycemia, through the hypothesis of fuel-mediated toxicity (Freinkel’s hypothesis) [46],
which indicates that fetus experiences a “tissue culture” environment, in such circumstances,
where high availability of nutrients may induce a “fuel-mediated teratogenicity”. In this
scenario, high metabolism of glucose in the fetus may generate an excessive consumption of
oxygen (i.e., relative hypoxia) and consequently, it may generate an oxidative stress condition.
This last phenomenon, would affect the normal development of organs or systems that are
completing its development during late gestation and/or perinatal period, such as placenta,
kidney and vasculature [25]. Particularly, we will focus on the alterations observed in the
placental vasculature, early in life, that may support the association between elevated risk for
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cardiovascular disease during adulthood and GDM. In this regard, two branches of the
knowledge may be discuss: 1) Anatomical and functional alterations that are involved in the
deregulation of placental vascular tone control [47]; and 2) Alterations in the formation of new
blood vessels (i.e., angiogenesis) [48]. Since placental circulatory system form a continuous
network with the fetal circulation, it is feasible to propose that changes in the function and
regulation of all these vessels early after birth may give clues of the abnormalities that will
occur later in life.

5. GDM and placental anatomy/histology

The placenta- endocrine organ and an immune barrier - is the functional unit where occurs the
exchange of oxygen and carbon dioxide, the absorption of nutrient and the elimination of
metabolic waste. The placenta prevents the passage of macromolecules over 700 Daltons,
whereas the smallest particles can cross (for instance melatonin, catecholamines and other
hormones) [49,50]; therefore, this tissue exhibits a selective permeability that is known as the
placental barrier. In the formation of human placenta, the maternal vessels are invaded by
trophoblastic cells, which in turn are in direct contact with maternal blood. This type of
structure is named hemochorial placenta [51]. Two layers coexist in this structure, the maternal
and the fetal one. In the maternal side, a laminar degenerative process in the junctional zone
forms the maternal layer or uterine surface, which in general are formed by maternal vessels
where the endothelium has been replaced by placental cells (invasive cytothrophoblast),
remnants of endometrial glands and connective tissue. Moreover, grooves is shown in this
structure, which subdivide the surface of placenta in about 10-40 elevated areas similar to
lobules named maternal cotyledons, which are in perfect correlation with fetal cotyledon [51].
The fetal component, cotyledon, is formed by several villous trees (1-3 villous trees per fetal
cotyledon), which in fact are formed by chorionic villus. This anatomic and functional structure
are formed by syncytiotrophoblasts/cytotrophoblasts, stromal core villi and fetal vascular
endothelium [52].

Cytotrophoblast and differentiated syncytiotrophoblast are derived from trophoblastic cells.
The syncytiotrophoblast is a multinucleated and continuous layer of epithelial cells, which is
formed by the fusion of cytotrophoblasts. In the other hand, syncytiotrophoblast is covering
the villous trees and it is in direct contact with maternal blood, therefore, it is the area where
direct exchange of oxygen, nutrient and removal of waste products occurs [53]. Moreover,
syncytiotrophoblast have an endocrine function characterized by production of human
chorionic gonadotrophin (hCG) regulated by progesterone [50]. Besides, those cells also secrete
a variant of growth hormone (GH), human placental lactogen (hPL), insulin-like growth factor
I (IGF-I) and endothelial growth factor [50,53]. On the other hand, cytotrophoblasts (or
Langhans´cells) are continually differentiating into syncytiotrophoblast. In addition, this layer
also may synthesize hCG [54]. There is a trophoblastic basement membrane supporting these
two layers, cytotrophoblast and syncythiotrophoblast. This membrane forms the physical
separation of those layers with the stromal core villi, a structure formed by connective tissue
where the fetal vessels are immersed.
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In the placenta, the blood vessels constitute the largest component among the structures
creating the cotyledons. These vessels are an intricate network coming from and going to
the fetus. In fact, placental vessels constitute a continuous circulatory system with the fetal
cardiovascular system. In the placenta, the veins are conducting oxygenated blood toward
the fetus, whereas the arteries contain deoxygenated blood toward the placenta. Anatomical‐
ly, from the umbilical cord to the deep in the placental cotyledons, the umbilical arteries
and veins branch themselves to form chorionic arteries and vein, respectively, over fetal
surface of the term placenta, and those branches subdivide themselves before entering into
the villi. The chorionic arteries generally cross over the chorionic veins [53]. Likewise other
vascular  beds,  in  the  placenta  the  veins  are  more  elastic,  exhibit  high  capacity  and  a
miniscule layer of both smooth muscle cells and adventitia compared to arteries; which in
turn  are  vessels  that  offer  a  high  resistance.  These  characteristics,  especially  those  ob‐
served  in  the  umbilical  cord,  have  been  used  for  functional  non  invasive  studies,  like
Doppler, in order to analyze the status of the feto-placental circulation. Finally, and similar
to any other tissue, the placenta blood vessels are lined by the endothelium. In fact, these
cells are obligatory constituent of blood microvessels [55]. The endothelial cells are support‐
ed by a basal membrane and pericytes, both of them involved in vessel permeability and
integrity, and importantly in the endothelium differentiation [56].

In GDM, it has been reported macroscopical and histological alterations in the term placenta.
For  instance,  placental  size  and placental  weight  [57]  are  elevated in  GDM, which pro‐
duce a  reduced fetal/placental  weight  ratio  compared to  normal  pregnancy [58,59],  that
means, the placenta growth is even higher than fetal growth. On the other hand, regard‐
ing studies, in syncytiotrophoblast from diabetes during pregnancy, have shown function‐
al  alteration in  this  cell  type.  Thus,  it  has  been described an increase in  the number of
cytotrophoblast identified by number of nuclei [60], high fibrin deposit over syncytiotropho‐
blast and hyperplasia of cytotrophoblast [59,61,62], whose in turn may be related with the
enhancement  of  the  thickness  of  syncytial  basement  membranes  in  GDM  compared  to
normal pregnancy [63]. Moreover, using functional studies of syncytiotrophoblast microvil‐
lous  membrane  vesicles,  Jansson  and  collages  [64]  showed  non-changes  in  the  glucose
transport in samples from GDM. Contrarily, other reports showed reduced glucose uptake
and glucose utilization [65], as well as low expression of glucose transporter type 1 (GLUT1)
and 3 (GLUT 3) in placentas from GDM compared with non-diabetic controls [66]. Other
alterations in the throphoblastic cells from GDM were low expression of serotonin transport‐
er (SERT) and receptors (5-HT2A) [67], as well as high activity of amino acid transporter
system A [68]. Nevertheless, it has been reported a high expression of inducible nitric oxide
synthase (iNOS) in the whole placenta but mainly in the trophoblastic cells using immuno‐
histochemistry in GDM [69], a phenomena that may be correlated with high nitric oxide
synthesis [24] and nitrative stress [70] observed in placentas from GDM.

In addition, it has been reported high level of degenerative lesions such as fibrinoid necrosis
and vascular lesions like chorangiosis, as well as elevated signs of villous immaturity and
presence of nucleated fetal erithrocytes in placentas from GDM compared to normal pregnancy
[58]. In particular, the presence of microscopic signs of villous immaturity (i.e., hypervascu‐
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larization), as well as the presence of fetal erithrocytes and microscopic signs of ischemia [71]
may suggest that placenta in GDM exhibits a high metabolic demand and oxygen consump‐
tion, which in turn, it is generating a “relative hypoxic” status in the fetus. Thus, it has been
reported in GDM that the elevation of plasma glucose in the umbilical vein is associated with
reduced oxygen saturation and oxygen content, as well as a significant increase of lactate
concentration compared with normal pregnancy [59]. Interestingly, these changes were not
observed in the umbilical artery, suggesting high placental oxygen consumption in GDM,
which may generate a compensatory response in the placenta itself. In fact, as it will be
described later in this chapter (see below), elevated vessel formation (i.e., angiogenesis) has
been described in the placenta from GDM [18,72,73,74,75], which may explain the high
placental “mass” observed in this disease. Therefore, placental alteration in GDM includes
changes in the transport of nutrients (such as amino acid), enhanced blood formation and
glucose consumption that may generate a “relative hypoxic” status. Unfortunately, all this
findings are described in term placenta; therefore, non-invasive test such as Doppler will offer
more clinically relevant information regarding fetal status and feto-placental circulation before
delivery.

6. Placental blood flow and GDM

One of the non-invasive techniques used widely to estimate the blood flow in the feto-placental
circulation is Ultrasound and Doppler. In this regard, the normal flow between 24 and 29 weeks
of gestation in the umbilical vein is 443 ± 91.6 ml/min and normalized to fetal weight is 131.0
± 19.8 (mL/kg/min) [76]. Moreover, the absence of end-diastolic blood flow before 36 weeks
gestation is utilized clinically as indicator of fetal distress such hypoxia and acidosis [77] and
this indicator is also associated to growth restriction [78].

Wharton’s jelly area is surrounding the two arteries and the vein in the umbilical cord, and
this jelly has a protective role for preventing interruption of flow by compression or twisting
caused by fetal movement [79]. Wharton’s jelly area can be determined by subtraction of
umbilical cord area and total vessels area (arteries and vein), and interestingly it is significant
correlated with gestational age and fetal anthropometric parameters [79,80], and also it has
been described that alterations in this parameter are associated to hypertensive disorders, fetal
distress, gestational diabetes and fetal growth restriction [80].

Doppler studies in umbilical vein from GDM have shown no changes neither in the pulsatile
index value in the umbilical artery nor in the mean total umbilical venous flow in fetus exposed
to GDM compared to normal pregnancy [81]. Interestingly, large for gestational-age fetus
showed an increase in the total umbilical venous flow, suggesting that high placental flow
toward the fetus may be associated with macrosomia. Moreover in macrosomic fetus without
diabetes, it has shown an increase in the umbilical vein blood flow associated with high systolic
velocity in the splenic, superior mesenteric, cerebral and umbilical arteries [82], suggesting an
increased fetal perfusion especially in the liver. The underling mechanisms for this redistrib‐
ution in the blood flow are unclear, but considering that GDM increases the synthesis of nitric
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oxide in human umbilical vein endothelial cells [83], it is feasible to speculate that a overall
vasodilatation in the pre-hepatic and hepatic circulation would be taken part in this process.
Taken these evidences into account, it is feasible that elevated feto-placental blood flow and
hyperglycemia would be responsible for macrosomia in GDM. However, the underling
mechanisms of this relationship are part of ongoing investigations, and may include the
synthesis and secretion of vasoactive substances from the fetal-placental endothelium, as it
will be discussed in the next section.

a. Mechanism of vascular tone regulation in the placenta during GD: Role of endothelial
cells

Endothelium in the feto-placental circulation is involved in a series of specific mechanism
aimed to  ensure  the  input  of  nutrients  and oxygen to  the  fetus.  These  mechanisms in‐
clude; maintenance of physiological barrier, regulation of vascular tone and angiogenesis.
Importantly, feto-placental endothelium forms an uninterrupted tissue that will be extend‐
ed until fetal circulation, where it is exposed to the same metabolic and hormonal medi‐
um than endothelium of the fetus itself [84]. Moreover, since the lack of innervation of the
placenta, the regulation of vascular tone is mainly dependent on endothelial cells-mediat‐
ed  synthesis  and  release  of  several  vasoactive  substances  including,  nitric  oxide  (NO),
prostacyclin, thromboxane, endothelial derived hyperpolarizing factor (EDHF), adenosine,
mono or di or tri monophosphate of adenosine (AMP, ADP, ATP), among others [85,86,87].
These characteristics are summarized in the Figure 1, where it also described some function‐
al alterations observed in GDM. On the other hand, there are emerging evidences show‐
ing that endothelial cells are able to dedifferentiate into mesenchymal cells, via a process
called endothelial-to-mesenchymal transition (EndMT) [88,89], which in fact is related with
the capacity of the endothelium to migrate away from the vessel-lining and colonize other
tissues  where  dedifferentiation  may  occur  in  order  to  recover  the  particular  capacity
required by the invaded tissue. Additionally, endothelial cells exhibit a capacity to form
new vessels (i.e., angiogenesis) via enhancement of its proliferation and migration toward
the tissue where it would be required [90]. Both, dedifferentiation and vessel formation are
mechanisms controlled by extracellular signals that are sensed by membrane receptors in
the endothelium. Among others, transforming growth factor-β (TGF- β), VEGF, extracellu‐
lar nucleosides (i.e.,  adenosine, ATP) have been related with endothelial function. There‐
fore, it is not surprising that endothelium exhibits a specialized function according with its
cell localization and mainly according with the extracellular medium where they are seeded
[91,92,93].  Taken  these  evidences  into  account,  endothelium  has  been  considered  as  a
specialized endocrine organ which is able to control the vascular homeostasis in normal
conditions;  and  its  malfunctioning  (i.e.,  endothelial  dysfunction)  has  been  related  with
several cardiovascular diseases, including hypertension and diabetes [86,87,94].

Human placenta is an unique source of endothelial cells for studying functional differences
considering vessel distribution. Thus, it has been estimated that >70% of the placental tissue
is constituted by blood vessels and length of fetal capillaries would be covering an area of 223
miles [91]. In addition, since autonomic control of the vascular resistance will not be part of
the mechanisms for controlling blood distribution, endothelial cells are responsible for
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supplying this lack. Moreover, in human placenta, several studies have been shown that

endothelium exhibits morphological and functional differences according to the vascular bed

GDM	  
G
lu
	  

Glu	  

Fetal	  Growth	  

A
A
	  

AA	  

Fetoplacental	  Blood	  Flow	  

Endothelial	  func5on	  

Tone	  regula/on	  
	  	  	  	  
	  	  	  RNS:	  NO,	  ONOO-‐,	  Y-‐ONOO	  

	  	  	  	  ROS:	  O2
-‐,H2O2	  

	  	  	  	  Prostaglandin:	  PGI2,	  TxA2	  
	  	  	  	  Purines:	  Ado,	  ATP,	  ADP,	  AMP	  	  	  	  	  
	  	  	  	  Others:	  CO,	  Insulin	  
	  
Angiogenesis	  	  

F
F
A
	  

F
F
A
	  

Normal	  

	  

Endothelial	  dysfunc5on	  
	  	  	  	  

	  	  	  	  

	  
	  	  	  	  Impaired	  tone	  regula/on	  	  

	  	  	  	  	  	  	  	  	  

	  	  	  	  	  	  	  	  RNS:	  NO,	  ONOO-‐,	  Y-‐ONOO	  

	  	  	  	  	  	  	  	  	  	  ROS:	  O2
-‐,H2O2	  

	  	  	  	  	  	  	  	  	  	  Prostaglandin:	  PGI2,	  TxA2	  
	  	  	  	  	  	  	  	  	  	  Purines:	  Ado	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  

	  	  	  	  	  	  	  	  Hypervasculariza/on	  

	  

	  

	  

	  	  	  Increased	  blood	  flow	  
	  
	  

	  	  	  	  	  	  	  	  	  	  	  Macrosomia	  

Hyperglycemia	  

Hyperinsulinemia	  

Insulin	  resistance	  G
lu
	  

Glu	  

A
A
	  

AA	  

O
2
	  

O
2
	  

O
2
	  

O
2
	  

Figure 1. Role of feto-placental endothelial function in fetal growth during normal pregnancy and gestational
diabetes. In normal pregnancy (Normal), the nutrients that includes glucose (Glu), amino acids (AA) are incorporated
to the feto-placental circulation via specific transporters (boxes) whereas liposoluble molecules such as free fatty acids
(FFA) and oxygen (O2) pass through by simple diffusion (i.e., without transporters). These transport mechanisms are in
a perfect equilibrium between demand and consumption, and they are highly dependent on the appropriated endo‐
thelial function in the placental vascular bed. In turn, endothelial function include: 1) the synthesis and release of vaso‐
active molecules including reactive nitrogen species (RNS) such as nitric oxide (NO), peroxinitrite (ONOO) and
nitrotyrosine (Y-ONOO); reactive oxygen species (ROS), such as superoxide (O2

-) and hydrogen peroxide (H2O2); prosta‐
glandin such as prostacyclin (PGI2) and thromboxane A2; purines including adenosine (Ado), adenosine tri-di-or mono
phosphate (ATP, ADP, AMP, respectively); and others factors such as carbon monoxide (CO), or insulin. 2) Capacity for
vessel formation form pre-existing vessels (i.e., angiogenesis). Both, vasomotor and angiogenic properties are modu‐
lating the fetoplacental blood flow continually by a cross talking between placenta and fetus. On the other hand,
there is an increase in the glucose level in the maternal circulation in gestational diabetes mellitus (GDM), which is
transported to the feto-placental circulation generating and stated of hyperglycemia, hyperinsulinemia and insulin re‐
sistance. In turn this high glucose uptake may generate elevated oxygen consumption due to high metabolism. This
elevation in the glucose metabolism in the placenta would generate an endothelial dysfunction characterized by ele‐
vation in RNS, ROS, prostaglandin and purine concentration in the feto-placental circulation, which consequently af‐
fects the tone regulation in the placenta. Moreover, relative hypoxic condition in GDM, may trigger an pro-angiogenic
response generating a condition of hypervascularization in the placenta and therefore creating a vicious circle. Those
alterations would be related with increased blood flow observed in Doppler studies. Finally, this high input of nu‐
trients and elevated circulation will be responsible for macrosomia in GDM.
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where they are coming from [84,87,91,92]. Some of these differences have been described in
recently published reviewers [84,87]. For instance and similarly to the pulmonary circulation
in the adult, the feto-placental endothelium has a particular distribution. The veins transport
oxygen and nutrients whereas the arteries contain de-oxygenated blood coming from the fetus.
In terms of endothelial-derived vasomotor response, it has been described that acute hypoxia
in the placental microvessels generates constriction [95], whereas this challenge generates
augmentation of the umbilical blood flow [96]; this phenomenon is attributed to blood
redistribution such occurs in the pulmonary circulation. Additionally, it has been also
described in samples from umbilical endothelial cells exposed to hypoxia, that the one from
the artery has a different response (i.e., high activation of endothelial nitric oxide synthase,
without changes in arginase-2) than endothelium vein (i.e, low activation of eNOS, associated
to high levels of arginase-2) [97]. In addition, HUVEC (i.e, macrovascular endothelium)
showed a reduced synthesis of angiotensin II, thromboxane B2, 6-keto-prostaglandin, and
endothelin 1,2 compared to placental microvascular endothelial cells (hPMEC) [91]. Other
functional differences occurred in the capacity for generating new vessels (i.e., angiogenesis).
Thus, placental microvascular placental cells exposed to VEGF or placental growth factor
(PlGF) showed a high mitogen response compared to HUVEC [91], a phenomena associated
with high expression of VEGF receptor 1 (VEGFR-1) and 2 (VEGFR-2) [98] in this cell type. In
addition, using feto-placental tissue it has been described that several genes related with
angiogenic response are preferentially expressed in microvascular than macrovascular
endothelium [86,87,91,92]. In this regards, studying functional differences between HUVEC
and hPMEC, preliminary results (see Figure 2) showed that the tube formation in matrigel is
faster in hPMEC than HUVEC, corroborating differences in the VEGF expression.

Several studies have reported dysfunction of feto-placental endothelium during GDM [18,74,
75,84,86,91,93,99]. In this regard, one of the most studied pathway in our group is the L-
adenosine/L-arginine/NO (i.e., ALANO pathway) [100]. For instances, it has been described
that L-arginine transport- mainly via the cationic aminoacid transport type 1 (CAT-1) - is
increased in HUVEC from GDM [87,100,101,102]. Besides this alteration, it has been described
high expression and activity of endothelial nitric oxide synthase (eNOS) [24,103] as well as
iNOS [69] in both umbilical and placental endothelium from GDM. This enhancement would
produce a high synthesis and release of NO [20,24], which in turn has been related with a
nitrative status in the placenta and umbilical cord from this disease [104,105]. In addition, NO
reduces the expression of adenosine transport via hENT-1 [83] and may generate augmentation
in the extracellular level of adenosine in umbilical blood [106]. In turn, adenosine activates
adenosine receptors (AR) spreading the vascular effects of NO in the feto-placental circulation
in both vascular tone regulation [87,100,102] and promoting angiogenesis (see below).
Therefore, it is feasible to speculate that the elevation in NO synthesis during GDM may
explain the augmented umbilical flow observed in macrosomic fetuses [82].

b. GD and oxidative stress in the placenta

As  detailed  above,  GDM  has  been  associated  with  impaired  placental  development
characterized by high placental weights and low ratios between fetal and placental weights
[107].  Remarkably,  one of  the cellular  mechanisms associated with the etiology of  these
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changes is the oxidative stress, which is related with an imbalance between the synthesis
of reactive oxygen and nitrogen species (ROS and RNS, respectively) and the activity of
antioxidant enzymes. The most relevant free radicals are superoxide (O2

•-) in the ROS group;
and nitric oxide (NO) and peroxinitrite (ONOO-) in the RNS group. In addition, consider‐
ing the diffusion distance, NO can diffuse from endothelial cells to smooth muscle cells,
whereas  O2

•-  and ONOO-  would have actions within the cells  where they were synthe‐
sized  [70].  The  main  sources  of  O2

•-  in  the  placenta  include  the  mitochondrial  electron
transport chain, xanthine oxidase, NADPH oxidase and uncoupled endothelial NO synthase
(eNOS)  [21,108],  whereas  the  main source  of  NO are  the  endothelial  and inducible  NO
synthases (eNOS and iNOS, respectively)[70,85].

The  oxidative  stress  is  an  inherent  condition  of  pregnancy  related  with  the  increasing
metabolism of  fetal  and  utero-placental  tissues,  which  results  in  a  continue  delivery  of
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Figure 2. Differential capacity in the angiogenic ability of the fetal endothelium. Representative images of tube
formation assay in matrigel using primary cultured human umbilical vein endothelial cells (HUVEC; i.e., macrovascular)
and human placental microvascular endothelial cells (hPMEC; i.e., microvascular) isolated from normal pregnancy. Af‐
ter overnight serum deprivation, cells were seeded on the matrigel in a different number since 10 x 103 to 30 x 103

cells/ml prepared in culture medium (M199) without serum. In the images is presented only HUVEC that were seeded
at 30 x 103 and hPMEC that were seeded at 10 x 103. Those cells were maintained in culture under standard conditions
(5% CO2, 37oC) during 0, 1, 2, 3 and 4 hours and cells were photographed. As indicated in the pictures, hPMEC exhibit
a more rapid response for tube formation under our culture condition and require lesser quantity of cells than HUVEC,
suggesting a differential physiological role of these cells in the fetal circulation.
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oxygen –and nutrients- toward the developing fetus. In fact, it has been described that the
elevation in the normal metabolic rate of feto-placental tissues increases the oxidative stress
in  the  placental  [109].  Moreover,  in  placental  tissue  from  early  pregnancy  has  been
determined a higher activity of NADPH oxidase; therefore, the synthesis of O2

•-  is more
marked at the end of the first trimester than the activity in term placental tissue [110]. On
the other hand, studies using samples obtained from patients with GDM showed that there
is  an increased activity of  xanthine oxidase (XO) and a decreased activity of  catalase in
maternal plasma, umbilical cord plasma and placental tissue [111]. These findings showed
that there is an impairment of antioxidant defenses in the placenta and blood from mother
and newborn, which might be related with the high mortality and morbidity in both mother
and newborn observed during GDM pregnancies. In addition, placental tissues from GDM
exhibited a decreased response to oxidative stress induced by hypoxanthine plus XO, as
was  reflected  by  a  reduced  levels  of  catalase  and  glutathione  peroxidase  (GPx)  after
exposition  to  the  pro-oxidative  challenge,  suggesting  that  placental  tissues  from  GDM
would be exposed to damage in an oxidative environment [112].

The  hallmark  of  diabetes  is  hyperglycemia  whose  condition  has  been  associated  with
increases of synthesis of ROS and RNS in tissues and cell cultures from umbilical cord and
placenta.  There  is  an  increase  of  ROS  levels  in  HUVEC  exposed  to  high  extracellular
concentration of D-glucose mediated by activity of NADPH oxidase in a mechanism that
involved a decrease of NO bioavailability and increases of vascular reactivity in umbilical
veins [21,113]. In HUVEC, it  has been described that the higher increase in the NADPH
oxidase-mediated ROS induced by high concentration of D-glucose, the higher NO synthesis
mediated by eNOS [21,113]. Considering the reaction rate between O2

•- and NO, it is highly
probable that the hyperglycemic condition induces the synthesis of ONOO-;  therefore,  it
contributes to the development of endothelial dysfunction in umbilical cord and placenta.
Long-term incubation (7-14 days)  of  HUVEC with high concentration of  high D-glucose
increases the expression of regulatory subunits of NADPH oxidase p67phox and p47phox [114],
whereas  24  hours  incubation  of  the  same  cell  type  with  high  D-glucose  increases  the
expression  of  the  catalytic  subunits  NOX2 and NOX4 [113].  Thus,  an  increased expres‐
sion and activity of NADPH oxidase would be a hallmark of HUVEC exposed to hypergly‐
cemic, suggesting that the same phenomenon would be present in GDM.

On  the  other  hand,  recently  data  has  been  shown  that  in  trophoblastic  cells  ACH-3P,
incubated at 21 % oxygen and under normoglycemic condition, increases ROS levels after
3 days. Interestingly, ACH-3P cells treated (3 days) with high extracellular concentration
of D-glucose increases the ROS levels only in cells exposed to lower percentage of oxygen
(2.5 %). In fact, in ACH-3P cells, hyperglycemic conditions increase the mitochondrial O2

•-

levels. Therefore, this study is showing that ROS production in normoglycemia is oxygen-
dependent  but  oxygen-independent  in  hyperglycemia.  The  mechanism  involved  in  this
phenomenon could involve the increase of expression and/or activity of oxidant enzymes
present in placental tissue [115].

In summary, there is an imbalance in the control of redox cellular status in pathological
conditions related with increases blood concentrations of molecules that induce oxidative
stress, like GDM and hyperglycemia, probably due to a higher expression of oxidant enzymes
like NADPH oxidase, XO and deregulation of metabolic pathways of NO.
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c. Placental angiogenesis and GDM

Angiogenesis is a general term that involves the physiological process leading to growth
of new blood vessels from a pre-formed one. This is a vital process involved in embryolog‐
ical growth, tissue development, would healing of damaged tissues and in the context of
this chapter is a crucial process for placental development and fetal growth during normal
and GDM. In this regard, as it has been remarked before, macrosomia, present in GDM,
has been associated to increased nutrient delivery toward the fetus,  a  phenomenon that
may be related with increased blood flow due to vasodilatation of placental vessels [100].
Moreover, angiogenesis in the placenta is also controlling blood flow toward the fetus, and
in fact, the vessel formation proceed to any vascular function, this process (i.e., angiogene‐
sis)  has  been studied as  one of  the underling mechanism for  explaining macrosomia in
GDM [116,117,118,119].  Thus,  placentas  from GDM exhibits  elevated  number  of  redun‐
dant  capillary  connections  per  villi,  compared to  normal  pregnancy,  suggesting  a  more
intense capillary branching [120]. Moreover, there are increased placental capillary length,
branching  and  surface  area  that  have  been  reported  in  women with  type  1  [121],  pre-
gestational and gestational diabetes [18,74], as well as elevated number of terminal villi and
capillaries  in  women  with  hyperglycemia  [73].  In  addition,  it  has  been  reported  that
glycemic control was significant correlated with capillary surface area and capillary volume
in women with pre-gestational diabetes [117]. Moreover, it is well known that diabetes is
associated with increased angiogenic response in some specific tissues such as eye, where
hyperglycemia can lead to retinopathy [122]. Nevertheless, it has been shown that GDM is
associated to reduction in the circulating endothelial progenitor cells (EPC), in mother and
fetus  [123,124]  a  phenomenon  that  was  linking  with  reduced  capacity  for  recovering
endothelial dysfunction in GDM.

Associated mechanism behind increased placental angiogenesis in GDM may be related to the
pro-angiogenic effect of hyperglycemia [125], which in turn triggers an enhancement in the
placental synthesis and release of VEGF, as well as the expression of VEGF receptors (VEGFR)
and nitric oxide production [18]. Thus, it has been shown that the placentas from women with
hyperglycemia exhibited high levels of VEGF and VEGF receptor 2 (VEGFR-2) but reduced
expression of VEGF receptor 1 (VEGFR-1) [73]. Furthermore, it has been reported elevated
placental levels of VEGFR-1 mainly in vascular and throphoblastic cells in women with GDM
[73,126]. Also, alteration in VEGF-VEGFRs expression has been described in women with type
1 diabetes [18,61,75,127]. Thus, the increased secretion and activity of VEGF may explain
hypervascularization observed in placentas from DGM [58,71]

On the other hand, increased placental angiogenic response may also be related with hyper‐
insulinemia present in GDM. In this regard, it has been described that insulin activates at least
two types of insulin receptors (IR), type A (IR-A, associated with a mitogenic phenotype) and
type B (IR-B, associated with a metabolic phenotype), which are elevated in both HUVEC [24]
and hPMEC [106], respectively. This particular localization of insulin receptors in feto-
placental endothelium, may be linked with the differential proliferative capacity of endothelial
cells, since insulin increases the expression of several genes related with angiogenesis (i.e.,
EFNB2) and vascularization (i.e., EPAS1) mainly in placental derived endothelium [128],
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therefore is feasible that functional clustering of insulin-regulated genes in this cell type may
promote their mitotic potential.
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Figure 3. Potential role of A2AAR/NO/VEGF signaling pathway in the cell migration and proliferation during gestation‐
al diabetes mellitus. In human umbilical vein endothelial cells (HUVEC), adenosine or adenosine receptor agonists
(CGS-21680 or NECA) activate A2A adenosine receptor (A2A) and trigger the activation (i.e., phosphorylation in serine
1177, p-eNOS) of endothelial nitric oxide synthase (eNOS), without changes in total eNOS, which in turn is associated
with elevation of nitric oxide synthesis (NO) and nitration of tyrosine residues (Y-nitration), enhancing the synthesis of
vascular endothelial growth factor (VEGF) and then this activation generates cell migration and proliferation. It is un‐
known (?) the mechanism(s) associated with the regulation of expression of VEGF mediated by A2A/NO signaling path‐
way. Preliminary results in our laboratory suggest that gestational diabetes mellitus (GDM) is associated with elevation
of adenosine extracellular levels and high activation and expression of A2A adenosine receptor characterized by high
(⇧) eNOS activation, NO formation and Y-nitration whose are associated to enhancement of cell proliferation and mi‐
gration and finally it would be occasioned elevated placental angiogenesis characteristic of this disease.

Another potential pathway, involved in the increase of placental angiogenesis during GDM,
may be the ALANO pathway described before [100]. In this regard, we have previously pro‐
posed that a dysfunction in this pathway is taken part in the physiopathology of reduced
placental angiogenesis in pre-eclampsia [129]. Therefore, it is feasible that the converse may
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be occurring in GDM. Considering this idea, preliminary results have shown that HUVEC
from gestational diabetes was associated with high expression of A2A and A2B adenosine re‐
ceptors (AR) (~6 and ~2-fold, respectively). Moreover, CGS-21680 (A2AAR selective agonist)
and NECA (AR non selective agonist) increase (~2 and 2.5-fold) cell proliferation in both
gestational diabetes and normal pregnancies; an effect that was blocked by ZM-241385
(A2AAR selective antagonist) only in normal pregnancies. Interestingly, a shift in the curve of
ZM-241385 by inhibiting the stimulatory effect of CGS-21680 was observed in diabetic preg‐
nancies compared with normal pregnancies (calculated Ki 1.3 ± 0.2 and 12.8 ± 3.4 nM, re‐
spectively). Interestingly, co-incubation with L-NAME (NOS non-selective antagonist)
blocked the CGS-21680-mediated proliferation in both normal and pathological pregnancies.
Therefore, this results suggest that A2AAR stimulation increases cell proliferation in gesta‐
tional diabetes through an intracellular pathway dependent of NO synthesis. Remarkable,
these results also suggested that a posttranslational modification in A2AAR could be in‐
volved in the reduced affinity to ZM-241385 in GDM (Escudero A and Escudero C, unpub‐
lished results) (see Figure 3).

7. Concluding remarks

As detailed above, intrauterine exposure to diabetes has been associated with high risk of
diabetes, obesity, as well as cardiovascular disease in the offspring. Although the genetic
component is hard to discard, the general agreement is that intrauterine exposition allows the
“transmission” of diabetes to the offspring. Several mechanisms have been proposed in order
to understand the relationship between maternal GDM and the risk of metabolic and cardio‐
vascular disease in the offspring. In this review, we have highlighted some information
regarding the potential role of placental dysfunction and particularly placental endothelial
dysfunction as one of the mechanisms linking with fetal programming in GDM. This relation‐
ship is not arbitrary because it may constitute the basis for explaining other pregnancy diseases
such as growth restriction or pre-eclampsia, where the same alteration, might explain the
predisposition that the children “exposed” to those diseases could develop metabolic or
cardiovascular disease later in life. Therefore, if we consider this phenomenon (i.e., endothelial
dysfunction) is a “normal” response in front of intrauterine stressful conditions, such as GDM
or intrauterine growth restriction or pre-eclampsia; it would offer an opportunity to plan
clinical strategies addressing to evaluate and control endothelial function as soon as the babies,
exposed to those diseases, have been born. Finally, a general recommendation would be that
it is necessary to establish a consensus for diagnosis of GDM. This is particularly important
because hyperglycemia would be one of the most affecting factors involved in the endothelial
dysfunction and fetal programming.
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