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1. Introduction

The vasculature has been identified as a prominent feature across several stem cell niches,
suggesting a crucial role in their regulation and maintenance. While a critical component of
every organ and tissue, it has adopted specific features for specialized microenvironments.
Most notably, the subventricular (SVZ) and subgranular (SGZ) zones of the adult brain harbor
unique vascular plexi that are finely tuned to support neural stem cell (NSC) function and
behavior. Whether it is through direct contact with, and paracrine signaling from, endothelial
and mural cells that comprise blood vessels, or systemically via distribution of soluble factors
from the circulation, the vasculature serves as a multifaceted stem cell niche regulator. As
emerging evidence continues to emphasize the importance of vascular and nervous system
interdependency, it is clear that the vascular compartment in the neural stem cell niche is
uniquely poised to coordinate responses of both systems to ensure proper maintenance and
regeneration, as needed.

2. Vascular composition and function in the brain

2.1. Brain vascular endothelium

The vasculature is a critical component of every organ and tissue, and has the remarka‐
ble ability to integrate systemic signals and directly regulate the local microenvironment.
In  general,  the  vasculature  provides  nutrients  and  protection;  however,  it  has  adopted
specialized  features  for  specialized  microenvironments.  Accordingly,  not  only  does  the
composition of  blood vessels  vary (e.g.  smooth muscle  cell  and pericyte  coverage,  peri‐
vascular  cell  recruitment,  extracellular  matrix  (ECM)  deposition),  but  heterogeneity
among the endothelium itself is recognized. Indeed, this endothelial cell (EC) heterogene‐
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ity  may  be  at  the  heart  of  their  vast  regulatory  potential,  allowing  control  of  multiple
processes.  These include,  but are not limited to,  angiogenesis,  microvascular permeabili‐
ty,  vessel  wall  tone,  coagulation and anticoagulation,  blood cell  generation and traffick‐
ing, inflammation, and microenvironment regulation [1-3].  From a functional standpoint,
the endothelium displays an incredible division of labor, where a spectrum of responses,
both to internal and external stimuli,  is  carried out.  Thus, heterogeneity among the vas‐
cular endothelium is a core property bestowing vast regulatory potential [4].

Within the brain, capillaries are tightly integrated within the neural parenchyma. As arterioles
traverse deeper into the brain, they become progressively smaller and lose portions of their
smooth muscle layer, and are thus termed cerebral capillaries [5]. These capillaries are tubes
of EC that are variably surrounded by pericytes or pericyte processes, astrocytes, neurons, and
ECM. This minimal composition of capillaries allows for a unique interface that facilitates
communication with the underlying tissue environment. Distribution of cerebral capillaries
within the brain is relatively heterogeneous, due to regional differences in blood flow and
metabolic demand. Owing to their thin walls and slow rate of blood flow, capillaries are
engineered to minimize diffusion path length and optimize diffusion time [2]. Surprisingly,
the average luminal diameter is ~4.8 µm [6], a length that is somewhat smaller than the
diameter of an erythrocyte, requiring red blood cells to deform slightly as they progress
through these vessels.

The brain endothelium is characterized by unique features that allow it to selectively control
permeability between blood and the central nervous system, which manifests as the blood-
brain-barrier (BBB). Specifically, this endothelium is discontinuous and nonfenestrated, with
few caveolae at the luminal surface and large numbers of mitochondria [7]. The barrier function
is mediated by both a physical barrier, owing to high expression of tight interendothelial
junctions, and a highly selective transport system. Interestingly, the basal lamina in capillary
beds is common with that of perivascular astrocytic endfeet and pericytes, allowing direct
contact of neural cells with the underlying endothelium [8]. These capillary EC are ~0.1 µm
thick, giving them a cell volume of only ~20µL/cm3, cumulatively amounting to just 0.2% of
the volume of the entire brain [9]. As the demand for energy must be matched by nutrient
supply, the remarkable thinness and surface area of these EC allows for quick, selective, and
efficient transport across endothelial membranes.

3. Development and vascularization of the brain

3.1. Embryonic brain development

The initial steps of central nervous system (CNS) development occur prior to gastrulation,
beginning with neural plate induction from ectoderm [10]. The neural plate is then patterned
along its anterioposterior (AP) and dorsoventral (DV) axes in a dose-dependent fashion, where
gradients of secreted morphogens specify distinct neural fates by inducing expression of
region-specific transcription factors. It has been reported that fibroblast growth factor (FGF),
retinioic acid, and secreted Wnt family members determine AP polarity, while bone morpho‐
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genetic proteins (BMPs) and members of the Hedgehog family control mediolateral polarity
[11-18]. As the neural tube fuses from the neural plate, the neuroepithelium begins to undergo
a complex series of morphological transformations, and begins expressing proteins such as
vimentin and nestin, thus marking the first appearance of radial glia in the cerebral cortex [19].
The appearance of projection neurons, originating from the neuroepithelium between E8.5 and
E10, is followed closely by the onset of neurogenesis at E11 [20].

In the early stages of embryonic neurogenesis (E11-E13), the first mitotic cortical neurons leave
the VZ to form the preplate via interkinetic nuclear migration, independent of radial fibers,
creating an intermediate zone (IZ) where postmitotic neurons accumulate to commence
differentiation [21]. Subsequently generated neurons continue to leave the VZ and enter the
preplate to form the CP (E13-18), further subdividing this region into the subplate and marginal
zone (MZ), where the latter becomes lamina I, the most superficial layer of the brain [22]. At
this same time, SVZ progenitors generated in the VZ divide and expand the progenitor pool.
Excluding layer I, subsequent development is said to occur in an “inside-out” manner, where
earlier-born neurons reside in the deeper layers (V, VI), and later-born neurons occupy the
more superficial layers (II,III) [23].

Between E11 and E18, neurons proceed radially from the ventricular zone (VZ) to the CP, while
interneurons originating from the ganglionic eminence migrate tangentially, traveling
perpendicular to radial fibers and parallel to the pial surface [24]. As these neurons reach their
final destination, migration ceases, detachment from radial glia occurs, and differentiation
begins. Cell lineage studies have revealed that proliferative progenitors of the neural epithe‐
lium are for the most part multipotent up until their final mitosis [25-30]. However, committed
progenitors appear to be an exception, as their existence in secondary proliferative zones, such
as the SVZ and other regions in the adult, have been documented to give rise to various
neuronal subtypes, astrocytes, and glia [31, 32].

3.2. Vascularization of the brain

The brain, in general, has a specialized vasculature relative to other organs, and there are
specialized microenvironments within the brain that exhibit distinct characteristics and
functions. For example, it has been proposed that a unique vascular plexus exists in neurogenic
regions of the brain, both during embryonic and adult neurogenesis [33-35], where EC-NSC
interactions aid in stem cell maintenance while promoting cell division and NSC expansion
[36, 37]. How then, does the vasculature become specialized to fulfill such distinct roles, even
within the same tissue?

During early stages of embryonic brain development, the perivascular neural plexus (PVNP)
forms around the neural tube at E8.5-E10, from anterior to posterior, yet does not invade the
neural tissue until later in development [38]. During E10-E11, the periventricular vascular
network advances into the dorsal telencephalon, and by E11 forms a lattice shaped plexus.
However, a distinct vascular plexus of periventricular vessels appears in the ventral telence‐
phalon at E9, and by E13 EC invasion into the ventricular zone (VZ) and subventricular zone
(SVZ) has generated radially oriented capillaries that extend towards the cortical plate (CP),
eventually joining the pial vasculature [39, 40].
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Recently, the identification of distinct vascular origins within the developing brain [41]
suggests that specialized features of vascular beds of adult germinal regions may begin during
embryonic development and persist into adolescence. Previously, the long-standing model of
CNS angiogenesis suggested that pial vessels, originating from the perineural plexus sur‐
rounding the neural tube, passively sprout into the brain parenchyma and extend radial
branches toward the ventricles, where the neurogenic VZ and SVZ are established. Upon
arrival to the periventricular area, these pial vessels were thought to form new branches,
reverse direction to grow towards the pial surface, and ultimately branch into plexuses [42-44].
However, recent studies suggest that pial and periventricular vessels not only have distinct
origins, but develop along independent schedules. In fact, periventricular vessels in the ventral
telencephalon are thought to originate from a basal vessel, most likely arising from pharangeal
arch arteries [42, 45], situated on the floor of the telencephalic vesicle within the basal ganglia
primoridum. As early as E9, pial vessels are observed to encircle the telencephalon, while a
spatially distinct population of periventricular vessels is restricted to the ventral telencephalon.
From E9-E10, the basal vessel matures to produce periventricular branches in a ventral-to-
dorsal and lateral-medial direction, eventually giving rise to a vascular lattice in the dorsal
telencephalon. As narrow branches from the periventricular and pial networks fuse, the first
arterial-venous communication is thought to occur, as early reports suggest venous sinuses
and arterial networks develop from pial and periventricular vessels, respectively [41, 45]. At
E15, the first tangential vessels to the pial surface emerge in the intermediate zone, and by E16,
these vessels appear in the presumptive rostral migratory stream (RMS). By E18, extensive
vascular remodeling has taken place, and the ventricular plexus loses much of its definition.
However, upon reaching postnatal ages and adulthood, blood vessels begin to align them‐
selves longitudinally and parallel to each other in the direction of the RMS, presenting a more
homogeneous structure [35, 40].

Interestingly, the periventricular vascular network is present in the telencephalon prior to the
formation of neuronal networks and before the appearance of radial units and striosome-
matrix compartments in the dorsal and ventral telencephalon, respectively. Thus, the peri‐
ventricular network is temporally and spatially poised to influence neural maturation, as well
as guide tangential migration in the developing brain [41]. A similar vascular niche for NSC
has been reported to exist in the adult SVZ and SGZ, and may have been established early
during embryonic brain development. This suggests that the vasculature may be critical in
promoting and regulating neural development.

3.3. Establishment of neurogenic regions of the brain

During brain development, three different NSPC types make their appearance in a tightly
coordinated spatiotemporal manner, seeding the brain with committed progenitors that
differentiate into the various cell types of the mature brain. The first of these to appear are
pseudostratified epithelial cells termed radial glia, regarded as the bona fide NSC in the
embryonic VZ [46, 47]. Morphological studies have identified two processes emanating from
their cell bodies, suggesting an inherent bipolar nature. A short and thick apical process
directed towards the ventricle is thought to anchor radial glia, while a longer basal radial fiber
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projects towards the basement membrane of the pia mater, acting as a scaffold for prospective
neuronal migration [21, 48]. These radial fibers are often observed to contact blood vessels and
exhibit multiple branched endfeet at the pial surface [49]. Interestingly, their apical regions are
typically folded and contain a single cilium [50, 51], reminiscent of the proposed location,
structural morphology, and vascular contacts of adult NSC in the SVZ.

During the early stages of cortical development, the cerebral cortex is composed almost
exclusively of proliferative radial glia dividing at the ventricular surface in the VZ [52]. As
proliferating radial glia progress through the cell cycle, they undergo interkinetic nuclear
migration, where the nucleus migrates away from the ventricle during G1 phase, and enters
S phase at the top of the VZ. Upon return through the VZ to the ventricular surface, they
proceed through G2 phase and M-phase, respectively [19, 52-54]. A switch from symmetric
self-renewing to asymmetric neurogenic divisions occurs as development proceeds, leading
to pairs of daughter cells with distinct progenitor or early neuronal fates; symmetric divisions
have also occasionally been observed to produce early neurons or intermediate progenitor
cells (IPC) [19, 23, 49]. However, during peak neurogenesis, radial glia give rise to one radial
glial cell, and either one post-mitotic neuron or a neuronally committed IPC [49, 55]. Similarly
in adult neurogenesis, adult NSC asymmetrically divide to generate transit-amplifying cells
that produce committed progenitors. In both cases, regulation of the symmetry of cell division
is critical, and ultimately controls cerebral cortical size during brain development [52].

At the onset of neurogenesis, radial glia progeny migrate away from the ventricle and begin
to establish the first layers of the developing brain, separate from the VZ. IPC establish the
SVZ as a distinct proliferative region, while young cortical neurons migrate to a superficial
position to establish the cortical plate [48]. These migrating cortical neurons are intimately
associated with the long pial fiber of radial glia, utilizing it to traverse relatively long distances
to the overlying cortex in a process termed radial migration. Once telophase is complete and
radial glia have entered M-phase, the apical plasma membrane becomes unequally segregated
into the two daughter cells. Interestingly, the apical daughter inherits a larger portion of the
membrane while the basal daughter receives a smaller proportion in addition to the radial
fiber, indicating the latter assumes the stem cell radial glia fate [46, 47, 49, 56]. However, this
is not absolute, as instances of basal daughters becoming post-mitotic and apical daughters
remaining proliferative have been reported. Instead, it has been suggested that fate decisions
involving asymmetric division may also depend on developmental stage [47, 48]. Thus, the
function of radial glia is two-fold, wherein they generate and guide migration of their own
daughter cells [52, 57].

After the VZ reaches its maximal size during midstage cortical neurogenesis, the VZ begins to
shrink while the SVZ begins to expand [57]. Derived from radial glia, IPC are the first cell types
to initially seed the SVZ [48]. While some observations describe the distribution of IPC
throughout the upper VZ and lower intermediate zones [49, 58], they are predominantly
concentrated in the SVZ, where they almost exclusively divide symmetrically to generate
postmitotic daughter neurons [59-62]. In contrast to radial glia, IPC are multipolar, extending
and retracting multiple processes [19, 49]. Additionally, they do not appear to sustain contact
with either the ventricular or pial surfaces, and are in fact defined by their lack of prominent
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apical or basal processes and a basal location relative to the apical surface [52]. While their
contact with neighboring blood vessels has not been confirmed, their appearance in the cortex
seems to follow that of blood vessel invasion in the cortical wall [19]. Furthermore, behavioral
differences between radial glia and IPC have been noted. IP cells progress through the cell
cycle away from the ventricle, and do not undergo interkinetic nuclear migration, thus,
allowing differentiation from radial glia based on spatial location during mitosis [19, 63].

At later stages of cortical development, the SVZ progenitor pool continues to expand via IPC
symmetric divisions. Further aiding in expansion, progenitors from the ventral telencephalon
may even migrate dorsally to contribute to the SVZ progenitor pool [19]. Upon completion of
cortical neurogenesis, radial glia transition into astrocytes and exit the VZ, leaving a single
layer of ependymal cells lining the ventricle [57]. Consequently, proliferative IPC become the
predominant component of the cortical progenitor pool, and eventually comprise the majority
of mitotic progenitors as embryonic neurogenesis nears completion. Interestingly, while only
a single layer of VZ-derived ependymal cells remains postnatally, IPC are present in large
numbers in the postnatal SVZ, and persist into adulthood [19]. Aside from generating cortical
neurons, postnatal and adult progenitors have been demonstrated to generate neurons
destined for the olfactory bulb [49, 58, 64], and possibly all excitatory neurons of the upper
cortical layers [58]. Thus, IPC in the SVZ play a vital role in cortical neurogenesis during
embryonic development as well as in the adult.

Interestingly, a novel progenitor type termed the outer SVZ (OSVZ) progenitor has recently
been identified and appears to exist in all mammals, albeit to varying extents [52]. These
progenitors have a modified radial morphology, but are exclusively localized to the SVZ.
OSVZ cells are enriched in mammals with larger cerebral cortices, and their appearance during
mid-gestation seems to coincide with the onset of neurogenesis [52, 65-69]. OSVZ progenitors
are peculiar in that they possess characteristics reminiscent of both radial glia and IPC. They
display radial morphology and express radial glial markers paired box protein-6 (Pax6),
phospho-vimentin, glial fibrillary acidic protein (GFAP), and brain lipid-binding protein
(BLBP), and also display random cleavage planes, where both proliferative self-renewing
symmetrical divisions and asymmetric divisions producing OSVZ daughter and progenitor
have been reported. However, an apical process is absent in these cells while their basal process
is retained throughout mitosis [65-67].

3.4. Vascular cues during embryonic neurogenesis

It has been suggested that the developing cortical vasculature within the SVZ promotes IPC
expansion during neurogenesis by providing a suitable microenvironment for IPC accumu‐
lation and division [39]. It is noteworthy that brain EC share similar molecular profiles with
their neighboring NSC. For example, ventral and dorsal EC, as well as NSC, express Dlx1/5
and Nkx2.1, and Pax6, respectively, while pial EC are negative for all three [41]. This strongly
suggests that mechanisms of patterning during early angiogenesis and neurogenesis in the
brain are shared.

A strong association between NSC and blood vessels exists during embryonic and adult neuro‐
genesis, especially in regard to cell cycle regulation [33-35]. The filopodia of endothelial tip cells
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extend towards the ventricular surface where radial glia divide, and even interact with pial fi‐
bers of radial glia in the hindbrain [39]. Additionally, dividing cells in the embryonic SVZ reside
statistically closer to blood vessels than predicted by chance, and recent studies report a syn‐
chronization of SVZ cell division with the formation of ventricular vascular plexuses [40]. This
vascular relationship is apparent in the emerging RMS as well, where dividing cells have been
reported to associate with blood vessels at E16, E18, and P4 [35]. On the other hand, progenitor
migration in the RMS does not seem to rely on the vasculature, as the vast majority of neuroblast
neurites in P4 RMS have little or no association with blood vessels [35]. This is in contrast to radi‐
al migration outside the RMS, where postmitotic doublecortin (DCX) and glial fibrillary acidic
protein (GFAP)-positive cells associate with blood vessels during migration into superficial
cortical layers [40]. Interestingly, IPC have been suggested to maintain a stronger interaction
with blood vessels, as T-brain gene-2 (Tbr2)-eGFP progenitors in M-phase reside closer to blood
vessels when compared to total phosphohistone H3-positive progenitors [40]. Furthermore,
these dividing IPC are often found at vessel branch points, which have previously been ob‐
served to be sites of glial tumor mitosis and subsequent migration [70].

Mounting evidence suggests that Tbr2 progenitors are temporally and spatially correlated
with the appearance of cortical vasculature, and even follow and mimic the pattern of nascent
blood vessels. Similarly, the positions of IPC during mitosis, migration and differentiation are
all correlated with EC development in the SVZ. Even detection of Tbr2-positive cells correlates
with the appearance of vascularization, as Tbr2 cell density is highest in the vascularized lateral
regions as compared to the nearly avascular medial regions in the dorsal cortex of E12 embryos
[39]. Moreover, ectopic overexpression of vascular endothelial growth factor (VEGF)-A causes
IPC to follow a pattern of aberrant vascular growth. Interestingly, leading EC tip cells have
been observed to associate with some Tbr2-positive IPC in M-phase, suggesting a functional
interaction during division. These data collectively suggest the SVZ vasculature serves as a
niche for mitotic IPC [39], and provides instructive and permissive cues for stem and progen‐
itor cell expansion and tissue invasion [71].

3.5. Parallels between embryonic neurogenesis and adult neurogenesis

Similarities between embryonic and adult NSC at the cellular level and across their extracel‐
lular microenvironments have been reported, and selective labeling of radial glia has demon‐
strated a direct link between these cells, indicating that NSC are most likely contained within
the neuroepithelial-radial glia-astrocyte lineage [72, 73]. Furthermore, reports indicate adult
SVZ NSC retain specialized characteristics of radial glia. However, the molecular characteris‐
tics that confer progenitor potential onto astroglial cells and distinguish them from those with
normal support function remain largely unknown [53].

From adult NSC, also referred to as Type B cells in the SVZ, an apical process at times
intercalates between ependymal cells lining the lateral ventricular surface, potentially serving
to both anchor and present NSC to circulating factors in the cerebrospinal fluid (CSF).
Embryonic radial glia also share this apical process, and most likely contain a similar profile
of specialized apical junctions at the site of this primary cilium [53]. Similarly, the longer basal
process that radial glia extend towards the surface of the brain during embryonic development
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is also shared by adult NSC of the SVZ. In the adult SVZ, this basal process projects radially
or tangentially, depending on location, eventually terminating in specialized endfeet on the
surface of blood vessels [33, 74, 75]. These vascular contacts may be analogous to those of radial
glia during development, as branch contacts with the overlying vasculature also occur [53].
This suggests that adult SVZ NSC share core properties with the embryonic radial glia from
which they are derived from, allowing them to retain progenitor function throughout life.

These similarities are also observed in adult NSC of the SGZ in the hippocampal dentate gyrus.
Early anatomical studies suggest that radial glia in the dentate neurepithelium transition to
the different astrocyte populations of the dentate gyrus, including radial astrocytes [76, 77].
While experimental evidence linking radial glia to adult SGZ radial astrocytes is lacking [53],
it is possible that this derivation occurs, and further studies will be needed to clarify this lineage
relationship. However, the primary cilium of radial glia is present on SGZ progenitors and
adult radial astrocytes, and is essential for progenitor proliferation and generation of postnatal
radial astrocytes, thus establishing its requirement for neurogenesis. From a signaling
standpoint, the primary cilium serves as an integration site for signaling via pathways such as
Shh. Interestingly, this cilium seems to be specific to the radial astrocytic NSC pool in the
hippocampus. Non-stem cell astrocytes are not affected by lack of primary cilium or Shh
signaling, suggesting a unique requirement among these NSC [78, 79].

As in the adult SVZ [80], location seems to dictate specificity, where radial glia in the dorsal tele‐
ncephalon generate only pyramidal excitatory neurons, while those located in the ventral tele‐
ncephalon give rise to nonpyramidal inhibitory interneurons [81]. Studies from several mouse
models demonstrate that neurons can migrate into the cortical plate (CP) radially or tangential‐
ly [82-84]. This type of migration is mirrored in the adult SVZ, where neuroblast progenitors mi‐
grate tangentially through the rostral migratory stream towards the olfactory bulb, destined to
become inhibitory interneurons. Features of interkinetic nuclear migration are also shared by
radial glia and adult NSC. While mitotic cells are found only adjacent to the lumen of the neural
tube, nuclei of cells in S-phase are found in the outer half of neural epithelium [19, 54]. This cor‐
relation of cell cycle with spatial location occurs in the adult SVZ as well, where basally located
blood vessels are proposed to exert growth control over proximal NSC by providing a prolifera‐
tion-inducing microenvironment. This is in contrast to NSC located apically, either adjacent to
or within the ependymal layer, which are immunoreactive for mitotic markers [33, 34, 75, 85].

These findings highlight basic properties that are common to embryonic radial glia and adult
SVZ and SGZ NSC. Given the evidence, it is highly likely that a microenvironment similar to
the one which supports embryonic neurogenesis persists throughout development and is
maintained in the adult neural stem cell niche.

4. The adult NSC niche

4.1. Cellular architecture of the adult SGZ and SVZ

As previously mentioned, two prominent germinal regions of the adult brain have been
identified to function as stem cell or neurogenic niches, allowing for continuous generation of
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new neurons. The SVZ represents the largest neurogenic stem cell region within the adult
brain. It resides within a narrow region of the lateral ventricular wall, roughly four to five cells
in diameter [86]. Progenitors generated from this region migrate through the RMS towards the
olfactory bulb, where differentiation into at least five interneuron subtypes has been reported.
In fact, it is estimated that 30,000–60,000 new neurons are generated in the rodent olfactory
bulb per day [87, 88]. Differentiation into oligodendrocytes of the corpus callosal white matter
also occurs, albeit to a lesser extent [89, 90]. A second neurogenic region, the SGZ, is located
between the hilus and the granule cell layer of the dentate gyrus within the hippocampal
formation. In contrast to SVZ progenitors, granule neurons born from this region migrate short
distances to the granule cell layer, where differentiation commences [91]. Whether bona fide
NSC exist in the adult mammalian hippocampus is currently under investigation, as in vivo
lineage tracing assays suggest that separate progenitors responsible for neurogenesis and
gliogenesis exist in the SGZ [92-94].

A group of distinct cell  types in the adult  SVZ help maintain this specialized niche mi‐
croenvironment:  putative NSC (type B cells),  transit-amplifying cells  (type C cells),  neu‐
roblasts  (type  A  cells),  ependymal  cells,  and  specialized  vascular  endothelium  [34,  95].
There is  no definitive marker of  NSC, and researchers rely on combinations of  overlap‐
ping markers,  as well  as spatial  location within the niche to identify NSC. Accordingly,
NSC  are  usually  identified  by  their  apical  location,  superficial  to  the  ependymal  layer,
and  slow  cell  cycle  time  of  ~  28  days  [96];  however,  their  expression  of  Sox  2  and  9,
GFAP,  and  CD133/prominin-1  are  not  exclusive  [33,  34,  74].  The  presumptive  lineage
progression from stem cell to more differentiated progenitor is as follows: NSC generate
transit amplifying cells that differentiate into migrating neuroblast progenitors.

Non-dividing ependymal cells are multiciliated, and form a single layer lining the ventricle
surface, acting as a physical barrier separating the brain parenchyma from the cerebrospinal
fluid (CSF) [97]. While ependymal cell cilia contribute to CSF flow, they have also been reported
to affect the migration of young neurons by creating gradients of Slit chemorepellents that
guide anterior neuroblast migration [98]. An en face view of the lateral ventricle wall reveals a
planar organization, commonly referred to as “pinwheel organization”, where the apical
process of NSC is surrounded by a mosaic of ependymal cells [33, 74, 99]. Through studies
mapping numbers of ventricle-contacting NSC along the ventricular surface, “hot spots,” or
areas of stem cell activation, have been revealed [100-102]. Currently a topic of debate is
whether ependymal cells can function as multipotent NSC. Previous studies have demon‐
strated that CD133/prominin-1 positive ependymal cells are in fact multipotent, and during
ischemia become active to generate neuroblasts and astrocytes [103, 104]. However, a more
recent study using split-Cre technology demonstrated a subset of CD133/prominin-1 positive
cells within the ependymal layer are immunoreactive for GFAP, suggesting that these double
positive radial-like cells are NSC, not ependymal cells [98, 105].

Two astrocytic populations have been proposed to reside in the SVZ [100]. Type B NSC
astrocytes reside underneath the ependymal layer, while non-stem cell astrocytes are more
superficial and differ in morphology [33, 34, 74, 99]. NSC are closely associated with ependy‐
mal cells, and at times extend a short, apical, non-motile primary cilium that innervates
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between the ependyma to directly contact the CSF within the ventricle [33, 74, 99]. While NSC
are relatively quiescent, transit-amplifying cells are highly proliferative, and remain localized
to the SVZ [95, 100]. Neuroblasts, on the other hand, migrate through astrocytic tubes in the
RMS to the olfactory bulb, where interneuron differentiation occurs [106, 107]. Interestingly,
experiments using viral targeting and genetic lineage tracing in neonatal and adult mice have
revealed that specific subtypes of interneurons in the olfactory bulb are derived from specific
locations within dorsal, medial, and ventral portions of the adult SVZ [108-112]. Interestingly,
while the vascular beds of the SVZ and SGZ both support adult neurogenesis, the SVZ
vasculature is somewhat unique. Differences in permeability, stability, and perivascular cell
coverage are thought to account for these differences. NSC and transit-amplifying cells both
display an intimate relationship with SVZ blood vessels, as 3-dimensional niche modeling
indicates closer proximity and increased vascular contact relative to other SVZ cells. Interest‐
ingly, these vascular associations are further exaggerated in niche regeneration models [33,
34]. Additionally, NSC extend a long basal process that terminates on blood vessels in the form
of specialized endfeet, potentially serving to integrate vascular cues [33, 74, 99].

4.2. NSC-Vascular EC associations within the SVZ and SGZ

NSC are not randomly distributed throughout the brain; rather, they are concentrated around
blood vessels, allowing constant access to circulating signaling molecules and nutrient
metabolites [113, 114]. The SVZ and SGZ both present functional neurogenic environments,
maintaining neural stem and progenitor cells (NSPC) in poised and undifferentiated states.
Regulatory processes within the SVZ niche can be controlled via secreted neurotrophic and
angiogenic factors, such as Wnt, Shh, and TGF-β [115]. For example, circulating complement
factors have been shown to promote basal and ischemia-induced neurogenesis, and compo‐
nents of complement signaling are present on transit-amplifying cells and neural progenitors
in vivo [116]. The vascular-derived factors, stromal cell derived factor (SDF)-1 and angiopoietin
(Ang)-1, promote neuroblast proliferation and survival [117], and when expressed on EC, serve
as “molecular migratory scaffolds” [118, 119] to damaged areas post stroke [120]. EC them‐
selves have even been shown to regulate NSC self-renewal [37, 86, 101, 121]. Interaction with
the vascular endothelium may in fact be a vital component of the niche, as radiation-induced
disruption of endothelial cell–SGZ precursor cell interaction results in a loss of neurogenic
potential, as is the case after NSC transplantation into an irradiated host. [122].

Within the SGZ, nestin-expressing radial astrocytes are localized to areas near blood vessels
[91], and there exists an anatomical relationship between proliferating neural progenitors and
EC in the hippocampus [101, 123, 124]. In contrast to the SVZ, where angiogenic sprouting and
division of EC are absent [34], surges of EC division are said to be spatially and temporally
related to clusters of neurogenesis in the SGZ [101]. In the hippocampus, angiogenesis and
neurogenesis are coupled, as suggested by high levels of VEGF and VEGFR2 [101], and the
shared responsiveness to similar growth factors, e.g., neurotrophins, neuropilins, semaphorins
and ephrins [125-127]. In fact, similar bidirectional communication occurs within the higher
vocal center (HVC) of the songbird brain, where increases in angiogenesis are said to be
coupled to testosterone-induced upregulation of VEGF and VEGFR2 in neurons and astro‐
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cytes, respectively. The newly generated capillaries produce BDNF (brain-derived neurotro‐
phic factor) that subsequently promotes the recruitment and migration of newly born neurons
[121]. Similarly, exercise-induced angiogenesis in the hippocampus is met with increased
expression of NGF (nerve growth factor) and BDNF [126], leading to robust increases in
neurogenesis [128-130].

In contrast to other areas of the brain, where the BBB is strictly maintained by EC tight junctions,
pericyte coverage, and astrocyte endfeet, a modified BBB has been proposed to exist in the
SVZ. The lack of astrocyte endfeet and endothelial cell tight junctions, as revealed by aqua‐
porin-4 and zonula occludens-1 immunostaining, respectively, demonstrate major structural
differences in the SVZ vascular endothelium. Under homeostatic conditions, the majority of
BrdU+ label-retaining NSC and transit amplifying cells reside significantly closer, and fre‐
quently make direct contact, to the vasculature; furthermore, after antimitotic cytosine-β-D-
arabinofuranoside (Ara-C) treatment to ablate rapidly proliferating cells and induce NSC-
mediated repopulation, these vascular associations are increased [33, 34]. At times, transit-
amplifying cells can be seen contacting the vasculature at sites lacking astrocyte endfeet and
pericyte coverage, suggesting that sites along the vessel are primed for intercellular commu‐
nication. In fact, fluorescent tracer experiments have proposed that differences in the ultra‐
structural composition of SVZ blood vessels may be responsible for the detection of sodium
fluorescein in the SVZ after perfusion into the blood; however, access to the SVZ from the
cerebral spinal fluid cannot be dismissed as an entry point. Integrin-α6β1 partially mediates
the adhesion between NSPC and blood vessels through the binding of laminins that are highly
concentrated around SVZ blood vessels. In vitro and in vivo blocking experiments using an
integrin-blocking antibody (GoH3) have demonstrated a crucial role for this interaction in the
attachment, spreading, and proliferation of NSPC [33].

The vascular environment in the RMS has also been suggested to be somewhat specialized,
where migrating neuroblasts en route to the olfactory bulb are found closely apposed to blood
vessels. Interestingly, blood vessels in this region are parallel and aligned with the direction
of the RMS, and the density of vessels is significantly higher when compared to equally cell-
dense areas of the brain [131]. It has been reported that over 80% of RMS vessels are lined with
migrating neuroblasts [132], and degradation of ECM through vascular EC secretion of matrix
metalloproteinases (MMPs) opens a path for their migration [133]. This observation has
prompted some to suggest that increased vessel density is a consequence of greater metabolic
demand by migrating progenitors.

5. Vascular regulation of adult neurogenesis

5.1. EC regulation of NSPC

Through cytokines and secreted factors, direct contact in vivo, or within the confines of the
coculture system, EC exert their influence over NSC to regulate fate specification, differentia‐
tion, quiescence and proliferation (Figure 1). Early experiments established a crude role for EC
regulation of NSC, where increases in neurite outgrowth and maturation, and enhanced
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migration were observed in cocultures of SVZ explants with EC [134]. NSC are reported to
respond to pro-angiogenic factors [135-137] that promote NSPC proliferation, neurogenesis,
synaptogenesis, axonal growth, and neuroprotection [138]. Studies in tumor and stroke models
have also uncovered neural regulatory roles of EC. EC can protect stem cells and tumor cells
from radiation damage [139, 140], and in preclinical models where NSPC isolated from stroke
boundary are cocultured with cerebral EC, significant increases in neural progenitor cell
proliferation, neuronal differentiation, and capillary tube formation are observed [141]. Even
cotransplantation of EC with NSPC increases survival and proliferation as compared to
transplantation of neural precursors alone [142]. Similarly, coculture of adult NSC with EC
results in self-renewal and symmetric neural cell division, leading to enhanced neurogenesis
through an increase in nestin+ precursor number [37]. Interestingly, when stroke-activated rat
brain EC are cocultured with SVZ cells, progenitor proliferation and neuron number are
increased by 28% and 46%, respectively, when compared to coculture with normal EC. This
suggests that activated EC are more potent in promoting neurogenesis, potentially through
modulation of Sox2 and Hes6 levels in SVZ cells [143], although further investigation is
required to identify the mechanisms involved.

VEGF, EGF, LIF

IL-6, SCF, PEDF

FGF-2, EGF, BMP, BDNF

IFG-1, PDGF, TGF-β, Collagen IV
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Influence of niche effectors on adult neural stem cell behavior.*Referring to adult suvbentricular and subrangular‐
zones. BDNF: Brain-derived neurotrophicfactor;GRO-oz Growth-related oncogene alpha; LIF: Leukemiainhibitoryfac‐
tor;VEGF: Vascularendothelial growth factor; FGF-2: Fibroblastgrowthfactor-2; EGF: Epidermal growth factor; BMP:
Bone morphogenetic protein; PDGF: Platelet-derived growth factor; SCF: Stem cell factor; PEDF: Pigmentepithelial-de‐
rived factor; SDF-l: Stromal cell-derived factor-l;TGF[3: Transforming growth factor beta; NO: Nitric oxide; CXCR4: Che‐
mokine receptor type 4; EGFR: Epidermalgrowthfactorreceptor;CSPG: Chondroitin sulfate proteoglycan

Figure 1. Regulatory effects on adult neural stem and progenitors
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Mock treatment with serum-rich endothelial growth media induces NSC differentiation into
neurons and astrocytes [31], indicating that EC-mediated regulation of NSPC self-renewal and
differentiation may be mediated through the release of certain growth factors, including PEDF
or VEGF [144, 145]. Cytokine expression profiles of human umbilical vein and cerebral
microvascular EC reveal that a large number of chemokines, growth factors, adhesion
molecules and ECM proteins are expressed by these cells [146]. Levels of these signaling
molecules varied under stimulating and nonstimulating conditions as well as by EC type,
highlighting the diverse signaling potential that exists even among endothelial subtypes.
Studies of adult neurogenic niche regulation have identified a number of growth factors and
secreted molecules, although the origin of some remains unknown (Figure 2).
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Figure 2. Putative vascular – derived regulators of the adult neural stem cell niche*
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The vascular-derived molecules shown to locally regulate the adult NSC niche include
leukemia inhibitory factor (LIF), brain-derived neurotrophic factor (BDNF), VEGF, platelet-
derived growth factor (PDGF), pigment epithelial-derived factor (PEDF), betacellulin (BTC),
and laminins and integrins [33, 121, 147]. However, there are additional factors reported to
influence NSPC behavior which may be derived from the NSC niche vasculature, although
this has not yet been demonstrated, including fibroblast growth factor 2 (FGF-2), epidermal
growth factor (EGF), interleukin-6 (IL-6), stem cell factor (SCF), insulin growth factor-1 (IGF-1),
transforming growth factor-β (TGF-β), bone morphogenic proteins (BMP), SDF-1/CXCR4,
collagen IV, Eph/ephrins, angiopoietin, nitric oxide (NO), erythropoietin and prolactins. We
review advances made toward understanding the cellular and molecular role of these factors
since last reviewed [148].

5.2. Endothelium-derived niche effectors

5.2.1. VEGFs

VEGF signaling is a complex signaling hierarchy involving several isoforms (e.g., VEF-A, -B,
-C, -D) that result from alternative splicing of the VEGF gene. VEGFs are highly implicated in
NSPC survival, proliferation, and neuroblast migration and maturation [149-154]. Along with
the recent identification of VEGFR3/Flt4 expression in the adult SVZ, all corresponding
receptors, including VEGFR1/Flt1 and VEGFR2/Flk1, are expressed within the NSPC pool
[149, 154, 155]. While VEGFR1 negatively regulates adult olfactory neurogenesis and RMS
migration by altering VEGF-A bioavailability, VEGFR2 and VEGFR3 both appear to positively
regulate neurogenesis [133, 155]; in addition, VEGFR2 has also been reported to affect vascular
proliferation [154]. This ability of VEGF family members to regulate both neurogenesis and
angiogenesis may be important in clinical settings of intracerebral hemorrhage, where
transplantation of human NSPC overexpressing VEGF have been shown to increase micro‐
vessel density and promote NSPC engraftment in sites of tissue damage [156, 157].

In VEGFR1 signaling-deficient (Flt-1 TK-/-) mice, the increased levels of VEGF-A and subse‐
quent phospohorylation of VEGFR2 in NPSC are thought to account for the altered RMS
migration, demonstrating a critical role for VEGF-A in this process [154]. Reported to be
required for hippocampal neurogenesis in the adult rat [145], EC, ependymal cells and the
choroid plexus secrete VEGF at neurogenic sites, which serves as a survival factor to stimulate
NSPC self-renewal. Neurospheres, as well as reactive astrocytes, have been shown to express
VEGF-A [158, 159], and infusion into the lateral ventricle after cerebral ischemia acts as a
trophic survival factor for NSPC and increases neurogenesis, most likely through the VEGFR2/
Flk-1 receptor [37, 150, 152]. Similarly, other studies suggest that in vitro VEGF stimulation
increases the number of BrdU-labeled precursors, which is attenuated in the presence of
SU1598, a Flk-1 receptor tyrosine kinase inhibitor, further supporting mediation through
VEGFR2/Flk-1 [123]. Although VEGF-A is reported to have a direct role in signaling during
development [101, 123, 150], evidence also supports an indirect role when it is secreted by
ependymal cells, through the stimulated release of BDNF from EC [121, 152].
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However, in experiments comparing the numbers of primary Ki67+ adult neural precursors in
NestincreFlk1+/− and NestincreFlk−/− short-term cultures, it was found that VEGF-A signaling does
not appear to affect the proliferation of these cells, and individual neurospheres that proliferate
clonally from Flk1+/+ and Flk1−/− mice are of comparable size and cell number [160]. Similar
studies demonstrate VEGF-A secreted from cerebral endothelial cells promotes migration of
oligodendrocyte precursor cells (OPCs), but not proliferation, as treatment with a Flk-1
neutralizing antibody only affected OPC propagation [161]. Therefore, VEGF-A signaling may
exert control over NSCs via the regulation of survival; this potential mechanism should be
further explored, especially given that an internal autocrine role for VEGF-A in HSC survival
has been demonstrated[162].

More recently, a direct requirement for VEGFR3 in neurogenesis has been established, and
Vegfr3::YFP reporter mice demonstrate expression in NSC [155]. Interestingly, coexpression
with VEGF-C along the walls of the lateral ventricle is also observed. Accordingly, an increase
in neurogenesis is said to occur from VEGFR3+ NSC after VEGF-C stimulation, deletion of
VEGFR3 in neural cells and SVZ astrocytes, as well as VEGFR3 inhibition via blocking
antibodies, all lead to a reduction in neurogenesis. In vitro, VEGF-C treatment also increases
BrdU incorporation in YFP+EGFR+ NSC [155].

5.2.2. BDNF & IGF

BDNF is secreted by EC and induces the differentiation of astrocyte precursors [147, 163], and
in vivo has been shown to influence proliferation and differentiation of NSPC in adult neuro‐
genic regions [121, 134]. As mentioned previously, in vivo experiments suggest that VEGF-
induced secretion of BDNF from higher vocal center (HVC) capillary vasculature in the
songbird brain results in newly born neuron recruitment. Interestingly, BDNF secretion in this
region is quite high, as canary brain EC secrete an average of 1 ng BDNF/106 cells/24 h [121,
164]; a study of adult-derived human brain EC revealed a comparable amount of BDNF
secretion [147]. In vitro, BDNF release from EC supports SVZ-derived neuron outgrowth,
survival, and migration [147]. Although subependymal astrocytes also secrete BDNF, it may
be sequestered at the cell surface; this is partly mediated by the truncated gp95 extracellular
domain of TrkB, a high affinity receptor for BDNF, which prevents its release into the sur‐
rounding space [147]. This has been proposed to be a mechanism whereby regions of NSC
expansion exclude BDNF, limiting its availability only to those areas supporting differentiation
and maturation. Interestingly, while NSC and transit-amplifying cells express the low-affinity
neurotrophin receptor p75, expression of TrkB is only found on lineage-restricted neuroblasts.
Additionally, it has been suggested that BDNF acts in a positive feedback loop to reduce
proliferation and increase neuroblast differentiation through the release of NO by NSPC [165,
166]. Thus, endothelial-derived BDNF appears to serve chemoattraction and survival roles for
neuronal progenitors [167].

Studies of exercise-induced neurogenic cognitive enhancement in the dentate gyrus have
linked BDNF with IGF-1 [168]. Exercise stimulates uptake of IGF-1 from the bloodstream in
the hippocampus, leading to an increase in the number of BrdU+ hippocampal neurons as well
as upregulation of BDNF mRNA and protein levels [169, 170]. The neurogenic effect of IGF-1
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may be mediated in part through estrogen signaling, as estrogen antagonists reduce neuro‐
genesis within the dentate gyrus [171]. From a clinical standpoint, IGF-1 may be involved in
neurodegenerative disease progression, such as Alzheimer’s and stroke, where levels of
circulating IGF-1 are altered [170].

5.2.3. PDGF

PDGF signaling has been shown to affect stem cell properties and lineage bias [98, 172].
Vascular EC secrete PDGF-B as a disulfide-linked homodimer (PDGF-BB), and via a specific
positively charged C-terminal retention motif, it interacts with heparin sulfate proteoglycans
within the ECM to aid in localized retention [173-176]. Specifically within the CNS, it regulates
oligodendrocyte precursor cell number. Interestingly, PDGF-B is implicated in brain tumor
formation, where activation of its signaling pathway is present in more than 80% oligoden‐
drogliomas and 50–100% of astrocytomas[177]. Thus, identifying which cells respond to PDGF
is crucial to elucidate mechanisms involved in these brain cancers.

In the SVZ, putative NSC and most GFAP+ cells have been shown to express PDGFRα, and
become activated in the presence of PDGF-AA [178]. Accordingly, PDGF is reported to have
mitogenic and differentiation actions on neural progenitor cells [179-181], and synergy with
bFGF has been reported to enhance neurosphere generation [178]. After intracerebroventric‐
ular infusion of PDGF-AA, astrocyte-derived periventricular hyperplasias are formed, and
increases in oligodendrogenesis are observed at the expense of olfactory bulb neurogenesis.
While EGF infusion elicits a similar proliferative response in the SVZ, staining for PDGFRα
and EGFR reveals expression in distinct populations, suggesting that they label stem cells and
transit-amplifying progenitors, respectively. Conversely, conditional ablation of PDGRα in the
SVZ decreases oligodendrogenesis while having little effect on neurogenesis [178]. Thus,
PDGF signaling may play a role in maintaining the balance between neurogenesis and
oligodendrogenesis.

5.2.4. SCF

SCF, also known as Kit ligand, has been reported to be expressed by a variety of cell types
including vascular EC [182, 183]. Previous reports indicate that within the CNS, SCF/Kit-ligand
signaling influences oligodendrocyte precursors prior to differentiation towards a myelinated
phenotype. Although Kit belongs to the same class of tyrosine kinase receptors as PDGF
receptors, their effects on NSPC are different. In nestin+ NSCs isolated from embryonic rat
cortex, more than 93% express SCF. More recent studies demonstrate that SCF acts as a
chemoattractant and survival factor for NSPCs during early stages of differentiation while
having no effect on proliferation or differentiation [184-186].

5.2.5. PEDF

PEDF is secreted by a variety of cell types, and can interact with the ECM, most notably
collagen-I [187-189]. Being the first soluble factor shown to selectively activate type B NSC,
PEDF seems to contribute to stem cell maintenance within the neurogenic niche. In the adult
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mouse brain, expression is restricted to endothelial and ependymal cells, suggesting that PEDF
is in fact a niche-derived signal. Accordingly, Western blot analysis on conditioned media from
cultures indicate that PEDF is specifically secreted by endothelial and ependymal cells [144,
190, 191]. Aside from acting as a brake on cell cycle progression by promoting NSC self-renewal
without affecting proliferation [192], recent evidence suggests an additional role in renewing
symmetric divisions. Interestingly, PEDF has been implicated in regulating certain aspects of
Notch signaling by modulating the NFκB pathway. The role of Notch signaling in NSC
maintenance is well characterized [193], and NSC treated with PEDF upregulate Notch
effectors Hes1 and Hes5, as well as the Sry-related HMG box-transcription factor Sox2 [194].
In cells with low levels of Notch signaling, PEDF enhances Notch-dependent transcription by
relieving repression of Notch-responsive promoters by the transcriptional co-repressor N-
CoR, thereby potentiating symmetric cell division [195]. Additionally, BrdU-labeled mice
treated with PEDF display an increase in the number of BrdU+GFAP+ cells, and injection with
a C-terminal blocking peptide to PEDF reveals no significant change in the number of BrdU
+GFAP+ cells compared with vehicle-injected controls. Taken together, these data suggest that
PEDF may not be a survival factor for NSC, and may instead serve to activate NSC by
stimulating self-renewal [194].

5.2.6. Nitric Oxide (NO)

A variety of mechanisms have been proposed for NO regulation of NSPC, perhaps accounting
for conflicting studies suggesting opposing roles on NSPC proliferation. Early reports
demonstrated a role for NO in the repression of adult neurogenesis, as exposure to NOS
inhibitors L-NAME and 7-NI increased neurogenesis in the dentate gyrus and SVZ [165, 166,
196, 197]. However, its effects seem to depend on the signaling pathway involved. Potentially
through NO-induced S-nitrosylation of the EGFR [198], NO inhibits PI3K/Akt signaling to
suppress NSPC proliferation, both in culture and in vivo [199]. However, bypassing the EGFR
induces proliferation through activation of p21Ras, leading to an increase in activation levels
of c-Myc, p90RSK and Elk-1, and subsequent reduction in p27Kip1 [200]. BDNF may be involved
in this process as well, as its stimulatory effect on neuronal differentiation is blocked by L-
NAME. Interestingly, NSC express and release NO, suggesting a feedback mechanism
whereby NSC-produced NO induces production of BDNF from the vascular bed [201]. EC also
produce NO via eNOS, and a decrease in SVZ cell proliferation and migration post-stroke is
observed in eNOS-deficient mice. Interestingly, BDNF levels are also reduced in eNOS-/-

ischemic mice, and BDNF treatment rescues the decrease in neurosphere formation, prolifer‐
ation, and neurite outgrowth in cultured eNOS-/- neurospheres [202].

5.2.7. Vascular ECM: Laminins, collagens, fractones

The ECM is an integral component of the NSC niche, regulating signaling by providing,
storing, and compartmentalizing growth factors and cytokines indispensable for proliferation,
differentiation and adhesion. Within the SVZ, a unique basal lamina, rich in laminins,
collagen-1 and collagen IV, extends from perivascular cells as ‘fractones’ [203]. Each fractone
consists of a base, attached to the perivascular cell, a stem that crosses the SVZ, and bulbs that
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terminate just underneath the ependymal layer [204]. The branched configuration of fractones
has been suggested to enable sequestration and subsequent presentation of growth factors and
other signaling molecules to stem cells and progenitors to regulate their proliferation, activa‐
tion, and differentiation within the niche [205].

Other important ECM molecules secreted by niche cells are laminin and fibronectin, both of
which have been implicated in neural stem cell growth, differentiation, and migration. In
addition to promoting neuroepithelial proliferation and differentiation during development,
they also function as permissive substrates, supporting the migration of cerebellar neural
precursors in vitro and neural progenitors through the RMS in vivo [206]. Most recently, the
importance of laminin–integrin interactions within the SVZ support a role in migration,
spreading and proliferation of NSPC [37]. Several in vitro studies have highlighted a critical
role for β1-integrin in mediating multiple effects of ECM on NSC in a temporally and spatially
controlled manner. For example, genetic ablation of β1-integrin results in reduced neural
progenitor proliferation, increased cell death, and impairment of cell migration on different
ECM substrates [207]. In β1-integrin-deficient neurospheres, β1-integrin signaling is not
required for NSC maintenance, and instead seems to cooperate with growth factor signaling
to regulate progenitor number [208]. In vivo, the role of laminins in migration and recruitment
are critical, as injection of intact laminin and peptide infusion mimicking the E8 domain of the
laminin α chain dramatically redirect neuroblast migration towards the site of administration.
Interestingly, inhibiting the α6 or β1 subunits with antibodies also recapitulates the migratory
defect without causing neuroblast death [209].

Collagen IV and chondroitin sulfate proteoglycans (CSPG) are also present in the microenvir‐
onment, and have been demonstrated to exert control over proliferation, leading to differen‐
tiation. While collagen IV inhibits proliferation of rat NSPCs and promotes differentiation into
neurons [210], treatment of neurospheres or telencephalic ventricles with enzymes degrading
CSPG glycosminoglycans leads to a reduction in cell proliferation and self-renewal of radial
glia; interestingly, the increase in astrocyte formation is at the expense of neuronal differen‐
tiation [211]. Additionally, sulfation of chondroitin sulfate polymers in vitro modulates the
activities and effects of various growth and morphogenetic factors that control NSC prolifer‐
ation, maintenance, and differentiation [212].

5.3. Other putative endothelial-derived niche effectors

5.3.1. FGF-2

FGF-2 (aka (b)FGF) is detected in the endothelium of tumor capillaries in vivo, as well as at
sites of vessel branching within the basal lamina of capillaries. In vitro studies suggest
significant amounts of FGF-2 can also localize to the ECM in cell culture. Normally found to
be extracellular, FGF-2 is reported to modulate cell function in an autocrine manner, and
depending on the molecular weight isoform, may or may not be secreted; secreted FGF acts
through intracellular signaling mechanisms [213]. While EC can secrete this potent angiogenic
factor [214] to regulate proliferation, migration and differentiation, type B NSC respond to
[113, 215-218] and express the corresponding receptor [178, 219, 220]. Within the CNS, FGF-2
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has been shown to affect neurogenesis and proliferation of cortical progenitors [220-222].
Interestingly, FGF-2 infusion increases adult SVZ proliferation while decreasing the number
of newly born neurons, suggesting that FGF-2 serves to maintain SVZ self-renewal [223]. In
fact, Fgf-2 knockout mice display a decrease in olfactory bulb size, presumably owing to
attentuated output from neurogenic regions. Although FGF-2 can promote NSC proliferation,
it does not act alone to maintain self-renewal, and must work with other factors to accomplish
this [37]. In addition to inducing VEGF expression in EC, FGF-2 can prime neural precursor
responsiveness towards EGF [218].

5.3.2. EGF & Betacellulin

While the specific cell type(s) expressing and secreting EGF remains unidentified within the
adult NSC niche, several reports suggest an EC orgin. Affymetrix microarray analysis has
revealed that human dermal microvascular EC express EGF, and that this expression is further
upregulated in coculture with head and neck squamous cell carcinoma cells [224]. Similarly,
an antibody-based human cytokine array has demonstrated that EGF is expressed and secreted
by dermal microvascular endothelial cells with or without VEGF stimulation, suggesting basal
expression of EGF within some EC [146]. Within the SVZ, receptors for EGF are predominantly
expressed by the type C transit-amplifying cells apposed to capillaries. Furthermore, EGFR
expression can be further induced by SDF-1 and PEDF [34, 85, 225, 226]. Intraventricular
infusion of EGF increases the number of type B NSC contacting the ventricle [219], and leads
to transit-amplifying cell proliferation while arresting neuroblast production. In vitro, EGF
stimulates neurosphere generation from transit-amplifying cells, and is said to cause reversion
to a more ‘stem-like’ phenotype [219]. Curiously, transit-amplifying cells with elevated EGFR
signaling also show non-cell autonomous defects in Notch signaling, leading to elevated Numb
levels in the stem compartment [227].

Recently, another member of the EGF family, BTC, has been shown to play a critical role in
SVZ regulation. mRNA transcripts for BTC are detectable in EC, and immunofluorescent
analysis reveals protein expression in EC of microcapillaries and in the choroid plexus, with
the latter demonstrating greater expression. After intraventricular infusion, NSC and neuro‐
blast compartments are expanded, promoting neurogenesis both in the olfactory bulb and the
dentate gyrus. Defects in neuroblast regeneration are observed post cytosine-β-arabinofura‐
noside (Ara-C) infusion in Btc-null mice in comparison to wild-type littermates. Although
related to EGF, its effects in the SVZ are slightly different, and it has been suggested that its
ability to act on distinct receptors expressed on NSC and neuroblasts, EGFR and Erb4 respec‐
tively, may account for these differential effects.

5.3.3. BMPs & LIF & IL-6

In addition to high levels of BMP2 and BMP4 production in astroglia within the SVZ, it has
been demonstrated that brain EC can act as potential sources of BMP. mRNA transcripts for
BMP2 and BMP4 were found in the bEnd.3 endothelial cell line, as well as in primary brain
EC. Furthermore, BMP4 protein was also detected in these brain EC [228]. Shown to counteract
neurogenesis in vitro and in vivo [229-231], BMP signaling increases astrocyte formation,
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possibly through activation of transcriptional regulators of Smads to control cell-cycle exit.
Indeed, when embryonic and adult NSPC are cocultured with brain EC, the canonical BMP/
Smad pathway becomes activated to reduce proliferation and induce NSPC cell-cycle exit in
the presence of EGF and FGF-2 [228]. LIF and IL-6 belong to the cohort of endothelial-secreted
factors that promote self-renewal of adult NSC [232], and when synergize with BMP factors
to promote self-renewal of embryonic stem cells through activation of gp130-mediated STAT
signaling, which induces astrogenesis [232, 233].

5.3.4. SDF-1 & growth-related oncogene-α & angiopoietin

A chemokine previously shown to direct migration of leukocytes during inflammation, SDF-1/
CXCL12 signaling via its CXCR4 receptor also provides migratory cues for NSPC recruitment
from the lateral ventricle to the nascent dentate gyrus during CNS development; interestingly,
SDF-1/CXCR4 expression by EC and neurons persists in the adult dentate gyrus. In the SVZ,
neural cells express CXCR4 while ependymal cells and vascular EC express SDF-1 [226].
Neuroblasts expressing CXCR4 migrate towards and are attracted to activated EC of cerebral
vessels that secrete SDF-1α [234-238]. While neurospheres express CXCR4, human cerebral EC
have been shown to secrete growth-related oncogene-α, also a ligand for CXCR4 [239]. More
recently, evidence of progenitor homing to SVZ EC in a SDF1/CXCR4-dependent manner has
been demonstrated, where SDF1 upregulates EGFR and α6-integrin in activated NSC and
transit amplifying cells, thereby enhancing activation state and the binding to laminin on
resident vessels. SDF1 was also shown to increase the motility of migrating neuroblasts
towards the olfactory bulb [34, 226].

Recent reports also suggest shared receptor/cytokine signaling between NSC and the vascu‐
lature concerning growth related CXCR4/oncogene-α and Ang-1/Tie2 [240, 241]. Ang-1 can be
expressed by EC, as well as mural cells, and seems to be upregulated poststroke. While also
having a general neuroprotective effect on the nervous system, it has been shown to directly
regulate stem cell differentiation and migration through the Tie2 and CXCR4 receptors [235,
237, 242-244].

5.3.5. TGF-β1

Latent TGF-β1 is secreted by EC, pericytes, glia and neurons. Reported to induce VEGF
expression by vascular EC and gliomas [245, 246], TGF-β1 serves as an important neurogenic
growth factor. Produced in a latent form in mesenchymal and epithelial cell types, EC and
mural cells have also been shown to produce a latent form of TGF-β1 which can be activated
in endothelial cell-mural cell cocultures [247, 248]. Because Tgf-β1 knockout mouse models
demonstrate a reduced potential for neuron survival [249], and transgenic mouse models
overexpressing Tgf-β1 under control of the GFAP promoter show a reduction in NSCP
proliferation [250], it is believed that TGF-β1 has no impact on NSP identity or on differentia‐
tion. Rather, it is believed to affect proliferative potential, as demonstrated by an arrest in the
G0/G1 phase of the cell cycle [251]. In cell culture, NSC and progenitors express TGFβRI, II
and III, and TGF-β1 decreases the expansion of these cells in a dose-dependent manner [252].
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5.3.6. Ephs and ephrins

Belonging to a family of receptor tyrosine kinases and associated transmembrane ligands,
Ephrins and Eph receptors have established roles in vascular development. However, more
recent data suggest both a role for Eph receptor and ephrin ligand interaction within the CNS,
and this interaction can occur between endothelial and nonvascular tissues. For example,
during development, the close proximity of EphB3/4 on intersomitic vessels with ephrin-
B1/B2 of somites seems to imply bidirectional communication [253]. Within the SVZ, EphA7
seems to localize to ependymal cells and astrocytes. Interestingly, the cells immunoreactive
for EphA7 also express nestin, a marker associated with NSC. Additionally, ephrin-B2/3 is
localized to SVZ astrocytes. By contrast, ephrin-A2 is predominantly expressed on transit-
amplifying cells and neuroblasts [254, 255]. Although ephrin-B2 is not cell type exclusive
within the SVZ, it has been shown to selectively mark arterial endothelium in the adult, as well
as surrounding smooth muscle cells and pericytes [256]. While EphA7 and ephrin-A2 nega‐
tively regulate NSPC proliferation, EphB1–2/EphA4 and ephrin-B2/3 direct neuroblast
migration and directly or indirectly regulate NSPC proliferation. Interestingly, infusion of
antibody-clustered ephrin-B2-Fc or EphB2-Fc into the lateral ventricle increases SVZ prolifer‐
ation, suggesting that B-class ephrins and Ephs may promote proliferation [254, 255, 257]. A
correlation between EphB2 and Notch signaling has also been proposed, wherein EphB2 acts
downstream of Notch to maintain ependymal identity under homeostatic conditions, while
regulating conversion to astrocytes after injury [258].

5.4. Circulating effectors:

5.4.1. Erythropoietin & prolactin

Systemic transport of erythropoietins and prolactins via blood circulation has been dem‐
onstrated to have effects within the CNS. Prolactin, in cooperation with TGF-α, promotes
SVZ proliferation and neuronal differentiation. It has been proposed that prolactin serves
as an important contributor to the increase in neurogenesis during pregnancy [259]; how‐
ever, the responsiveness to prolactin within the dentate gyrus is negligible [259, 260]. Al‐
though erythropoietin synthesis can be activated in astrocytes and neurons [261-263], it is
also possible that circulating erythropoietin, from the kidneys, can cross the BBB to exert
neuroprotective  effects.  Significant  amounts  of  the  erythropoietin  receptor  are  localized
to the surface of EC and within caveoli [264, 265], and systemic administration of eryth‐
ropoietin has been shown to penetrate the BBB as an intact molecule [266]. These obser‐
vations  certainly  suggest  that  erythropoietin  can  reach  the  brain;  however,  the  precise
mechanism mediating this transport is unknown. Erythropoietin has been shown to stim‐
ulate NSPC production and prevent apoptosis during embryonic development. Addition‐
ally, it serves as a paracrine neuroprotective mediator of ischemia in the brain [267], and
erythropoietin-activated  EC promote  the  migration  of  neuroblasts  through the  secretion
of MMP-2 and 9. [268]. Thus, further investigation of the penetrance and potential func‐
tion of erythropoietin in the adult NSC niche is warranted.
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6. Conclusions

Its remarkable ability to penetrate throughout the entire body to regulate and respond to
distinct microenvironments simultaneously has truly earned the vasculature the term of
‘master regulator’. It plays a crucial role in embryonic and adult neurogenesis, where its
secretion and/or systemic circulation of growth factors, serves to regulate the growth and
behavior of stem and progenitor cells. Although a handful of signaling molecules have been
identified thus far, it is likely that there are many more unidentified effectors that influence
NSC behavior. From a neuro-regenerative perspective, identifying factors responsible for
modulating specific stem cell behaviors is crucial, whether the goal is preventing further tissue
loss or potentiating endogenous repair mechanisms. Towards this goal, stem cell-based
therapies offer the intriguing possibility of accomplishing both. Therefore, understanding the
intrinsic and extrinsic mechanisms responsible for modulating NSPC behavior will be critical
for the development of more targeted therapies. As mounting evidence points to a strong
interdependent relationship between neurogenesis and the vasculature, therapies aimed at
targeting both compartments hold great promise.
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