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1. Introduction

Nowadays we assist to the increasing of devices and equipments connected to power sys‐
tems (non-linear loads, industrial rectifiers and inverters, solid-state switching devices, com‐
puters, peripheral devices etc). Hence, the parameters of the power supply should be
accurately estimated and monitorized. For this purpose have been proposed power quality
monitoring systems that are abble to automatically detect and classify disturbances. They
are using the most recent signal processing techniques for power quality analysis (Bollen et
al., 2006), (Dungan et al., 2004), (Lin et al., 2009).

A power quality monitoring system provides huge volume of raw data from different loca‐
tions, acquired during long periods of time and the amount of data is increasing daily. The
hardware of a power quality monitoring systems should have a high sampling rate because
the power quality events cover a broad frequency range, starting from a few Hz (flicker) to a
few MHz (transient phenomenon). A high sampling rate leads to large volume of aquired
data (for example, one recorded event could requires megabytes of storage space) which
should be transferred and stored. Therefore, it is necessary data compression to save storing
space and to reduce the communication time. Any compression methode is a compromise
between the resulted volume of data and the remained information. The aim is to obtain the
smalest size with the highest information level (Barrera Nunez et al., 2008), (Lorio et al.,
2004), (Wang et al., 2005).

In  order  to  compress  data  there  are  many  approaches  used  in  digital  communications
and  image  compression.  These  may  be  divided  in  two  broad  categories:  lossless  and
lossy techniques.  The first  category keep the signal  information intact.  The second cate‐
gory remove redundant  information from signals  to  achieve a  higher  compression ratio
(Ribeiro et al.,  2004).
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In  recent  years,  the  results  presented  in  scientific  literature  show  that  the  most  used
compression  methods  in  power  quality  are  based  on  wavelet  transform  and  Slantlet
transform. This chapter will provide an overview of their applications for power quality
signals.

2. Data compression using wavelet transform

2.1. Wavelet transform

The wavelet transform ensures a progressive resolution in time-frequency domain, suitable
to track the nonstationary signals dynamics properly. It use a variable window size, wide
for low frequencies and narrow for high frequencies, to achieve a good localization in time
and frequency domains (Ribeiro et al., 2007), (Zhang et al., 2011).

The Continuous Wavelet Transform (CWT) of a signal f (t)∈ L 2 R  is defined as

,( , ) ( ) ( )tCWT f t dtt g
tt g

g

¥

-¥

-
= Yò (1)

where τ is the scale factor, γ is the translation factor and Ψτ,γ is the mother wavelet.

The Fourier analysis decomposes a signal into a sum of harmonics and wavelet analysis into
set of functions called wavelets. A wavelet is a waveform of limited duration, usually irreg‐
ular and asymmetric. These functions are obtained by dilations and translations of a unique
function called mother wavelet Ψτ,γ and the function set (Ψτ,γ) is called the wavelet family
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The Inverse Continuous Wavelet Transform (ICWT) is given as

, 2
1( ) ( , ) ( ) d df t CWT t

C t g
t gt g
t

¥ ¥

Y -¥ -¥

= Yò ò (3)

where CΨ is the normalized constant.

In power quality analysis we work with acquired signals. These are discrete-time signals.
Moreover, the CWT provides a redundant signal reprezentation in continuous-time, because
the initial signal is possible to be reconstructed by a discrete version of CWT. The CWT is
evaluated at dyadic intervals: the factor τ and γ are discretezed as τ=2k, γ=2kn where n,kєZ.
The relation (2) becomes (Dash et al., 2007), (Qian, 2002)
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The wavelet transform is the most used multiresolution analysis (MRA) technique of sig‐
nals. Multiresolutions signal decompositon is based on subbads decomposition using low-
pass filtering and high-pass filtering.

In muliresolution analysis a continuous function x(t) is decomposed as follows

0

0
0

( ) ( ) ( )
j

j j
j

x t A t D t
=

= +å (5)

where

,( ) ( ) ( )j j j k
k

A t c k tj=å (6)

,( ) ( ) ( )j j j k
k

D t d k ty=å (7)

cj(k) are the scaling function coefficients, dj(k) are the wavelet function coefficients, j0 is the
scale, φ(t) is the scaling function, Aj(t) is called approximation at level j and Dj(t) is called the
detail at level j (Azam et al., 2004), (Zhang et al., 2011).

For a given signal x(t) and a three levels wavelet decomposition the relation (5) become
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The decomposition of signal x(t) in A1 and D1 is the first decomposition level. At each de‐
composition level the signal is decomposed into an approximation and a detail.

Each detail Dj reveals details of the signal and each approximation Aj shows corse information.
If the analysed signal contains a high frequency event (for instance, a transient phenomenon),
the magnitude of details Dj associated with the event are significant larger than the rest of the
coefficients. This observation is useful for compressing power quality signals: only the details
Dj associated with the events are retained and all other coefficients are discarded. Moreover,
the approximation coefficient is also kept for signal reconstruction (Santoso et al., 1997).

2.2. Data compression with wavelet transform

A general data compression method based on wavelet decomposition and reconstruction is
shown in Fig. 1. That is a lossy compression method which includes certain steps (Wu et al.,
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2003), (Hamid et al., 2002), (Littler et al., 1999) : first, the signal is decomposed into several
wavelet transform coefficients (WTCs) using the DWT, thresholding of WTCs (useful to ex‐
tract information and remove redundancy) and finally the signal is reconstructed from the
retained WTCs.

Figure 1. A general multi-scale wavelet compression method

One of the methods for the thresholding of WTCs is to set a threshold than only the coeffi‐
cients above threshold are retained. Those below threshold are set to zero and are discarded
(almost 90% of WTCs, some information will be lost). As a result, the amount of stored data
is reduced.

The threshold is calculated based on absolute maximum value of the WTCs as

(1 ) max{ ( ) }S iu D nh = - ´ (9)

where u take values in the range 0≤u≤1 and s is the associated scale.

Thresholding of WTCs is given by
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and the retained WTCs are stored together along with their temporal positions.

To evaluate the performance of signal compression are used the compression ratio (CR) and
the normalized mean-square error (NMSE).

The data compression ratio is defined by

o

c

S
CR

S
= (11)

where So is the size of original file and Sc is the size of compressed file.
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The quality of reconstructed signal is evaluated using the normalized mean-square error
which is defined as

2

2

( ) ( )
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X n

-
= (12)

where X(n) is the original signal and Xc(n) is the compressed signal. A low value of NMSE
corresponds to a small error between the original and reconstructed signal.

In the sections 2.2.1-2.2.2 is tested the performances of the general multi-scale wavelet com‐
pression method for transient phenomena and voltage swell. The influence of the order of
Daubechies scaling function and the number of decomposition levels on data compression
are analysed. The signals are simulated in Matlab environment. The details and the results
are presented below.

2.2.1. Transient phenomena

Transient phenomena are sudden and short-duration change in the steady-state condition of
the voltage, current or both. These are classified in two categories: impulsive and oscillatory
transient (Fig. 2). The first category has exponential rise and falling fronts and it is character‐
ized by magnitude, rise time (the time required for a signal to rise from 10% to 90% of final
value), decay time (the time until a signal is greater than ½ from its magnitude) and its spec‐
tral content. The second category is characterized by magnitude, decay time and predomi‐
nant frequence (Dungan et al., 2004), (Găşpăresc, 2011).

 

Figure 2. Transient phenomena
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Fig. 3 shows the first test signal, an impulsive transient with magnitude of 1000 V superim‐
posed on a sinusoidal signal with amplitude of 230 V and frequency of 50 Hz, corrupted
with additive white noise. The sampling rate is 20 kHz. The signal is decomposed into three,
four and five levels based on wavelet decomposition (Daubechies scaling function of order
3rd, 4th and 5th is used). Than the signal it is compressed using the threshold values 1, 5, 7
and 10. The results are presented in table 1.

Figure 3. Impulsive transient compression with threshold value 1
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Signal Ψ(t) Levels ηS NMSE [%] CR

Impulsive

transient

Db3 3 1 5.5154e-006 1.47

Db3 3 5 2.7151e-005 6.54

Db3 3 7 2.7827e-005 7.09

Db3 3 10 2.6502e-005 7.14

Db3 4 5 2.9240e-005 10.7

Db3 4 7 3.1081e-005 11.17

Db3 4 10 3.1515e-005 11.7

Db3 5 5 3.6143e-005 9.66

Db3 5 7 4.0148e-005 12.42

Db3 5 10 5.6165e-005 15.04

Db4 3 5 2.9386e-005 6.94

Db4 3 7 2.9246e-005 7.14

Db4 3 10 2.9481e-005 7.3

Db4 4 5 3.2845e-005 10.47

Db4 4 7 3.0742e-005 10.93

Db4 4 10 3.1029e-005 11.05

Db5 4 5 3.0875e-005 9.85

Db5 4 7 2.8626e-005 10.36

Db5 4 10 3.1029e-005 10.69

Table 1. Compression results for impulsive transient

The initial value of threshold is 1. The size of the WTCs obtained after thresholding using
the relations (9) and (10) is reduced as follows (first line from table 1): the coefficient D1 at
scale 1 has 2*303=606 samples (303 samples nonzero and their temporal positions), the coef‐
ficient D2 at scale 2 has 2*167=334 samples, the coefficient D3 has 2*85=170 samples and the
coefficient A3 has 250 samples. The compressed signal has 1360 samples and the initial test
signal has 2000. The compression ratio is 2000/1360=1.47.

From table 1 can be observed that the highest compression rate is 15.04. This value is ob‐
tained for Daubechies scaling function of order 3 (Db3), 5 levels of decomposition and the
threshold value of 10. The order of NMSE error is 10-6.

If the threshold value is greater than or equal to 5 (Fig. 4), the signal distortions start to rise
especially in the area of the overlapped impulsive transient. The enlargement of threshold
leads to more and more information discarded and NMSE grow up.
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Figure 4. Impulsive transient compression with threshold value 5

Fig. 5 shows the second test signal, an oscillatory transient superimposed on a sinusoidal
signal. The signal parameters and the decomposition parameters have the same values as
the first test signal. The results are presented in table 2.

From table 2 the highest compression rate is 7.84. The value is lower than for the first test
signal. This compression rate is obtained using the same settings: Daubechies scaling func‐
tion of order 3 (Db3), 5 levels of decomposition and the threshold value of 10. The order of
NMSE error is 10-5.

Again, if the threshold value is greater than or equal to 5 (Fig. 6), the signal distortions start
to rise especially in the area of the overlapped oscillatory transient and NMSE grow up too.

Power Quality Issues8



Figure 5. Oscillatory transient compression with threshold value 1

Signal Ψ(t) Levels ηS NMSE [%] CR

Oscillatory transient

Db3 3 1 4.7257e-006 1.35

Db3 3 5 2.9394e-005 4.85

Db3 3 7 2.6282e-005 5.02

Db3 3 10 3.7811e-005 5.21

Db3 4 5 2.9285e-005 6.31

Db3 4 7 3.3209e-005 6.6

Db3 4 10 4.5275e-005 7.07

Db3 5 5 3.3699e-005 6.08

Db3 5 7 4.4197e-005 6.69

Db3 5 10 6.7879e-005 8.3

Db4 3 5 2.8067e-005 5.05

Db4 3 7 3.0176e-005 5.18

Db4 3 10 4.0081e-005 5.43

Db4 4 5 2.9924e-005 6.47

Db4 4 7 3,2733e-005 6.87

Db4 4 10 4.2280e-005 7.38

Db5 4 5 2,9223e-005 6.89

Db5 4 7 3.6702e-005 7.22

Db5 4 10 4.7778e-005 7.84

Table 2. Compression results for oscillatory transient
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Figure 6. Oscillatory transient compression with threshold value 5

2.2.2. Voltage swell

Fig. 7 shows the third test signal, a swell with magnitude of 375 V superimposed on a sinus‐
oidal signal. The rest of signal parameters and the decomposition parameters have the same
values as the previous test signals. The results are presented in table 3.
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Figure 7. Voltage swell compression with threshold value 1

Signal Ψ(t) Levels ηS NMSE [%] CR

Voltage sag

Db3 3 1 3.6484e-006 1.21
Db3 3 5 3.3454e-005 6.9
Db3 3 7 3.4048e-005 7.14
Db3 3 10 3.5194e-005 7.19
Db3 4 5 3.7718e-005 10,47
Db3 4 7 4.0528e-005 11.17
Db3 4 10 4.1284e-005 11.7
Db3 5 5 3.7621e-005 9.05
Db3 5 7 4.4344e-005 10.47
Db3 5 10 5.8101e-005 13.42
Db4 3 5 3.4595e-005 6.62
Db4 3 7 3.2270e-005 6.99
Db4 3 10 3.5533e-005 7.14
Db4 4 5 3.8236e-006 9.3
Db4 4 7 6.4098e-006 10.47
Db4 4 10 3.9005e-005 10.81
Db5 4 5 3.7183e-005 9.13
Db5 4 7 3.9994e-0056 9.95
Db5 4 10 4.1631e-005 10.36

Table 3. Compression results for swell
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Figure 8. Volatge swell compression with threshold value 5

From table 3 the highest compression rate is 13.42. The value is higher than for the second
test signal. This compression rate is obtained using the same settings as for previous test sig‐
nals: Daubechies scaling function of order 3 (Db3), 5 levels of decomposition and the thresh‐
old value of 10. The order of NMSE error is 10-5.

Again, if the threshold value is greater than or equal to 5 (Fig. 8), the signal distortions start
to rise especially in the area of the overlapped disturbance and NMSE grow up too.

A few conclusions are described below:

• using 5 levels of decomposition, Daubechies scaling function of order 3 (Db3) and 5 (Db5)
is obtained the highest compression rate;

• for a higher threshold value the compression rate will be higher, but NMSE and signal
distorsions grow up;

• for different types of disturbances using the same settings the compression rate is different.

2.3. New wavelet-based data compression technique using decimation and spline
interpolation

This chapter describes a new technique proposed for signal compression based on wavelet
decomposition and spline interpolation method (Găşpăresc, 2010). It follows to obtain a
higher compression ratio than the general data compression method used for the test signals
analysed before, where for a given signal it is applied a signal decomposition and than
thresholding of WTCs Di, i=1,...,N. Using this method the coefficient AN is not thresholded

Power Quality Issues12



and it has the largest number of samples from all the coefficients of signal decomposition. In
order to obtain a higher sample rate this coefficient is decimated with a decimation factor Fd
and at signal reconstruction will be interpolated. The cost is the increase of NMSE error.

Given an interval [a,b] and a divizion ∆:a=x0<x1<...<xn=b, a function S : [a,b]→R is called cubic
spline interpolation function if this function meets the next conditions:

• S is a polynomial of degree at most 3 on any interval (xk,xk+1), k=1,…,N (relation 13);

• SєC2([a,b]);

• S(xi)=f(xi), iє(o,1,..., n), where f(x) is the interpolated function.

2 3
1( ) , [ , ]i i i i i iS x a b x c x d x x x x-= + + + " Î (13)

The proposed technique is tested using an impulsive transient with magnitude of 700 V su‐
perimposed on a sinusoidal signal (Fig. 9-10). The sampling rate is 5 MHz in this case. The
signal is decomposed using a Daubechies scaling function of order 4 and 5 and respectively
4 levels of decomposition. Than the signal it is compressed using a threshold (Table 4).

Figure 9. Impulsive transient compression with decimation factor Fd=2

Power Quality Data Compression
http://dx.doi.org/10.5772/53059

13



Figure 10. Impulsive transient compression with decimation factor Fd=4

Signal Ψ(t) ηS Fd NMSE [%] CRa

Impulsive

transient

Db4 3 2 2.2901e-004 32

Db5 3 2 2.2901e-004 32

Db4 3 4 9.8005e-004 63.99

Db5 3 4 2.2830e-004 63.98

Table 4. Compression results for impulsive transient using the proposed technique

From table 4 can be observed that the highest compression ratio is 63.99. This value is ob‐
tained for Daubechies scaling function of order 4 (Db4), 4 levels of decomposition, threshold
value of 3 and the decimation factor value of 4. The order of NMSE error is 10-4. The resulted
compresion ratio is 4 times higher than the values from the prevoius tables, but the NMSE
error is higher also.

This proposed technique is efficient especially for signals acquired at high sample rates,
when are acquired a sufficient number of samples of the disturbance overlapped on the
power supply signal. If this number is small, after the decimation of coefficient AN are losed
disturbance details which cannot be reconstructed by interpolation and the reconstructed
signal will contain distortions on the disturbance area.

Power Quality Issues14



3. Data compression using slantlet transform

3.1. Slantlet transform

The Slantlet transform (SLT) is a relatively new multiresolution technique base on DWT. In
fact, it is an orthogonal DWT with two zero moments and compared to DWT provides better
time localization (Selesnick, 1999), (Panda et al., 2002), (Duda, 2008).

In (Panda et al., 2002) is proposed a new approach for power quality data compression
based on SLT. The technique is compared with the discrete cosine transform (DCT) and the
discrete wavelet transform (DWT) using various types of power quality disturbances (im‐
pulse, sag, swell, harmonics, momentary interruption, oscillatory transient, voltage flicker).

In order to compare DWT and SLT is considered a two-scale iterated filterbank (Fig. 11) and
a two-scale slantlet filterbank (Fig. 12). First three blocks from Fig. 12 are not products. The
filters have shorter length and the difference grows with the number of stages. The time lo‐
calization is improved but SLT filterbank is less frequency selective.

Figure 11. Two-scale iterated filterbank

Figure 12. Two-scale slantlet filterbank
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The SLT is based on the principle of designing different filters for different scales unlike iter‐
ated filterbank approaches for DWT. In (Selesnick, 1999) are described the basis for filter‐
bank design, polynomial expresions to determine the filter coefficients and an algorithm to
calculate the transform.

The filter coefficients are
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Table 5 displays the test results obtained using DCT, DWT and SLT (Panda et al., 2002). The
compression performance is analysed based on percentage of energy retained (relation 15)
and mean square error (MSE) in decibels (relation 16). The compression rate is 10. The re‐
sults shows improved values for energy retained (near 4%) and MSEs.

 norm of the retained SLT coefficients 
                  after thresholding 100
Vector norm of the original SLT coefficients

Vectoré ù
ê ú
ê ú ´
ê ú
ê ú
ë û

(15)
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Signal
Energy Retained [%] MSE [dB]

DCT DWT SLT DCT DWT SLT

Impulse 88.01 91.13 94.01 -10.67 -13.54 -16.98

Sag 87.81 90.01 93.20 -10.08 -13.04 -17.54

Swell 89.46 91.01 94.44 -11.88 -13.77 -17.95

Harmonics 87.69 90.89 93.14 -11.04 -13.31 -17.68

Momentary Interruption 90.44 91.10 94.11 -12.27 -15.89 -18.79

Oscillatory Transient 91.63 90.88 95.04 -12.98 -14.45 -19.07

Voltage Flicker 90.75 91.34 95.18 -10.76 -14.74 -19.78

Table 5. Test results obtained using DCT, DWT and SLT (CR=10)

4. Conclusions

The research results on data compression using DWT presented in this work show the opti‐
mal order of Daubechies scaling function recommended in order to achieve the best com‐
pression ratio for three types of power quality disturbances and the necessary number of
decomposition levels. An compression algorithm base on spline interpolation method that
allows higher compression rates is also presented.

The Slantlet transform is analysed as a new approach for power quality data compression.
The compression performance using SLT was compared based on percentage of energy re‐
tained and mean square error in decibels. The computer simulation tests using various pow‐
er quality disturbances shows that SLT provides a more accurate reconstruction of the
original signal than DCT and DWT.
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