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1. Introduction

Frederick Griffith reported the discovery of transformation in 1928 [1]. Since a harmless strain
of Streptococcus pneumoniae was altered to a virulent one by exposure to heat-killed virulent
strains in mice, Griffice hypothesized that there was a transforming principle in the heat-killed
strain. It took sixteen years to indentify the nature of the transforming principle as a DNA
fragment released from virulent strains and integrated into the genome of a harmless strain
[2]. Such an uptake and incorporation of DNA by bacteria was named transformation.
Remarkably, an epoch-making technology in the form of artificial transformation protocol for
the model bacterium Escherichia coli was established by Mandel and Higa in 1970 [3], which
stimulated the development of artificial genetic transformation systems in yeasts, animals and
plants. In plants, genetic transformation is a powerful tool for elucidating the functions and
regulatory mechanisms of genes involved in various physiological events, and special
attention has been paid to plant improvements affecting food security, human health, the
environment and conservation of biodiversity. For instance, researchers have focused on the
creation of organisms that efficiently produce biofuels and medically functional materials or
carry stress tolerance in the face of uncertain environmental conditions [4-6].

Although the first success in the creation of transgenic mouse was carried out by injecting the
rat growth hormone gene into a mouse embryo in 1982 [7], the protocol for artificial genetic
transformation in plants was established earlier than that in animals. Following the discovery
of the soil plant pathogen Agrobacterium tumefaciens, which is responsible for producing plant
tumors, in 1907 [8], it was found that the tumor-inducing agent is the Ti plasmid containing
T-DNA, a particular DNA segment containing tumor-producing genes that are transferred
into the nuclear genome of infected cells [9]. By replacing tumor-producing genes by a gene
of interest within the T-DNA region, infection of A. tumefaciens carrying a modified Ti plasmid
results in insertion of a DNA fragment containing the desired genes into the genomes of plants
by genetic recombination. Since the report of this protocol in the early 1980s [10,11], transfor‐
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mation mediated by A. tumefaciens has become the most commonly used method to transmit
DNA fragment into higher plants [12].

Since not all plant cells are susceptible to infection by A. tumefaciens, other methods were
developed and are available in plants. Particle bombardment [13], which is also referred to as
microprojectile bombardment, particle gun or biolistics, makes use of DNA-coated gold
particles, which enables the transient and stable transformation of almost any type of cell,
regardless of rigidity of the cell wall, and is thus extensively used for land plants. For proto‐
plasts, electroporation is well employed, for which a high-voltage electrical pulse temporarily
disturbs the phospholipid bilayer of the plasma membrane, allowing cells to take up plasmid
DNAs [14,15]. In addition, the polyethylene glycol (PEG)-mediated transformation system is
also thought to affect the plasma membrane and induce the uptake of DNAs into cells [15,16]
and is almost exclusively applied with the moss Physcomitrella patens and liverwort Marchantia
polymorpha [17,18]. Therefore, several kinds of genetic transformation methods are now
available in land green plants.

Seaweeds are photosynthetic macroalgae, the majority of which live in the sea, and are usually
divided into green, red and brown algae. Traditionally, all classes of seaweeds are known as
human foods especially in Asian countries; for instance, red algae are known as Nori and
brown algae are called Konbu and Wakame in Japan. In addition, red and brown algae are
utilized as the sources of industrially and medically valuable compounds such as phycoery‐
thrin, n-3 polyunsaturated fatty acids, porphyran, ager and carrageenan from red algae, and
fucoxantine, fucoidan and alginate from brown algae [19-22]. Thus, to make new strains
carrying advantageous characteristics benefiting industry and medicine, researchers have
worked hard since the early 1990s to establish methods of genetic transformation in seaweeds
[20,23,24]. However, the process is very difficult, and most of the early studies were reported
in conference abstracts without the accompanying manuscript publication [25-28]. This
situation has hampered us from gaining an understanding of gene functions in various
physiological regulations and also a utilization of seaweeds in biotechnological applications.

Transformation can be divided into genetic (stable) and transient transformations under the
control of the genes introduced into cells. In genetic transformation, genes introduced by
genetic recombination are maintained in the genome through generations of cells, whereas in
transient transformation, rapid loss of introduced foreign genes is usually observed. Estab‐
lishing the genetic transformation system requires four basal techniques: an efficient gene
transfer system, an efficient expression system for foreign genes, an integration and targeting
system to deliver the foreign gene into the genome, and a selection system for transformed
cells. It is notable that the transient transformation system is completed by the first two of the
four required systems. In this respect, the development of an efficient and reproducible
transient transformation system is the most critical step to establishing a genetic transforma‐
tion system in seaweeds.

The current progress in establishing of both transient and genetic transformation systems in
macroalgae is reviewed here. Although high-quality review articles for algal transformation
have been published previously [20,23,24], I believe addressing the recent activity in seaweed
transformation provides valuable information for seaweed molecular biologists and breeding
scientists. Since considerable technical improvement was recently made in red seaweeds
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[29,30], I focus here on the current progress in red algal transient transformation with sum‐
marizing pioneer and recent studies related to seaweed genetic transformation.

2. Transformation in red seaweeds

2.1. Pioneer studies for transient transformation

As far as I know, Donald P. Cheney is the pioneer in researching red algal transformation. He
and his colleague performed transient transformation of the red alga Kappaphycus alvarezii
using particle bombardment [25], which was the first report about the transient transformation
of seaweeds (Table 1). In this case, the Escherichia coli uidA gene encoding β-glucuronidase
(GUS) was expressed as a reporter under direction of the cauliflower mosaic virus (CaMV) 35S
promoter (CaMV 35S-GUS gene). Since the GUS expression can be visualized as a blue color
following treatment with X-gluc (5-bromo-4-chloro-3-indolyl-β-D-glucuronide) and also be
quantified by fluorometric analysis [31,32], this reporter gene is widely used in land green
plants having no background of the GUS activity [33,34]. In addition, the CaMV 35S promoter
is heterologously used in land green plants as a strong constitutive and non-tissue-specific
transcriptional regulator [35,36]. Therefore, it is a natural choice for the selection of the
CaMV35S-GUS gene by pioneers for initial trials of seaweed transformation.

To date, studies have been mainly focused on Porphyra species because of their economical
values. As shown in Table 1, expression of the CaMV 35S-GUS gene was previously observed
in P. miniata, P. tenera and P. yezoensis [37-42], all of which were performed by electoroporation
using protoplasts. Kuang et al. [38] also tested the particle bombardment of the CaMV 35S-
GUS gene in P. yezoensis and got positive results. Moreover, the availability of mammalian-
type simian virus 40 (SV40) promoter was reported to express the E. coli lacZ reporter gene,
encoding β-galactosidase cleaving colorless substrate X-gal (5-bromo-4-chloro-3-indolyl-β-
galactopyranoside) to produce a blue insoluble product [43], in P. haitanensis, Gracilaria
chagii and K. alvarezii by electroporation or particle bombardment [44,45].

2.2. Recent improvement of the transient transformation system in Porphyra

As noted above, pioneer experiments of red algal transient transformation were performed
using plant viral CaMV 35S RNA and animal viral SV40 promoters in combination with GUS
and lacZ reporter genes (Table 1). The CaMV 35S and SV40 promoters are typical eukaryotic
class II promoters with a TATA box and thus are generally employed to drive transgenes in
dicot plant and animal cells, respectively [46,47]. However, we have found that the TATA box
is not usually found in the core promoters of P. yezoensis genes (unpublished observation), and
we thus proposed that there were differences in the promoter structure and transcriptional
regulation of protein-coding genes between red algae and dicot plants. Indeed, we recently
observed quite low activity of the CaMV 35S promoter and the GUS reporter gene in P.
yezoensis gametophytec cells [29,30,48]. These observations are completely opposite from the
results in previous reports using the CaMV 35S promoter [25,37-41]. As a result, the transient
transformation system in red seaweeds has recently been improved by resolving this problem.
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Species Status of

expression

Gene transfer method Promoter Marker or Reporter Ref.

Kappaphycus alvarezii transient particle bombardment CaMV 35S GUS [25]

Porphyra miniata transient electroporation CaMV 35S GUS [37]

Porphyra yezoensis transient Electroporation

particle bombardment

CaMV 35S GUS [38]

Porphyra tenera transient electroporation CaMV 35S GUS [39]

Porphyra yezoensis transient electroporation rbcS GUS [40]

Porphyra yezoensis transient electroporation CaMV 35S GUS [41]

Porphyra yezoensis transient electroporation CaMV 35S

β-tubulin

GUS [42]

Gracilaria changii transient particle bombardment SV40 lacZ [44]

Porphyra haitanensis transient SV40 CAT [128]

Porphyra yezoensis transient electriporation SV40 CAT, GUS [129]

Porphyra yezoensis transient electroporation Rubisco GUS, sGFP(S65T) [130]

Porphyra yezoensis transient particle bombardment CaMV 35S

PyGAPDH

PyGUS [48]

Porphyra yezoensis transient particle bombardment PyAct1 PyGUS [66]

Porphyra yezoensis transient particle bombardment PyAct1 AmCFP [70]

Porphyra yezoensis transient particle bombardment PyAct1 AmCFP, ZsGFP,

ZsYFP, sGFP(S65T)

[71]

Porphyra tenera

Porphyra yezoensis

transient particle bombardment PtHSP70

PyGAPDH

PyGUS [85]

Porphyra species*

Bangia fuscopurpurea

transient particle bombardment PyAct1 PyGUS

sGFP(S65T)

[86]

Porphyra species*

Bangia fuscopurpurea

transient particle bombardment PtHSP70 PyGUS [87]

Porphyra yezoensis stable Agrobacterium-mediated

gene transfer

CaMV 35S GUS [26]

Porphyra leucostica stable ekectroporation CaMV 35S lacZ [27]

Porphyra yezoensis stable Agrobacterium-mediated

gene transfer

(unknown) (unknown) [28]

Kappaphycus alvarezii stable particle bombardment SV40 lacZ [45]

Porphyra haitanensis stable glass bead agitation SV40 lacZ

EGFP

[131]

Gracilaria changii stable particle bombardment SV40 lacZ [91]

Gracilaria gracilis stable particle bombardment SV40 lacZ [92]

*Porphyra species used are P. yezoensis, P. tenera, P. okamurae, P. onoi, P. variegate and P. pseudolinearis.

Table 1. Transformation in red seaweeds.
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2.2.1. Optimization of codon usage in the reporter gene

Inefficient expression of foreign genes in the green alga Chlamydomonas reinhardtii is often due
to the incompatibility of the codon usage in the gene’s coding regions [49-51]. Expressed
sequence tag (EST) analysis of P. yezoensis reveals that the codons in P. yezoensis nuclear genes
frequently contain G and C residues especially in their third letters, by which means the GC
content reaches a high of 65.2% [52]. Since bacterial GUS and lacZ reporter genes have AT-rich
codons, the incompatibility of codon usage, which generally inhibits the effective use of
transfer RNA by rarely used codons in the host cells, thus decreasing the efficiency of the
translation [53], might be responsible for the poor translation efficiency of foreign genes in P.
yezoensis cells. It is therefore possible that modification of codon usage in the GUS gene would
enable the efficient expression of this gene in P. yezoensis cells.

Accordingly, the codon usage of the GUS reporter gene was adjusted to that in the nuclear
genes of P. yezoensis by introducing silent mutations [48], by which unfavorable or rare codons
in the GUS reporter gene were exchanged for favorable ones without affecting amino acid
sequences. The resultant artificially codon-optimized GUS gene was designated PyGUS, and
its GC content was increased from 52.3% to 66.6% [48]. When the PyGUS gene directed by the
CaMV 35S promoter was introduced into P. yezoensis gametophytic cells by particle bombard‐
ment, low but significant expression of the PyGUS gene was observed by histochemical
detection and GUS activity test, indicating enhancement of the expression level of the GUS
reporter gene [29,30,48]. Optimization of the codon usage of the reporter gene is therefore one
of the important factors for successful expression in P. yezoensis cells [29,30,48].

2.2.2. Employment of endogenous strong promoters

The CaMV 35S promoter has very low activity in cells of green microalgae such as Dunaliella
salina [54], Chlorella kessleri [55] and Chlorella vulgaris [56] and no activity in C. reinhardtii cells
[57-59]. Thus, a low level of PyGUS expression under the direction of the CaMV 35S promoter
is likely to be caused by the low activity of this promoter in P. yezoensis cells. A hint to
overcoming this problem was that employment of strong endogenous promoters such as the
β-Tub, RbcS2 and Hsp70 promoters results in the efficient expression of foreign genes in
microalgae [60-65]. Therefore, it is likely that efficient expression of the PyGUS reporter gene
in P. yezoensis cells is caused by the recruitment of endogenous strong promoters.

By comparison with steady-state expression levels by reverse transcription-polymerase chain
reaction (PCR), we found two genes strongly expressed in P. yezoensis: genes encoding
glyceraldehyde-3-phosphate dehydrogenase (PyGAPDH) and actin 1 (PyAct1) [29]. When the
PyGUS gene fused with the 5’ upstream regions of these genes were introduced into gameto‐
phytic cells by particle bombardment, cells expressing the reporter gene and GUS enzymatic
activity were dramatically increased [48,66]. These results indicate that employment of
endogenous strong promoters is another important factor necessary for high-level expression
of the reporter gene in P. yezoensis cells. In addition, the original GUS gene was not activated
by PyGAPDH or PyAct1 promoter [29,30,48], demonstrating that the PyGUS gene and endog‐
enous strong promoter have a synergistic effect on the efficiency of the expression in P.
yezoensis cells (Figure 1A). Therefore, the combination of endogenous strong promoters with
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codon optimized reporter genes is critical for successful transient transformation in Porphyra
species [29,30]. The established procedure of transient transformation is schematically
represented in Figure 2.

2.2.3. Application of the transient transformation for using fluorescent proteins

The  GUS  reporter  gene  is  usually  used  to  monitor  gene  expression  in  planta;  however,
visualization of the reporter products requires cell killing. Reporters that function in liv‐
ing cells have also been established to date with fluorescent proteins used most common‐
ly.  The  green  fluorescent  protein  (GFP)  has  the  advantage  over  other  reporters  for
monitoring subcellular localization of proteins in living cells, because its fluorescence can
be  visualized  without  additional  substrates  or  cofactors  [67].  At  present,  there  are  GFP
variants  with  non-overlapping emission  spectra  such as  cyan fluorescent  protein  (CFP),
yellow  fluorescent  protein  (YFP)  and  red  fluorescent  protein,  which  allows  multicolor
imaging in cells [68,69].

Until  recently,  there  was  no  report  about  the  successful  expression  of  fluorescent  pro‐
teins in seaweeds.  However,  based on an efficient  transient  transformation system in P.
yezoensis,  fluorescent  reporter  systems  have  recently  been  established  in  P.  yezoensis
[29,30,70,71].  The  humanized  fluorescent  protein  genes,  AmCFP,  ZsGFP,  and  ZsYFP
(Clontech) and the plant-adapted GFP(S65T) [72],  the GC contents of  which are as high
as 63.7%, 62.8%, 61.9% and 61.4%, respectively, were strongly expressed in gametophytic
cells under the direction of the PyAct1 promoter using the particle bombardment method
[71] (see Figure 1B).

The analysis of subcellular localization of cellular molecules was available using humanized
and plant-adapted fluorescent reporters. The first successful attempt at achieving this process
was to monitor the plasma membrane localization of phosphoinositides in P. yezoensis [70].
Phosphoinositides (PIs), whose inositol ring has hydroxyl groups at positions D3, D4 and D5
for phosphorylation, constitute a family of structurally related lipids, PtdIns-monophosphates
[PtdIns3P, PtdIns4P and PtdIns5P], PtdIns-bisphosphates [PtdIns(3,4)P2, PtdIns(3,5)P2 and
PtdIns(4,5)P2] and PtdIns-trisphosphate [PtdIns(3,4,5)P3], all of which are detectable in plants
except for PtdIns(3,4,5)P3 [73,74]. Although the PIs are a minority among membrane phos‐
pholipids, they play important roles in regulating multiple processes of development and cell
responses to environmental stimuli in land plants and green algae [74,75]. Recently, Li et al.
[76,77] demonstrated that PIs are involved in the establishment of cell polarity in P. yezoensis
monospores. The Pleckstrin homology (PH) domain, a PI-binding module, each part of which
has individual substrate specificity, is usually used to monitor PIs in vivo by fusion with a
fluorescent protein [78-80]. For instance, the PH domains from human phospholipase Cδ1
(PLCδ1) are employed for the detection of PtdIns(4,5)P2 [81], whereas that from the v-akt
murine thymoma viral oncogene homolog 1 (Akt1) has dual specificity in the detection of both
PtdIns(3,4)P2 and PtdIns(3,4,5)P3 [82]. Because of this substrate specificity, we were able to
visualize PtdIns(3,4)P2 and PtdIns(4,5)P2 at the plasma membrane with humanized AmCFP
and ZsGFP fused to the PH domains from PLCδ1 and Akt1 via the direction of the PyAct1
promoter [70].
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Figure 1. Efficient expression of PyGUS and fluorescent proteins by the transeint transformation with circular expression
plasmids in P. yezoensis gametophytic cells. (A) Expression of the codon-optimized PyGUS reporter gene under the direc‐
tion of the actin 1 (PyAct1) promoter. Blue histochemically stained cells are PyGUS expression cells. Scale bar corresponds to
100 μm. (B) Expression of humanized AmCFP and plant-adapted sGFP(S65T). Gametophytic cells transiently transformed
with expression plasminds containng AmCFP or sGFP(S65T) gene under the control of the PyAct1 promoter. Left and right
panels show bright field and fluorescence images, respectively. Scale bar corresponds to 5 μm.

Figure 2. The established procedure of transeient transformation in P. yezoensis. A circular expression plasmid is bom‐
barded into P. yezoensis gametophytic cells using the Bio-Rad PDS-1000/He after coating of gold particles with the
plasmid. Expression of the reporter gene is observed after cultivation of the bombareded gametophyte under dark for
two days; for PyGUS reporter gene, histochemical staining with X-gluc solution and fluorometric analysis of enzymatic
activity are performed; for fluorescent reporter genes, bombarded sanples are examined with fluorescent microscopy.
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Moreover,  subcellular  localization  of  transcription  factors  was  also  visualized  in  P.  ye‐
zoensis.  When complete  open reading frames (ORFs)  of  transcription elongation factor  1
(PyElf1)  and  multiprotein  bridging  factor  1  (PyMBF1)  from  P.  yezoensis  were  fused  to
AmCFP or ZsGFP, nuclear localization of these fusion proteins was observed in gameto‐
phytic cells, which was confirmed by overlapping of fluorescent signals with SYBR Gold
staining of the nucleus [71]

With the successfull visualization of subcellular localization of cellular molecules, the transient
transformation system developed in P. yezoensis appearst to be powerful tool to analyze
functions of genes and cellular components [29,30].

2.2.4. Applicability of the P. yezoensis transient transformation system in other red seaweeds

As described above, both the adjustment of codon usage of the reporter gene according
to algal preference and the employment of the strong endogenous promoters are impor‐
tant for providing highly efficient and reproducible expression of the reporter gene in P.
yezoensis.  In  addition  to  Bangiophyceae  like  Porphyra  species,  Florideophyceae  are  also
known, including a number of industrially important species such as Gracilaria  and Geli‐
dium  as sources of agar and Chondrus  and Kappaphycus  as sources of carrageenan. Thus,
the establishment of a genetic manipulation system for both Bangiophyceae and Florideo‐
phyceae other than P. yezoensis is awaited. EST analysis of P. haitanensis revealed that the
GC content of the ORFs in this alga was as high as that in P. yezoensis,  and analysis of
the GAPDH  gene from a Florideophycean alga Chondrus crispus  showed a high GC con‐
tent (approximately 60%) in the coding region [83,84], which is consistent with the codon
preference  in  P.  yezoensis.  Since  efficient  expression of  the  GAPDH-PyGUS  gene  has  re‐
cently been confirmed in P. tenera  [85], the applicability of the P. yezoensis  transient gene
expression  system  in  other  red  seaweeds  is  expected.  Indeed,  using  the  PyGUS  and
sGFP(S65T)  reporter  genes  under  the  direction of  the  PyAct1  promoter,  efficient  expres‐
sion of  PyGUS  and sGFP(S65T)  genes  was observed in  Bangiophyceae including P.  ten‐
era,  P.  okamurae,  P.  psedolinearis  and  Bangia  fuscopurpurea,  although  the  expression
efficiency  varied  among  species  [86].  Thus,  the  transient  transformation  system  devel‐
oped in P. yezoensis is widely applicable in Bangiophycean red algae [29,30,86].

No expression of the reporter genes was seen in Florideophyceae [29,30,86]. Since the availa‐
bility of the P. yezoensis promoter is responsible for this deficiency in gene expression, it is
important to employ the 5’ upstream region of the suitable endogenous gene from Florideo‐
phycean algae. Alternatively, it is possible that the efficiency of plasmid transfer by bombard‐
ment parameters is reduced by the cell wall and thus the size of the gold particles, target
distance, acceleration pressure and/or amount of DNA per bombardment should be adjusted.

Taken together, PyGUS and sGFP(S65T) genes act synergistically with the PyAct1 promoter as
a heterologous promoter for transient transformation in Bangiophycean algae. Recently, the
same synergistic effect was found in P. tenera; that is, Son et al. [85] clearly indicated that the
heat shock protein 70 (PtHSP70) promoter from P. tenera can activate the PyGUS gene in
gametophytic cells of this alga. Moreover, the PtHSP70-PyGUS gene was expressed in P.
yezoensis, P. okamurae, P. psedolinearis and B. fuscopurpurea [85,87]. These findings are consistent
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with the importance of two critical factors for transient transformation in red seaweeds,
adjustment of the codon usage in reporter genes and employment of a strong endogenous
promoter.

The other important message gleaned from this experimental data is the efficient heterologous
activation of PyGAPDH and PtHSP70 promoters in P. tenera and P. yezoensis, respectively [85,
87]. For the genetic transformation, the target site for recombination is usually determined by
the DNA sequence of genes desired for disruption or modification. Thus, it is better to exclude
a possibility of homologous recombination at the DNA region corresponding to the promoter
sequence used for expression of the reporter gene that is usually sandwiched between two
different DNA sequences from the objective gene or its flanking regions. To avoid incorrect
recombination at the promoter region, it is critical to employ heterologous promoters, whose
sequence has low homology to the genome sequence of the host, to direct the expression of
reporter genes. It is therefore possible that PyGAPDH and PtHSP70 promoters are useful for
genetic transformation in P. tenera and P. yezoensis, respectively. The number of promoters
acting for heterologous reporter gene expression in red algae must be increased to develop a
sophisticated system for red algal genetic transformation.

2.3. Towards genetic transformation in red seaweeds

The successful genetic transformation in red alga has been established only in unicellular algae
[20,88]. The first report described chloroplast transformation in the unicellular red alga
Porphyridium sp. through integration of the gene encoding AHAS(W492S) into the chloroplast
genome by homologous recombination, resulting in sulfometuron methyl (SMM) resistance
at a high frequency in SMM-resistant colonies [89]. The next report was of stable nuclear
transformation in the unicellular red alga Cyanidioschyzon merolae, for which the uracil
auxotrophic mutant lacking the URA5.3 gene was used for the genetic background to isolate
mutants with uracil prototrophic by employing the wild-type URA5.3 gene fragment as a
selection maker [90].

Table 1 shows preliminary experiments with red seaweeds. The first was by Cheney et al. [26],
who introduced the CaMV 35S-GUS and CaMV 35S-GFP genes in P. yezoensis genome via an
Agrobacterium-mediated transformation system. In addition, they transformed P. yezoensis with
a bacterial nitroreductase gene via an Agrobacterium-mediated method [28] and P. leucosticte
monospores with an unknown gene by electroporation [27]. However, these reports appeared
on conference abstracts and thus details of experimental procedures are unknown. In related
work, the genetic transformation of Gracilaria species was recently reported [91,92], in which
integration of the SV40-lacZ gene was checked by PCR using genomic DNAs prepared from
particle-bombarded seaweeds; however, selection of transformed cells was not performed.
Taken together, these preliminary experiments are not enough to conclude the establishment
of genetic transformation in red seaweeds, meaning that the genetic transformation system
has not yet been fully established in red macroalgae.

As  mentioned  above,  procedures  of  integration  and  targeting  of  foreign  genes  into  the
genome and selection of transformed cells must be developed for establishing the genetic
transformation  system,  although  other  requirements  such  as  an  efficient  gene  transfer

Current Advances in Seaweed Transformation
http://dx.doi.org/10.5772/52978

331



system and an efficient expression system for foreign genes have been resolved by devel‐
oping the transient transformation system in Bangiophyceae [29,30]. Regarding the unre‐
solved points,  knowledge about  the selection of  transformed cells  is  now accumulating.
Selection  marker  genes  are  required  to  distinguish  between transformed cells  and non-
transformed  cells,  since  successful  integration  of  a  foreign  gene  into  the  host  genome
usually  occur  in  only  a  small  percentage  of  transfected  cells.  These  genes  confer  new
traits to any transformed target strain of a certain species, thus enabling the transformed
cells  to  survive  on medium containing the  selective  agent,  where  non-transformed cells
die.  Genes  with  resistance  to  the  aminoglycoside  antibiotics,  which  bind  to  ribosomal
subunits  and inhibit  protein  synthesis  in  bacteria,  eukaryotic  plastids  and mitochondria
[93],  are  generally  used  as  selection  markers.  For  example,  the  antibiotics  hygromycin
and geneticin (G418) are frequently used as selection agents with the hygromycin phos‐
photransferase (hptII) gene to inactivate hygromycin via an ATP-dependent phosphoryla‐
tion [94] and the neomycin phosphotransferase II (nptII) gene to detoxify neomycin, G418
and paromomycin [93],  respectively. In the green alga Chlamydomonas reinhardtii,  the hy‐
gromycin  phosphotransferase  (aph7”)  gene  from Streptomyces  hygroscopicus  and  the  ami‐
noglycoside  phosphotransferase  aphVIII  (aphH)  gene  from  S.  rimosus  had  been  reported
as selectable marker genes for hygromycin and paromomycin, respectively, with similari‐
ty  in  the  codon usage  [95-97].  The  aphH  gene  from S.  rimosus  is  also  applicable  to  the
multicellular  green  alga  Volvox  carteri  as  a  paromomycin-resistance  gene  [97,98].  In  the
diatom  Phaeodactylum  tricornutum,  the  expressed  chloramphenicol  acetyltransferase  gene
(CAT) detoxifies chloramphenicol [99], and the nptII gene confers resistance to the amino‐
glycoside antibiotic  G418 [64].  Likewise,  the  nptII  gene gives  resistance to  the  antibiotic
G418  in  the  diatoms  Navicula  saprophila  and  Cyclotella  cryptica  [100].  However,  it  is  un‐
known what kinds of  antibiotics-based selection marker genes are available for red sea‐
weeds, since red algae usually have strong resistance to antibiotics.

Recently, the sensitivity of P. yezoensis gametophytes to ampicillin, kanamycin, hygromycin,
geneticin (G418), chloramphenicol and paromomycin was investigated, and lethal effects of
these antibiotics on gametophytes were observed at more than 2.0 mg mL-1 of hygromycin,
chloramphenicol and paromomycin and 1.0 mg mL-1 of G418, whereas P. yezoensis gameto‐
phytes were highly resistant to ampicillin and kanamycin [101]. Although these concentrations
are in fact very high in comparison with the cases for the red alga Griffithsia japonica and the
green alga C. reinhardtii that were highly sensitive to 50 μg mL-1 and 1.0 μg mL-1 of hygromycin
[96,102], these four antibiotics and corresponding resistance genes are suitable for the selection
of genetically transformed cells from P. yezoensis gametophytes. According to these findings,
it is necessary to confirm whether P. yezoensis gametophytes will obtain antibiotic tolerance by
introducing plasmid constructs containing the antibiotic-resistance genes mentioned above.
In this case, optimization of codon usage and the employment of strong endogenous promoter
are expected for functional expression of the antibiotic resistance genes, according to the
knowledge from the transient transformation system [29,30]. Such efforts could effectively
contribute to the establishment of the genetic transformation system in red seaweeds in the
near future.
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3. Transformation in brown seaweeds

According to Qin et al. [103], trials of genetic engineering in brown seaweeds have been
started by transient expression of the GUS reporter gene under direction of the CaMV 35S
promoter  by  particle  bombardment  in  Laminaria  japonica  and  Undaria  pinnatifida,  which
were first performed in 1994 by them. Descriptions of related experiments were published
later [104,105].  Qin et al.  then focused on the establishment of genetic transformation in
brown seaweeds and provided successful reports of genetic transformation in L. japonica
[103,106].  Genetic  transformation was performed by particle  bombardment only and ex‐
pression of a reporter gene was driven by the SV40 promoter that is usually used for gene
expression in mammalian cells (Table 2).  This promoter represented non-tissue and -cell
specificity for expression of the E. coli lacZ reporter gene [105]. Promoters from maize ubiq‐
uitin, algal adenine-methyl transfer enzyme and diatom fucoxanthin chlorophyll a/c-bind‐
ing protein (FCP) genes are also useful for transient expression of the GUS gene, and the
FCP promoter is also employable for the genetic transformation [107]. Interestingly, there
has been no successful genetic transformation using the CaMV 35S promoter, although this
promoter is active in the transient transformation [103].

Despite the reports of successful genetic transformation, there was no experiment using
antibiotics-based selection of transformants in brown seaweeds. Although the susceptibility
of brown seaweeds to antibiotics has not been well studied, it was reported that L. japonica was
sensitive to chloramphenicol and hygromycin, but not to ampicillin, streptomycin, kanamycin,
neomycin or G418 [103,106]. Since hygromycin is more effective than chloramphenicol
[103,106], it is necessary to confirm the utility of the SV40-hptII gene for the selection of
transformants to fully establish the genetic transformation system in kelp.

Species Status of

expression

Gene transfer method Promoter Marker or

Reporter

Ref.

Laminaria japonica transient particle bombardment CaMV 35S GUS [103]

Laminaria japonica stable particle bombardment SV40 GUS [105]

Laminaria japonica transient particle bombardment CaMV 35S, UBI,

AMT

GUS [107]

Laminaria japonica stable particle bombardment FCP GUS [107]

Laminaria japonica stable particle bombardment SV40 HBsAg [113]

Laminaria japonica stable particle bombardment SV40 Rt-PA [114]

Laminaria japonica stable particle bombardment SV40 bar [114]

Undaria pinnatifida transient particle bombardment CaMV 35S GUS [103]

Undaria pinnatifida transient particle bombardment SV40 GUS [104]

Table 2. Transformation in brown seaweeds.
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To date, stably transformed microalgae have been employed to produce recombinant anti‐
bodies, vaccines or bio-hydrogen as well as to analyze the gene functions targeted for engi‐
neering [108-111]. Based on the success in genetic transformation, L. japonica is now proposed
as a marine bioreactor in combination with the SV40 promoter [112]. Indeed, the integration
of human hepatitis B surface antigen (HBsAg) and recombinant human tissue-type plasmi‐
nogen (rt-PA) genes into the L. japonica genome resulted in the efficient expression of these
genes under the direction of the SV40 promoter [113,114]. Therefore, L. japonica promises to be
useful as the bioreactor for vaccine and other medical agents, although it is necessary to
continually check the safety and value of its use by oral application.

There is no competitor against the Chinease group in the field of using brown algal genetic
transformation at present [103,106,115], meaning there is currently no way to confirm the
replicability of the experiments. It is necessary to re-examine the effective use of the non-plant
SV40 promoter and bacterial lacZ gene in brown algal genetic transformation, which is also
important for the evaluation of genetic transformation in red seaweeds Gracilaria species, for
which the SV40-lacZ gene was used such as transgene, as described above [91,92].

4. Transformation in green seaweeds

The first successfull genetic transformation in green algae was reported in the unicellular green
alga Chlamydomonas reinhardtii for which the particle bombardment and glass-bead abrasion
techniques were employed [116,117]. The availability of electoroporation was then confirmed
in C. reinhardtii and Chlorella saccharophila [118,119]. These methods produce physical cellular
damage, allowing DNA to be introduced into the cells. Moreover, particle bombardment was
confirmed to be useful for a diverse range of species, including transient transformation in the
unicellular Haematococcus pluvialis [120] and genetic transformation in the multicellular Volvox
carteri and Gonium pectoral [97,120-122]. Agrobacterium-mediated transformation was also
reported in H. pluvialis [123]. Thus, all methods employed in land green plants are applicable
for green microalgae [88] (see Table 3).

In contrast, there is no report about genetic transformation in green seaweeds (Table 3). To
date, only two examples of transient transformation have been reported in green seaweeds,
Ulva lactura by electroporation and U. pertusa by particle bombardment [124,125]. As shown
in Table 3, some of the experiments with micro- and macro-green algae used the promoter of
the CaMV 35S gene and the coding region of the E. coli GUS gene. Although functionality of
the CaMV 35S promoter and bacterial GUS coding region is the same in land green plants, the
expression of the GUS reporter gene seems to be very low in the green seaweed U. lactuca [124].
In fact, codon-optimization is critical for the expression of reporters like the GFP gene and
antibiotic-resistance genes in C. reinhardtii [47,90,115,126]. Moreover, the HSP70A promoter
was employed to increase the expression level of the reporter genes [47,115]. Therefore, it is
possible that changes in codon usage in the reporter gene and promoter region could result in
increased reporter gene expression in transient transformation of green seaweeds. Recently,
the Rubisco small subunit (rbsS) promoter was used for expression of the EGFP reporter gene
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in transient transformation of U. pertusa by particle bombardment [125]; however, it is still
unclear whether the rbsS promoters and the EGFP gene work well in cells in comparison with
the CaMV 35S promoter and codon-optimized EGFP gene.

Species Status of

expression

Gene transfer method Promoter Marker or

Reporter

Ref.

Microalga

Chlamidominas

reinhardtii

stable particle bombardment [116]

Chlamidominas

reinhardtii

stable glass bead agitation Nitrate reductase Nitrate

reductase

[117]

Chlamidominas

reinhardtii

stable electroporation CaMV 35S CAT [118]

Chlamidominas

reinhardtii

stable glass bead agitation rbcS2 aphVIII [95]

Chlamidominas

reinhardtii

stable glass bead agitation β2-tubulin Aph7” [96]

Chlorella saccharophila transient electroporation CaMV 35S GUS [119]

Haematococcus pluvialis transient particle bombardment SV40 lacZ [120]

Haematococcus pluvialis stable Agrobacterium-mediated

gene transfer

CaMV 35S GUS,GFP,

hptII

[123]

Volvox Carteri stable particle bombardment β2-tubulin arylsulfatase [121]

Volvox Carteri stable particle bombardment

glass bead agitation

Hsp70A-rbcS2

fusion

aphVIII [98]

Volvox Carteri stable particle bombardment β-tubulin,

Hsp70A

aphH [97]

Gonium pectoral stable particle bombardment VcHsp70A aphVIII [122]

Seaweed

Ulva lactuca transient electroporation CaMV 35S GUS [124]

Ulva pertusa transient particle bombardment UprbcS EGFP [125]

Table 3. Transformation in green algae.

If the rbsS-EGFP gene is useful as a reporter gene for genetic transformation in green seaweeds,
the remaining problems to be settled are methods for foreign gene integration into the genome
and selection of transformed cells, which is the same as the situation with red seaweeds. Reddy
et al. [24] commented on the antibiotic sensitivity of green seaweeds, indicating the consider‐
able resistance of protoplast from Ulva and Monostroma to hygromycin and kanamycin.
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Insensitivity to hygromycin is inconsistent with the case for red and brown seaweeds
[101-103,106]. It is therefore necessary to check the sensitivity of green seaweed cells to other
antibiotics to identify the genes employable for selection of transformed cells, which could
stimulate the development of the genetic transformation system in green seaweeds.

5. Conclusion

It is nearly 20 years since the first transient transformation of a red seaweed with a circular
expression plasmid [25], and many efforts have been made to develop a system for transient
and stable expression of foreign genes in many kinds of seaweeds; however, a seaweed
transformation system has still not been developed. The main problem is the employment of
the CaMV 35S-GUS gene in the pioneer attempts at system development as shown in Tables
1, 2 and 3. This problem was recently resolved through the development of an efficient transient
transformation system in P. yezoensis [29,30]. It is clear that the CaMV 35S promoter and the
GUS gene are not active in seaweed cells [48], which is supported by knowledge from green
microalgae [54-65]. These findings strongly indicate that defects in the transfer and expression
of foreign genes were resolved by knowledge about two critical factors required for reprodu‐
cibility and efficiency of transient gene expression, namely, the optimization of codon usage
of coding regions and the employment of endogenous strong promoters [29,30]. However,
these significant improvements are not enough to allow the establishment of a genetic
transformation system in seaweeds.

At present, genetic transformation is reported in red and brown seaweeds using the SV40
promoter (Tables 1 and 2) [91,92,103,105-107,113,114]; however, isolation of transgenic clone
lines produced from distinct single transformed cells, which is the final goal of the genetic
transformation of seaweeds as a tool, has not been reported, and seaweed genetic transfor‐
mation is thus not fully developed. Therefore, the next step is to develop the gene targeting
system via integration of a foreign gene into the genome and the system for selection of
transformed cells. Since candidates of antibiotic agents for selection of transformed algal cells
were mentioned recently [101-103,106], it is necessary to confirm the possibility of stable
integration of a plasmid or a DNA fragment containing the selection maker gene into the
seaweed genome. Once a positive result is obtained, it could lead us to establish the gene
targeting method via the homologous recombination using an appropriate antibiotics resist‐
ance gene, if possible, with the heterologous promoter. To this end, we must reevaluate the
availability of the methods for gene transfer such as electroporation and Agrobacteriumu
infection.

Due to the problems with efficient genetic transformation systems, the molecular biological
studies of seaweeds are currently progressing more slowly than are the studies of land green
plants. Since a genetic transformation system would allow us to perform genetic analysis of
gene function via inactivation and knock-down of gene expression by RNAi and antisense
RNA supression, its establishment will enhance both our biological understanding and
genetical engineering for the sustainable production of seaweeds and also for the use of
seaweeds as bioreactors.
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