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Abstract

We benchmark a series of simulators against available reference solutions for propagating
plane-strain and radial hydraulic fractures. In particular, we focus on the accuracy and
convergence of the numerical solutions in the important practical case of viscosity dominated
propagation. The simulators are based on different propagation criteria: linear elastic
fracture mechanics (LEFM), cohesive zone models/tensile strength criteria, and algorithms
accounting for the multi-scale nature of hydraulic fracture propagation in the near-tip region.
All the simulators tested here are able to capture the analytical solutions of the different
configurations tested, but at vastly different computational costs. Algorithms based on
the classical LEFM propagation condition require a fine mesh in order to capture viscosity
dominated hydraulic fracture evolution. Cohesive zone models, which model the fracture
process zone, require even finer meshes to obtain the same accuracy. By contrast, when
the algorithms use the appropriate multi-scale hydraulic fracture asymptote in the near-tip
region, the exact solution can be matched accurately with a very coarse mesh. The different
analytical reference solutions used in this paper provide a crucial series of benchmark tests
that any successful hydraulic fracturing simulator should pass.

1. Introduction

The propagation of hydraulic fractures is a highly non-linear fluid-solid interaction problem
involving a moving boundary (i.e., the propagating fracture front in the neighboroughood of
which the governing equations degenerate). Simulating this class of problem numerically is
challenging, especially properly tracking the evolving fracture front.
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Propagation regimes Plane-strain Radial
Vl(S’CCOS_ltg)M [3] (with correction for small toughness) [6]
To(lllcglile:os) K [4] (with correction for small viscosity)  [6, 11]

Table 1. List of available solutions for the propagation of hydraulic fractures driven by a Newtonian fluid under constant rate
of injection (zero leak-off).

In geoscience applications, hydraulic fractures propagate in a complex, often poorly
characterized medium. Nevertheless, the description of the medium must be simplified in
order to apply theoretical models. It is thus crucial that numerical implementations of such
models for fracture growth be accurate such that differences from field observations can be
attributed to model assumptions rather than poor numerical solution.

In the last ten years, a number of reference solutions (analytical and semi-analytical) have
been obtained for propagating plane-strain [1-5] and radial hydraulic fractures [6, 7] (see
Table 1). These solutions provide invaluable benchmarks for numerical simulators. We
compare a number of simulators (2D and 3D) that use different propagation algorithms
against these reference solutions for hydraulic fractures driven by a Newtonian fluid under
a constant injection rate. For the sake of clarity, we do not address fluid leak-off in our
discussion. Of particular interest is the accuracy of the different simulators in tracking
the moving fracture front, particularly in the so-called viscosity-dominated regime of
propagation.

An outstanding question relates to the convergence and robustness of numerical simulators
with respect to the multiscale near-tip behavior of hydraulic fractures. The coupled
lubrication (fluid flow) and elasticity equations are known to degenerate near the fracture
tip, such that the solution of a semi-infinite fracture propagating at a constant velocity
is characterized by a multiscale singular behavior near the tip [8-10]. The nature of
the dominant singularity depends on the relative importance of two dissipative processes
(viscous forces and fracture energy), as well as the reference length scale. Such a multiscale
behavior near the fracture tip in turn governs the evolution of the velocity of a finite hydraulic
fracture during injection. We discuss the degree to which a numerical simulator needs to
include and resolve the near-tip behavior in order to accurately match reference solutions in
the light of different benchmarks.

2. Benchmarks

2.1. Plane-strain hydraulic fracture (KGD)

The case of a plane strain hydraulic fracture driven by a Newtonian fluid under constant
injection rate is also sometimes refered to as the KGD model (for Khristianovic [12],
Geerstma and De klerk [13]). In the absence of leak-off the solution of the hydraulic
fracture propagation is self-similar and depends on a single dimensionless number: ie. a
dimensionless toughness K

K/
K= 13/4,,11/4L/4
E |2 Qo
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where Q, is the volumetric injection rate per unit length in the out-of plane direction, E’
denotes the plane-strain elastic modulus, p' = 12u £ is an equivalent viscosity (with j; the

fluid viscosity), and K’ = /32/7 K. with K. the fracture toughness (see [14] for more
details). Equivalently a dimensionless viscosity M = K~* can be used. The complete
solutions for the fracture length evolution, fracture width and net pressure have been
obtained for the limiting cases of zero dimensionless toughness (equivalently infinite M)
and zero dimensionless viscosity (infinite K) First order solutions for either small toughness
or viscosity are also available [3, 4]. Semi-analytical solutions for any finite values of
dimensionless toughness or viscosity are also available [5].

We will restrict our comparisons to the case of relatively small dimensionless toughness
(e.g. K < 1), which is known to be the more difficult condition to reproduce numerically.
Therefore we express the solution in a so-called viscosity scaling. Because the solution is
self-similar the time dependence can be obtained using dimensional analysis. We aim to
compare the solutions provided by different numerical codes, which are typically developed
in space-time. We thus introduce a dimensionless time T = t/f; and a scaled coordinate
¢ = x/{, where t. is a characteristic time scale and ¢ is the fracture length. The fracture
length, opening, and net pressure can be written as follows:

1/6 1/6
E/ 3t4 El 3t4
e:< % ) 7m(l€):( ro> 39 (K)
e

W W
7(Tk)
QL/241/3,,11/6 1/2,1/3,,11/6
= %Qm(éﬂ’c) = %Tlmﬂm@/’@ (1)
(929
E/2/3 122/3 E/2/3 12/3 B
p= g+nm(§,K) = tl—/]/;'f V310,,(¢, K)

‘ I1(¢,7,IC)

where we have highlighted the correspondence between results obtained using a time-based
algorithm (say <, Q, IT) to the self-similar solution dimensionless solution Fy,(K) =

{'Ym/ Qum, Hm}

The dimensionless solution F,(K) = {vm, Qum, I} for small toughness developed in [3]
will be compared with the numerical solutions from different simulators. More precisely,
for three small values of dimensionless toughness K = 0.01, 0.1, 0.5, we will focus on the
comparisons of the dimensionless fracture length <, opening profile (),,(¢) close to the
fracture tip and error in the fracture volume etc. We are especially interested in the evolution
of the error of the numerical solutions with respect to mesh sizes in the near-tip region of
the fracture, where gradients are the largest. The solution, for small toughness (K < 1), is
in fact governed by the hydraulic fracture viscosity tip asymptote: the opening behaves as
w ~ (£ — x)?/3 and the net pressure as p ~ (£ — x) /3 close to the fracture tip (see [10] for
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details). The tip region affected by the asymptote actually extends to about 10 to 20 percent
of the plane-strain fracture length for dimensionless toughnesses below 0.5.

2.2. Radial hydraulic fracture

The growth of a radial hydraulic fracture spans both the viscosity and toughness regimes
of propagation [6, 11]. At early times, the perimeter and the opening of the fracture are
small and most of the energy is spent in viscous flow, whereas at a later times, the fracture
perimeter and opening are larger and the fracture energy required to extend the fracture
dominates the energy required to drive the viscous fluid through the fracture. The radial
solution is also dependent only on a dimensionless toughness which in this case is a function

Iu/5 QgEll?)

of time. Introducing the characteristic time t,,; = K18

1/2
) , and the dimensionless

time T = t/t,,, we have (see [6, 14] for more details):

K =1/

Solutions for the case of zero and infinite dimensionless toughness (i.e. small and large
dimensionless time) have been obtained semi-analytically [6]. The complete transient
solution can be obtained only numerically. A reference algorithm [7] based on an explicit
moving mesh algorithm with proper matching of the multiscale HF tip asymptotics [10] will
provide the baseline for the comparisons for intermediate times. The fracture radius R, width
w and net pressure p can be written as:

E/SQ /
R=—2r— E (o)

E/ /
VERI (o, 1) @
K/3
- EB/2QL/2 /2

w =

p I(p, T)

where the dimensionless solution F = {7, (), I1} depends only on dimensionless time 7 =
t/tux and scaled position p = r/R along the fracture.

As before, we will pay particular attention to the case of small dimensionless
toughness, i.e. early-time, which is the most challenging numerically. In the limit of
zero-toughness/early-time (i.e. viscosity dominated propagation, here refereed as the
M-vertex), the solution is self-similar and can be conveniently written in the following
viscosity scaling:
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R E/1/9Qg/3t4/9 _ E/3Qo‘u/ T4/9
= —]«1/1/9 Ym0 = KA Ym0
7(7)
Q1/3 /2/9t1/9 /EIQ /
== 5’2/9 — o (p) = - K/OV_ /%00(p) (3)
_,—/
O(p,7)
E/2/3‘u/1/3 K/3 L
AN _ -1/3
p= Tﬂmo(p) = B2 00 T Iyo(p)

(p,7)

where again, we have highlighted the correspondence between the zero-toughness/ M-vertex
self-similar solution F,0 = {v¥mo, Qmo,ITmo}, which is independent of time and the
dimensionless solution expressed as a function of the previously defined dimensionless time.

The zero-toughness/M-vertex solution F,0 has actually been found to correctly capture
the propagation of hydraulic fractures up to a dimensionless toughness of K = 1, i.e. for
dimensionless time T < 1(t < t,,x) [6]. We will thus investigate the convergence of different
simulators to this zero-toughness/small time solution.

For dimensionless time above unity (t > 1(f > t,;)), the solution transitions from the
viscosity dominated (early-time) to the toughness (large-time) dominated regime. The
toughness dominated regime is reached for £ ~ 3.5(7 ~ 70000). Note that, for infinitely
large dimensionless toughness (i.e. zero viscosity), the solution is also self-similar [6] and
is also denoted as the K-vertex solution. We will also briefly investigate, for a subset of the
simulators considered, the transition between these two regimes of propagation (M to K),
focusing mostly on fracture length versus time.

2.3. Some practical numbers

Although rock properties and stimulation practices vary, it is interesting to compute the
scales and dimensionless numbers previously introduced. Let’s assume a “tight” rock with
the following realistic properties: a plane-strain Young’s modulus of 40 GPa and a fracture
toughness of 1.5 MPa.m!/2. First, for a hydraulic fracturing treatment using a highly viscous
fluid (e.g. gel-like with y1 ¢ = 100 cPoise) at a practical rate of 10 Barrels per minute, we obtain

a transition time scale t,, for a radial fracture of 4.2 10° seconds! The propagation of such
a hydraulic fracture for a realistic injection duration (i.e. less than two hours) will always
be in the viscosity dominated regime of propagation. Remember that the dimensionless
toughness evolves as (t/t,,;)!/? for radial fractures. For the plane-strain geometry (where the
injection rate is per meter in the out-of-plane direction), using the same parameters we obtain
a dimensionless toughness of 0.26 clearly indicating a viscosity dominated propagation.

For a slick-water treatment, popular in shale-gas reservoirs, the injection rates are usually
much higher in order to compensate for the low viscosity of water and to obtain a sufficiently
wide fracture to accomodate proppant (see the scales in front of the opening w in Equations
(1) and (3)). Using a value of 20 Barrels per minute (a realistic value for a single perforation
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cluster) and the viscosity of water, the radial transition time scale t,,;; now reduces to two
minutes. For radial fractures, the toughness dominated regime of propagation is obtained
for dimensionless toughness above 3.5 (see [6]), which corresponds to t 2 75000 t,,;, which
translate for this particulate case to t 2 250 hours. This indicates that most of the duration of
the treatment will take place in the transition from the viscosity to the toughness regimes
of propagation for a radial fracture (assuming that no stress barriers affect the fracture
geometry). For the plane-strain fracture geometry, we obtain a dimensionless toughness
of 0.3 (assuming the same injection rate per meter in the out-of-plane direction), for which
the propagation is still dominated by viscosity.

These examples show the importance of the viscosity dominated regime of propagation for
oil and gas hydraulic fracturing applications. Numerical simulators therefore need to be able
to capture this regime of propagation, which is a difficult task especially if the algorithm
relies solely on the linear elastic fracture mechanics propagation condition that manifests
itself at a length scale near the fracture tip that is much smaller than the modeling lengthscale
in the viscosity dominated case [10, 15].

3. Simulators tested

Two classes of simulators have been tested: codes simulating a two-dimensional
configuration (plane-strain or/and axisymmetry) where the fracture is a one dimensional
geometrical object, and three dimensional codes simulating planar fractures (which are
two-dimensional objects in three dimensions). We now briefly describe the algorithms used
by these different simulators.

3.1. Two dimensional codes

1. MineHF2D

This simulator (see [16] for more details) handles the propagation of both straight and
curved hydraulic fractures in plane-strain. The algorithm is based on a fixed grid. It
uses the displacement discontinuity method to solve the elastic equations coupled to a
finite difference scheme for the fluid flow within the fracture. This algorithm includes
the presence of a fluid lag at the fracture tip; for the simulated case reported here, a
large confining stress value was used to minimize the fluid lag (see [17, 18] for more
discussion on the effect of fluid lag). Explicit time-stepping is used and a volume of fluid
method locates the fluid front. The fracture propagation criterion is based on the linear
elastic fracture mechanics asymptote. The stress intensity factors are obtained using the
displacement method with an adjusting factor of 0.88. A mesh with variable element sizes
was used with refinement toward the fracture tip.

2. FEM_Cohesive
This code is based on a finite element model and the pore pressure cohesive element
implemented in Abaqus (Abaqus 6-10.2, 2010). It can handle both plane-strain and
axi-symmetric configurations (e.g. plane-strain and radial hydraulic fractures). In this
model, a pre-defined surface made up of elements that support the cohesive zone
traction-separation calculation is embedded in the rock and the hydraulic fracture
grows along this pre-defined surface. The fracture process zone (unbroken cohesive
zone) is defined within the separating surfaces where the surface tractions are nonzero.
The fracture is fully filled with fluid in the fully damaged cohesive zone (where the
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cohesive traction is zero) and hence there will be no cohesive traction contribution,
but fluid pressure is acting on the open fracture surfaces. So a coupled fluid
pressure-traction-separation relationship exists between the cohesive zone defined by the
traction-separation law and the pressurised fracture as found from solving the lubrication
equation with the constraint that all tractions acting on the entire fracture and the cohesive
zone must be in equilibrium. In this cohesive finite element model [19], the irreversible
bilinear traction-separation cohesive law is adopted. An incompressible Newtonian fluid
is injected at the centre of the fracture at constant injection rate. There is no fluid leak-off
through the impermeable surfaces of the fracture, so only flow in the fracture radius
direction is modelled. The cohesive elements at the injection point are defined as initially
open to allow entry of fluid, and so that the initial flow and fracture growth is possible.
Infinite elements surrounding the finite domain, which contains a hydraulic fracture, have
been used to model the far-field boundary. Further details of the finite element model can
be found in [19].

3. 1DPlanarHF

This code, also based on a fixed mesh, simulates straight hydraulic fractures in
two-dimensions (plane-strain and axisymmetric fractures) using a fully implicit
scheme to solve for the coupling between the elasticity equation (discretized using the
displacement discontinuity method), the fluid conservation (discretized using a finite
volume scheme) and to locate the fracture front. An increment of fracture length is given
and the corresponding time-step (to reach the new fracture length) is solved by satisfying
the fracture propagation condition in the tip element in a weak form: i.e. the volume of
the tip element is enforced to be equal to the LEFM square-root asympote (The algorithm
is similar to the one described in [20], see also [21]). The HF viscosity tip asymptote [8]
can also be used for the case of low fracture toughness, its performance will be compared
to the LEFM asymptote. Results obtained using the LEFM and the viscosity asymptotes
will be denoted as 1DPlanarHF_lefm, and 1DPlanarHF_m respectively. All the results
presented here use a grid with a constant element size (i.e. without any refinements), a
re-coarsening of the mesh during the simulation is possible.

4. EMMA
EMMA is an Explicit Moving Mesh Algorithm for radial geometry, which embeds the
proper multiscale tip asymptotes of the hydraulic fracture depending on its velocity
(see [7] for more details). It is extremely accurate and the moving mesh nature of the
algorithm allows it to span more than ten orders of magnitude in dimensionless time. It
notably provides a good solution for the transition between the viscosity and toughness
dominated regime of propagation for a radial fracture.

3.2. Three dimensional codes

1. The Implicit Level Set Algorithm (ILSA)
This algorithm [22] models the evolution a hydraulic fracture with an arbirarily shaped
boundary that is assumed to propagate in a plane (a planar fracture in a 3D elastic
medium), which is typically perpendicular to the minimum principal stress direction. The
three dimensional elastic equilibrium equations are discretized using the dispacement
discontinuity boundary integral method in which the fracture within the plane is
represented by constant width rectangular elements that are collocated at element centres.
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The Reynolds lubrication equation, expressing the conservations of mass of the viscous
fluid contained within the crack surfaces, is discretized using a finite volume method
also defined with respect to quantities sampled at the centres of the rectangular elements.
At the periphery of the fracture, which may not conform to the structured rectangular
mesh, the boundary is represented using a concept of partially filled tip elements that are
used to define average fracture widths, which are also sampled at element centres. The
distinguishing feature of this algorithm is its ability to locate the fracture free boundary
using the asymptotic behavior of the hydraulic fracture width that is applicable at a
particular point on the fracture perimeter. The free boundary is located by the following
iterative process: given an initial guess for the fracture boundary 0S, determine the
corresponding trial fracture width w and fluid pressure field p; in the ribbon of elements
that are completely filled with fluid and, which share at least one side with a partially
filled tip element, use the trial width values to estimate the distance to the free boundary
by inverting the applicable tip asymptotic behavior [10]; use these estimates of the
distance to the free boundary as initial conditions for the eikonal equation |VT(x,y)| =1,
whose level set curve T(x,y) = 0 is the free boundary. The fracture boundary is then
moved to the curve T(x,y) = 0 and the iterative process is repeated until convergence is
achieved. The algorithm uses the multi-scale hydraulic fracture tip asymptotics solution
[10] and thus automatically captures the different type of propagation regimes with
relatively coarse mesh.

For this paper, a simplified version of the algorithm was also designed to only use
the LEFM asymptote (hereafter denoted as ILSA_lefm) for comparisons with other
algorithms (MineHF2D, 1DPlanarHF etc.). In this version, we adapted the ILSA code
to damp the front advance by rescaling the level set function T(x,y) so that the the
maximum distance between any point in the ribbon elements and the damped free
boundary is no more than three element lengths. This sequence of damped front
positions enables the trial widths to be relaxed until fracture width profile presents a
close approximation to the viscosity dominated solution, in spite of the fact that the tip
elements are, by the nature of the ILSA_lefm algorithm, locked into the LEFM asymptote.

. HFLattice:

This code [23] simulates fracture propagation without limitation of shape, direction
or number of fractures, as well as slip and opening along pre-existing joints. A 3D
lattice formulation is used for simulation of deformation and fracturing. The lattice is
a quasi-random assembly of nodes connected by non-linear shear and normal springs.
The lattice resolution is given by the average node spacing. Newton’s law of motion (for
translation and rotation) is solved at the nodes using an explicit central difference scheme.
The normal force in the spring is tested and a micro-crack is formed when breakage is
detected (spring strength is adjusted to give the correct rock strength). A macro-fracture
that develops in intact rock is thus characterized by an assembly of micro-cracks. Fluid
flow and storage are based on a network of fluid nodes, located at broken springs or
springs intersected by pre-existing joints, connected by pipes. The fluid network is
updated continuously as new fracturing occurs. An explicit fluid pressure scheme is
used to solve for fracture and matrix flow. The mechanical and flow models are fully
coupled: fracture permeability depends on aperture (i.e. deformation of the mechanical
components), fluid pressure affects deformation and strength of the solid model, and
deformation of the solid model affects fluid pressures. In the algorithm, the lattice
springs carry total forces, which affects force balance and motion. Also, effective stress is
considered for joint slip or opening.
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Plane-strain Radial
T<1 107! <t <10
k=001 k=01 (K <1) (5 < K < 3.5)
MineHF2D v v n.a n.a
FEM_Cohesive v v v
1DPlanarHF v v v/ (_lefm only) v'(_lefm only)
ILSA n.a n.a v v
HFLattice n.a n.a v

Table 2. The benchmarks tested (v') for the different simulators.
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Figure 1. Dimensionless opening ),,, from the fracture tip in log-log scale; plane-strain fracture K = 0.01.
4. Results and discussion

4.1. The plane strain small toughness benchmark

The solution for a plane-strain hydraulic fracture driven by the injection of a Newtonian fluid
at a constant rate is self-similar (i.e. evolves as a power-law of time). Our comparisons here
focus on the case of viscosity dominated fractures (K < 0.5, spefically K = 0.1, 0.001) which
are the most difficult to simulate numerically. The simulators tested for that configuration
are (Table 2): MineHF2D, FEM_Cohesive, 1DPlanarHF_lefm and 1DPlanarHF_m.

Figure 1 displays, for the case K = 0.01 the dimensionless fracture opening profiles from the
tip of the fracture obtained with the different simulators (at the last step of their simulations)
as well as both the analytical solution and the viscosity HF tip asymptote [10]. Figure 2 is
similar but for the case K = 0.1 . We first observe that the viscosity tip asymptote covers a
region about 10 to 20 percent of the fracture from its tip. The different simulators provide
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1.00
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0.20 — Solution

: Simulators
--- m-tip asymptote
0.10F e MincHF2D :
0.05 = FEM Cohesive
¢ 1DPlanarHF lefm |
0.02 4 1DPlanarHF m |-
0.001 0.005 0.010 0.050 0.100 0.500

1-¢

Figure 2. Dimensionless opening Q,, from the fracture tip in log-log scale; plane-strain fracture C = 0.1.

width estimates that all correctly fall on the analytical solution “away” from the fracture tip.
The distances from the tip at which the simulators recover the analytical solution appear to
depend on both the mesh-size and the type of propagation condition used. For algorithms
using the linear elastic fracture mechanics (LEFM) propagation condition (opening as a
square root of the distance from the tip), this recovery distance from the tip is larger for
coarser mesh sizes. The algorithm using a cohesive zone model appears to need significantly
more refinement. In contrast, the algorithm using the viscosity HF tip asymptote (i.e.
1DPlanarHF_m) is able to capture the fracture opening exactly all the way to the tip and
with a much coarser mesh than was used for the other computations.

This dependence of the convergence toward the exact solution on the mesh size and
propagation condition can be further observed in Figures 3-5, which display the rate of
convergence for the fracture length and fracture volume as a function of the ratio of the mesh
size over fracture length (i.e. the inverse of the number of elements to discretize the frature
for uniform mesh). All simulators converge correctly toward the analytical solution but at
very different computational costs. We can see that for algorithms using the LEFM condition
or a cohesive zone model, the mesh size required to reach the same level of accuracy is about
20 times smaller than for the algorithm that uses the correct HF viscosity tip asymptote.
In the case K = 0.01, 1DPlanarHF_lefm needs about 400 elements (h/¢ ~ .0025) to obtain a
relative error of about 1 and 3 percent in the fracture length and fracture volume respectively,
while smaller relative errors are already obtained when using 20 elements (h/¢ ~ .05) for
1DPlanarHF_m. The cost is even greater when a cohesive zone model is used: about 3000
elements (/¢ ~ 3 x 10~%) are needed to reach a relative error of 1.5 and three percent in the
fracture length and fracture volume respectively.
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Figure 3. Relative error in the fracture length as a function of the ratio mesh-size over fracture length I = 0.01.
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Figure 4. Relative error in the fracture length as a function of the ratio mesh-size over fracture length K = 0.1.

Similar observations can be made for the case of a dimesionless toughness X = 0.1, although
all the algorithms using a fracture energy propagation condition perform slightly better due
to the higher value of dimensionless toughness. In other other words, similar relative errors
are obtained for larger values of 1/ (i.e. fewer elements), as can be seen by comparing
Figures 3 and 5 for K = 0.01 to Figures 4 and 6 for K = 0.1.
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Figure 5. Relative error in the dimensionless fracture volume as a function of mesh size over fracture length - Plane-strain
fracture K = 0.01.
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Figure 6. Relative error in the dimensionless fracture volume as a function of mesh size over fracture length - Plane-strain
fracture £ = 0.1.
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4.2. The radial hydraulic fracture benchmark

4.2.1. Viscosity dominated regime

Owing to its previously argued importance in practice, we focus on early-time, where
the relevant analytical solution corresponds to the case of zero-toughness. The simulators
tested for this geometry and regime of propagation are the two-dimensional codes under
axi-symmetry; FEM_Cohesive and 1DPlanarHF_lefm, and the 3D codes ILSA, the simplified
version ILSA_lefm and the HFLattice model (Table 2).

The different simulators have been run for different ranges of dimensionless time all within
the viscosity dominated regime (t < 1), and are described in Table 3. The HFLattice

FEM_Cohesive 1DPlanarHF lefm ILSA/ILSA lefm
1e[107Y-2x107%] 7€[1077—-10"1] 7€ 1078 -10""]

Table 3. Range of dimensionless time of the simulations for the radial benchmark

simulator has been run for the specific case of zero toughness (in fact zero tensile strength as
per the formulation).

The convergence toward the zero-toughness solution as a function of the mesh size can be
observed in Figure 7 (convergence of the fracture radius). Similar trends to the plane-strain
case can be observed. The convergence requires a much finer mesh for the simulators using
a cohesive zone model (axi-symmetric FEM_Cohesive) and the LEFM propagation condition
(axisymmetric 1DPlanarHF and ILSA_lefm). ILSA, the only simulator using the appropriate
HF tip asymptote, achieves the same accuracy with a much coarser mesh compared to all
the other simulators. In particular, the version ILSA_lefm, which uses the LEFM asymptote,
needs about an order of magnitude finer mesh compared to ILSA for the same relative error.
The FEM_Cohesive algorithm requires a ratio /R about two to three orders of magnitude
smaller than ILSA for the same relative error. The HFLattice model, although less accurate,
also exhibits convergence as h/R decreases.

The openings at the last time step of the simulation (refer to Table 3 for the corresponding
dimensionless time) in the tip coordinate system are compared to the zero-toughness
analytical solution in Figure 8. The FEM_Cohesive algorithm captures the solution away
from the fracture tip well, i.e at distance larger than 3-5 % of the fracture radius from the
tip. Closer to the tip, the opening from the cohesive zone algorithm appears to slightly
overestimate the fracture opening. The results of the algorithms using the LEFM propagation
condition (1DPlanarHF_lefm, ILSA_lefm) converge toward the analytical opening as their
mesh gets finer. On the other hand, ILSA exactly matches the analytical solution for the
opening with a relatively coarse mesh (the last element of ILSA corresponds to a partially
fractured element for which the fracture width is also function of the fracture front location
within the element).

A comparison of the net pressure profile obtained by the different simulators and the
analytical solution is displayed on Figure 9. Similar trends to the fracture opening can be
observed. One has to note that the HFLattice simulator approximates the point-source by
a finite volume, hence the discrepancy on the net pressure with respect to the point-source
solution close to the fracture inlet.
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Figure 7. Evolution of the relative error in the fracture radius as a function of the mesh size for the different simulators -
radial fracture in the viscosity dominated regime (i.e. zero toughness / early time, T < 1). All simulations displayed here are for
T <107,

It is interesting to investigate more closely how an algorithm using the LEFM asymptote
(e.g. ILSA_lefm) is able to converge to the zero-toughness analytical solution. Consider
the case of modeling a radial hydraulic fracture starting at a very small initial time (7 =
10~18), which corresponds to a dimensionless toughness X = 0.01, and is therefore very
close to the M-Vertex (zero-toughness solution). If the LEFM asymptote is used in ILSA at this
time, the asymptote would dictate that the fracture front needs to be advanced by roughly
10* element lengths! As already mentioned, to circumvent this problem, the ILSA_lefm
code damps the front advance by rescaling the level set function T(x,y) so that the the
maximum distance between any point in the ribbon elements and the damped free boundary
is no more than three element lengths. This sequence of damped front positions enables the
trial widths to be relaxed until the fracture width profile presents a close approximation
to the viscosity dominated solution, in spite of the fact that the tip elements are locked
into the LEFM. Indeed, the algorithm settles on a solution in which the LEFM tip widths
are very small and contribute very little to the net volume of the fracture, while over the
remainder of the fracture away from the leading edge, the widths are locked into the viscous
asymptote as dictated by the conservation of volume. Thus the damped front advances
continue until the conservation of fluid volume dictates that it should stop at which time it
approximates the viscous asymptote. Results from the standard ILSA code with the correct
viscous asymptote and damped ILSA_lefm code with the LEFM asymptote indicates that in
order to obtain similar relative errors compared to the analytical solution, a mesh size that is
an order of magnitude smaller is needed for ILSA_lefm compared to the standard ILSA code
(see Figure 7).
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Figure 8. Fracture opening in the tip coordinates system (log-log scale) for a radial hydraulic fractures propagating in the
viscosity dominated regime. Results from the different simulators for a dimensionless time T < 107 . Note that for better
clarity of the plot, all the mesh points are not displayed for 1 — p > 0.04 for FEM_Cohesive.

4.2.2. Transition toward the toughness dominated regime

Finally, we investigate the performance of a subset of the algorithms on the transition of
the solution toward the toughness dominated solution. Such a transition typically happens
between 7 = 1(K = 1) and T ~ 70000 (X = 3.4). The Explicit Moving Mesh Algorithm
(EMMA), the 1DPlanarHF_lefm and the ILSA codes are compared, focusing on the evolution
of the dimensionless fracture radius with time. Figure 10 display the results. The fracture
radius have been averaged over the fracture footprint for the results of ILSA (3D code), while
the other codes are axi-symmetric by assumption.

We clearly see that the different algorithms capture the transition between the viscosity and
the toughness propagation regimes extremely well. They are virtually indistinguishable.

5. Conclusions

In this paper, we have investigated the performance of a number of hydraulic fracture
propagation algorithms based on different propagation conditions: LEFM, cohesive zone
model/tensile strength and algorithms accounting for the multi-scale nature of hydraulic
fracture propagation in the near-tip region. This exercise was made possible thanks to the
existence of analytical solutions for both geometries of hydraulic fractures. All the simulators
investigated here are able to capture the analytical solutions of the different configurations
tested, but at widely different computational costs.
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Algorithms based on the Linear Elastic Fracture Mechanics propagation condition requires
a fine mesh (h/¢ < 1072 — 1073) in order to capture viscosity dominated hydraulic fracture
propagation. A fine mesh is needed for these algorithms to capture the viscosity opening
asymptote in order to properly match the fracture volume. Cohesive zone models, which
model the fracture process zone, require even finer meshes. This is due to the fact that
the cohesive zone length-scale is even smaller than that of the region of influence of the
linear elastic fracture mechanics (LEFM) square-root near-tip asymptote. By contrast, when
the algorithms use the appropriate multi-scale hydraulic fracture asymptote in the near-tip
region, the exact solution can be matched with a very coarse mesh (ie. h/¢ =~ 1071).
Extremely efficient and fast propagation algorithms can thus be developed with even better
accuracy than algorithms based on the classical LEFM propagation condition. Computational
cost and accuracy may not be the only concern when developing a simulator. Algorithm
flexibility may also be important. We hope that the study reported in this paper can help in
making an educated choice of algorithm.

Finally, we also would like to advocate that the different analytical reference solutions used in
this paper be used as a minimal series of benchmarks for any hydraulic fracturing simulator.
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