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1. Introduction

Glaucomas are a heterogeneous group of optic neuropathies characterized by progressive
loss of retinal ganglion cells (RGCs) leading to visual field defects. The distinctive pattern of
optic nerve degeneration results in glaucomatous cupping. The atrophy of optic nerve cells
initially leads to loss of peripheral vision and visual field loss increases with increased dam‐
age to optic nerve. Worldwide glaucoma is the second leading cause of blindness affecting
more than 70 million people [1, 2]. Traditionally elevated intraocular pressure (IOP) is con‐
sidered as a major risk factor for glaucomatous neuropathy. In addition to increased IOP,
other risk factors include age, genetic and environmental factors, myopia, primary vascular
dysregulation and hypertension [3, 4].

Glaucoma has been classified into different types based on various criteria. One of the wide‐
ly used classifications depends on the nature of iridio-corneal angle [5]. Primary open angle
glaucomas (POAGs) are the most common and clinically well defined subsets of glaucomas
among Caucasians [6]. As its name suggests, in POAG there is no anatomical hindrance to
the flow of aqueous humor as the angle structures remain ‘open’. However, the drainage of
humor is still inefficient resulting in an increase in IOP. Based on the age of onset, POAG
can be juvenile (5-35 years) or adult onset (onset after 45 years) [6]. POAGs are usually
chronic and largely asymptomatic, with gradual elevation of IOP and consequent visual
field loss. In a significant fraction of POAG, glaucoma occurs even in the absence of eleva‐
tion of IOP. These are recognized as normal tension glaucomas (NTG) [7].
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Angle closure glaucomas (ACGs) are relatively rare among Caucasians and usually are
acute. It is the most common form of glaucoma in Asian population [8, 9]. In ACGs, the iri‐
diocorneal angle is closed, blocking the drainage of aqueous humor and resulting in eleva‐
tion of IOP. People with shallower anterior chamber, with hypermetropia and hence
narrower angles, are more susceptible to ACGs. Unlike POAG, ACG can be associated with
symptoms like eye pain, blurred vision, headache, nausea, and hence is usually detected
earlier [10].

In developmental or congenital glaucoma, developmental anomalies in tissues like trabecu‐
lar meshwork and Schlemm’s canal cause optic neuropathies [5].

2. Genetic basis of glaucoma

Glaucomas are genetically heterogeneous. Very few cases of glaucoma exhibit typical Men‐
delian inheritance, though familial history increases the risk factor [11, 12]. Majority of glau‐
coma cases appear to be multifactorial that are affected by multiple genetic and (or)
environmental factors. In certain cases, mutations in some genes may cause glaucoma only
when present in a susceptible genetic background. These and other complexities confound
genotype-phenotype associations, making it difficult to identify genes that actually cause
the disease. As a result, only a small fraction of glaucomas are associated with mutations in
specific genes. Genetic studies have led to the identification of over 20 chromosomal loci
that have been linked to glaucoma: GLC1A-1N, GLC3A-3C [5]. However, only five genes
have so far been linked to glaucoma. While four genes – Myocilin/TIGR (trabecular mesh‐
work inducible glucocorticoid response), Optineurin, NTF4 (neurotrophin 4) and WDR36
(WD repeat 36), have been shown to be associated with POAGs, CYP1B1 (cytochrome
p450-1B1) has been linked to congenital glaucoma [5, 6, 11, 13, 14]. But mutations in CYP1B1
have been shown to be associated with POAG also [15, 16]. A better understanding of the
genetic basis of the disease, with the genes involved, is critical for early detection of the dis‐
ease and development of therapeutic agents that can target specific pathways.

Mutations in the gene OPTN, which encodes the protein optineurin (optic neuropathy in‐
ducing), cause NTG and amyotrophic lateral sclerosis (ALS) [17, 18]. Both of these are neu‐
rodegenerative diseases. Like glaucoma, ALS is also a progressive disease, which involves
degeneration of motor neurons in the primary cortex, brainstem and spinal cord [19]. Opti‐
neurin is also seen in pathological structures present in some other neurodegenerative dis‐
eases, such as Alzheimer’s disease and Parkinson’s disease [20]. Despite its association with
glaucoma almost a decade ago, the cellular functions of optineurin, and how its mutations
alter these functions, are beginning to be understood only now. This review focuses on the
recent advances in cellular functions of optineurin and defective molecular events because
of optineurin mutations.
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Figure 1. Disease associated mutations in optineurin. Schematic of optineurin, showing its various domains. CC-
coiled coil, UBD- ubiquitin binding domain, LZ- leucine zipper, LIR- LC3 interacting region, ZF- zinc finger. A. Various
glaucoma causing mutations identified in the optineurin. Of these, R545Q and M98K are polymorphisms. B. Amyotro‐
phic Lateral Sclerosis (ALS) associated mutations in optineurin. Deletion of some of the exons have been found in ALS
patients but not in glaucoma patients. C. Schematic shows regions of optineurin interacting with various proteins. Htt-
Huntingtin, a protein found to be mutated in Huntington’s disease; mGluR- metabotropic glutamate receptor;
MYPT1- myosin phosphatase targeting subunit 1; TBK1- TANK binding kinase 1; RIP1- receptor interacting protein 1.

3. Glaucoma-associated mutations in optineurin

Rezaie et al. (2002) showed that certain mutations in the coding region of the gene OPTN are
associated with 16.7% of the families with NTG, the only gene to be implicated in this sub-type
of POAG. One of the mutations, in which glutamic acid at 50th position is replaced by lysine
(E50K), segregates with the disease in a large family affected with NTG [18]. This provided
strong evidence for the conclusion that this mutation in optineurin causes glaucoma. Such
strong evidence is not available for other mutations of optineurin but some of the mutations
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have not been found in normal population. The E50K mutation was found in 13.5% of affected
families [18]. Subsequent studies have identified several other mutations in optineurin that are
associated with adult onset NTG and in rare cases of juvenile onset glaucoma. However, the
frequency of optineurin mutation in sporadic cases is low, generally less than 1%. A polymor‐
phism in optineurin, M98K, is associated with glaucoma in some South Asian populations but
not in Caucasians [21, 22]. Most of these optineurin mutations are missense mutations
(mutation which leads to replacement of the pre-existing amino acid with another). One of the
rare mutations is an insertion in exon5, which would lead to production of a truncated protein
due to frameshift [18] (Figure 1A). Certain point mutations that do not cause a change in amino
acid sequence, for example, V148V, have also been reported [23]. Recently, certain mutations
in optineurin have been shown to cause ALS [17, 24-26]. These mutations are mostly different
from those that cause glaucoma (Figure. 1B). Almost all the glaucoma-associated mutations of
optineurin are single copy alterations, indicating therefore, that these are likely to be dominant.
An alternate possibility is that these point mutations cause a loss of function and the resulting
haploinsufficiency may cause the disease.

4. Interaction of optineurin with cellular proteins

Optineurin is predominantly a coiled coil protein of 577 amino acids [27] (Figure 1). It has a
well defined ubiquitin-binding UBAN domain (UBD) [28], and a zinc finger domain, which is
also believed to bind to ubiquitin [29]. Optineurin interacts with a diverse array of cellular
proteins through multiple interaction domains [28, 30-45] (Figure 1C). Over 20 proteins are
known to interact with optineurin but functional significance of only some of these interactions
is known. Emerging evidences suggest that optineurin is an adaptor protein with no known
enzymatic or catalytic activity. Therefore, its functions are likely to be mediated by interaction
with other proteins [46, 47].

5. Functions of optineurin

Optineurin is a multifunctional protein involved in regulating various cellular functions such
as signal transduction, membrane vesicle trafficking, autophagy, NF-κB signalling, and cell
survival [46, 47] (Figure 2). These functions are mediated through interaction with a wide
variety of proteins.

5.1. Role of optineurin in vesicular trafficking

Vesicular trafficking is one of the most fundamental processes of eukaryotic cells. As the name
suggests, it is the process of movement of cargo packaged in the vesicles or cell organelles
across the cytosol inside the cell. It ensures supply of nutrients and signals to various com‐
partments of the cell, crosstalk between the various organelles inside the cell, secretion and
exocytosis [48, 49]. In a typical vesicular trafficking event, four basic steps are involved -
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selection of cargo and budding of a vesiculo-tubular transport intermediate, movement of this
vesicle on a cytoskeletal track, tethering or docking with an appropriate target compartment
and finally fusion of the vesicle with the target membrane [50]. Several proteins like small
GTPases, motor proteins, SNAREs (Soluble N-ethylmaleimide sensitive-factor-Attachment
Protein Receptors), tethers, etc. mediate different steps of vesicular trafficking. One family of
proteins, which mediates virtually all these steps in vesicular trafficking, is a class of Ras
superfamily of small GTPases, the Rab GTPases (Ras-like GTPases in brain) [51, 52]. Rab
GTPases confer identity to certain vesicular intermediates and organelles inside the cell, e.g.
Rab5 associates with early endosome or sorting endosome and acts as a marker for it. Apart
from imparting vesicle identity to some organelles, these Rab GTPases act as master regulators
of trafficking events controlling vesicle budding, vesicle fusion, signal transduction and
motility [53]. Rab GTPases function as molecular switches in the cell as they exist in two
different forms, a GTP-bound active form that is membrane associated, and a GDP-bound
inactive form that is cytoplasmic.

Figure 2. Functions of optineurin. Optineurin is involved in several cellular pathways. Schematic shows various func‐
tions performed by optineurin inside the cell. Proteins shown in the boxes are the ones involved in these pathways.
Most of these proteins are involved in direct interaction with optineurin.
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Rab GTPases mediate their functions mainly through effector proteins.  By definition,  ef‐
fectors are the proteins,  which preferentially bind to the membrane associated activated
form of Rabs [54].  Given the importance of trafficking in normal cellular functions,  it  is
not surprising that defects in trafficking have been implicated in many diseases,  includ‐
ing glaucoma [3, 55-57].

Since optineurin interacts  with multiple proteins like Rab8,  huntingtin,  myosinVI,  trans‐
ferrin receptor (TfR),  TBC1D17 etc.  that  are involved in various intra-cellular  trafficking
pathways,  its  role  in  vesicular  trafficking  is  evident  [30,  34,  36,  43,  45].  But  the  exact
mechanisms by  which  optineurin  performs its  functions  in  trafficking  are  being  uncov‐
ered only recently.  Rab8 is  a  GTPase involved in exocytosis,  trafficking at  recycling en‐
dosome,  insulin dependent  GLUT4 trafficking at  plasma membrane,  transferrin receptor
recycling  etc  [30,  58-63].  Optineurin  preferentially  interacts  with  activated  (GTP-bound)
form of Rab8; therefore, it is an effector of some of the functions of Rab8 [34]. MyosinVI
is an actin based motor protein involved in various trafficking pathways [64].  Optineur‐
in,  in conjunction with myosinVI,  is  required for  maintenance of  Golgi  ribbon structure
[30], polarized delivery of EGF receptor to the plasma membrane [65], sorting of AP-1B-
dependent  cargo  to  the  basolateral  domain  in  polarized  cells  [66]  and secretory  vesicle
fusion at the plasma membrane [67]. Most of these processes are mediated by Rab8, also
an  optineurin-interacting  protein.  Optineurin  was  earlier  identified  as  Huntingtin-inter‐
acting protein  [68].  Later  study showed that  optineurin  interacts  with  Rab8 through its
N-terminus and recruits huntingtin to Rab8-positive vesicles [34]. Rab8 recruits optineur‐
in to link huntingtin and myosinVI to coordinate the movement of  vesicles on microtu‐
bule and actin tracks [30]. This has been reviewed in detail recently [46].

Studies  from  our  laboratory  and  others  have  shown that  optineurin  interacts  with  TfR
and mediates its trafficking [31, 32]. However, the mechanism by which optineurin regu‐
lates this,  is  not very clear.  Recently we have shown that optineurin mediates TfR recy‐
cling  by  regulating  the  function  of  Rab8  through  interaction  with  TBC1D17,  a  GTPase
activating  protein  (GAP)  [45]  (Figure  3A).  Optineurin  directly  interacts  with  TBC1D17
and also with Rab8 through adjacent but distinct  binding sites.  TBC1D17 does not bind
directly  with  Rab8  and  requires  optineurin  for  this  interaction.  Optineurin  essentially
functions as an adaptor protein to recruit  TBC1D17, a Rab GAP to its target Rab, Rab8,
leading  to  inactivation  of  Rab8  [45].  This  is  a  novel  mechanism  of  regulation  of  Rab
GTPase by its effector through a complex negative feedback mechanism.

5.2. Regulation of NF-κB by optineurin

Nuclear  factor  κB  (NF-κB)  is  a  family  of  inducible  transcription  factors,  which  is  in‐
volved in regulating expression of genes involved in cell  survival,  immunity,  inflamma‐
tion,  cell  cycle,  apoptosis  etc.  [69,  70]  (Figure  4).  Deregulation  of  NF-κB  is  associated
with  several  human  disorders  including  chronic  inflammation,  cancer,  glaucoma  and
neurodegeneration [71].
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Figure 3. A model showing regulation of Rab8 by optineurin and its defective regulation by the E50K mutant.
A. GTP-bound active Rab8 performs its various functions by its interaction with effector proteins. Optineurin, an effec‐
tor of Rab8, binds to the activated form of Rab8. Upon binding to activated Rab8, optineurin recruits a GAP, TBC1D17,
in close proximity to Rab8. This leads to inactivation of Rab8 and thus maintenance of homeostasis. B. E50K-optineurin
causes enhanced inactivation of Rab8 by recruiting TBC1D17 more efficiently.
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Figure 4. Schematic showing functions of transcription factor NF-κB. NF-κB is an inducible transcription factor. After its
activation, it can activate transcription of various genes (shown in the boxes) and hence regulate various pathways.

It is generally kept in an inactive state in the cytoplasm through interaction with IκB (inhibitor
of kappa B) inhibitory proteins. Activation of NF-κB can occur either via canonical (classical)
or noncanonical (alternate) pathway. In classical pathway, upon stimulation of cells with a
cytokine such as TNFα (tumor necrosis factorα), the inhibitory proteins IκBα and IκBβ are
phosphorylated. This phosphorylation and consequent ubiquitination marks them for
degradation by ubiquitin proteasome system. This allows NF-κB (p50-p65 complex) to move
to the nucleus, where it acts as a transcriptional activator. Upon binding of TNFα to its cell
surface receptor, TNFR1 (TNFα receptor 1), a signalling complex is formed in the cytoplasm,
which consists of several proteins including TRADD (TNFR1-associated death domain
protein), TRAF2 (TNF receptor associated factor 2) and RIP (receptor interacting protein). This
leads to activation of IκB kinase (IKK), which consists of the catalytic sub-units IKKα and β,
and the regulatory sub-unit NEMO / IKK-γ. Activation of IKK involves addition of polyubi‐
quitin chains to RIP, which then binds to NEMO that leads to activation of catalytic sub-units
of IKK [72]. Activated IKK phosphorylates IκB proteins leading to their degradation by
ubiquitin-proteasome system (Figure 5A).
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Figure 5. Schematic showing the regulation of TNFα-induced NF-κB signalling by optineurin and defective regulation
caused by its H486R mutant. A. Binding of TNFα to its receptor leads to receptor trimerization, which promotes assem‐
bly of a multimolecular complex on TNF receptor in which ubiquitination of RIP takes place. Then NEMO is recruited to
ubiquitinated RIP, which leads to activation of IKK. Active IKK phosphorylates IκB, which acts as a trigger for ubiquiti‐
nation and degradation of IκB. This leads to the release of p50/p65 complex of NF-κB and movement to the nucleus
leading to transcription activation. B. Optineurin regulates this process by acting as a competitive inhibitor of NEMO
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and binds to ubiquitinated RIP by displacing NEMO. Optineurin then recruits CYLD (a deubiquitinase) to the molecular
complex thus facilitating deubiquitination of polyubiquitinated RIP by CYLD leading to downregulation of down‐
stream pathway. C. In the case of H486R mutation in optineurin, CYLD is not recruited to ubiquitinated RIP resulting in
accumulation of ubiquitinated RIP. This leads to constitutive activation of NF-κB.

Role of optineurin in TNFα and NF-κB signalling was long suspected, when it was observed
that it shares 53% similarity to NEMO, which led to its earlier nomenclature, NRP (NEMO
related protein) [27]. It is induced by TNFα [42]. The role of optineurin in NF-κB signalling
was shown by Zhu et al. [28]. Their work showed that optineurin acts as a negative regulator
of TNFα−induced NF-κB signalling by binding to polyubiquitinated RIP [28]. Later, optineurin
was shown to interact with CYLD, product of a tumor suppressor gene CYLD involved in
cylindromatosis or turban tumor syndrome [36]. CYLD is a deubiquitinase which negatively
regulates TNFα-induced NF-κB signalling by deubiquitinating polyubiquitinated RIP [36,
73-75]. By interacting with CYLD and also with polyubiquitinated RIP, optineurin facilitates
deubiquitination of polyubiquitinated RIP by CYLD [76]. In the absence of optineurin, CYLD
is unable to deubiquitinate RIP, leading to accumulation of polyubiquitinated RIP, resulting
in enhanced basal NF-κB activity. Thus, in NF-κB signalling optineurin acts as an adaptor
protein that brings together an enzyme (CYLD) and its substrate (polyubiquitinated RIP)
together [76] (Figure 5B).

Optineurin gene expression is induced by cytokines such as TNFα and interferons [27, 77].
Human optineurin promoter has been cloned and characterized [77] and harbours, among
others, NF-κB sites. TNFα induces optineurin gene expression in various cells [42, 77]. This
induction is mediated by NF-κB, which binds to a site in optineurin promoter [77]. The NF-
κB-binding site in optineurin promoter is located very close to the transcription start site, and
is essential for TNFα mediatied induction. The activation of NF-κB is tightly regulated by
complex feedback loops. Like many of its regulators, expression of optineurin, a negative
regulator of NF-κB, is governed by NF-κB. Thus, there is a feedback loop in which TNFα-
induced NF-κB enhances expression of optineurin, which itself negatively regulates NF-κB
activation [77].

The NF-κB activity is elevated in the cells of trabecular meshwork obtained from the eyes of
glaucoma patients of diverse etiology [78]. Trabecular meshwork controls aqueous outflow
that regulates intraocular pressure. Elevated NF-κB activity, due to increased interleukin-1
level, protects glaucomatous trabecular meshwork cells from oxidative stress induced
apoptotic cell death [78]. NF-κB p50-deficient mice show glaucoma-like pathological features
such as age induced death of RGCs, hypertrophy of astrocytes with an enlargement of axons,
decreased number of axons in optic nerve leading to excavation of the optic nerve head and
production of autoantibodies against RGCs [79]. Therefore, it appears that NF-κB plays a
cytoprotective role in various tissues of the eye. Overexpressed optineurin is known to protect
NIH3T3 fibroblasts from oxidative stress-induced cell death [80]. Whether increased level of
NF-κB in glaucomatous trabecular meshwork cells leads to enhanced optineurin level or
optineurin-mediated cytoprotection, is yet to be investigated.

Optineurin interacts with UXT (ubiquitously expressed transcript) [36], a protein involved in
the regulation of NF-κB signalling [81]. UXT is localized predominantly in the nucleus and
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interacts specifically with NF-κB. UXT forms a complex with NF-κB and is recruited to the NF-
κB enhanceosome upon stimulation by TNFα [81]. Enhanceosome is a protein complex that
binds to the "enhancer" region of a gene, which can be upstream or downstream of the
promoter, or within a gene. It accelerates the gene's transcription [82, 83]. However, functional
significance of optineurin-UXT interaction has not been investigated.

5.3. Role of optineurin in autophagy

Autophagy is one of the intracellular quality control mechanisms for removing and degrading
defective proteins and organelles in the lysosomes [84]. During induction of autophagy,
specialized membranous structures known as autophagosomes are formed, which engulf the
cargo (cytoplasmic components and organelles) and deliver it to the lysosomes [85]. LC3
(microtubule-associated protein 1 light chain 3) is present in autophagosomal membranes.
Overexpressed GFP conjugated LC3 or endogenous LC3 upon immunostaining is seen
predominantly in autophagosomes; therefore, LC3 serves as a very useful marker for auto‐
phagosomes [86]. LC3 on autophagosomes interacts with autophagy receptors, which help in
recruiting ubiquitinated proteins and organelles to autophagosomes. Autophagy receptors are
believed to play a crucial role in the selection and recruitment of cargo to autophagosomes by
simultaneously binding to LC3 and ubiquitinated cargo [85, 87, 88]. Optineurin was identified
as an autophagy receptor due to its ability to bind LC3 and ubiquitin directly and simultane‐
ously through well defined binding sites [37]. Optineurin is involved in clearance of cytosolic
Salmonella in macrophages [37]. However, so far no specific protein of Salmonella has been
identified that binds to optineurin and is targeted to autophagosomes for degradation.
Overexpressed normal optineurin and its E50K mutant induce formation of autophagosomes
in retinal ganglion cells in culture and also in transgenic mice expressing E50K-optineurin [89].

5.4. Role of optineurin in cell survival and cell death

One of the glaucoma-associated optineurin mutations (2 bp insertion in exon 5) leads to
frameshift resulting in truncation of a major part of the protein. This mutant protein is unlikely
to be functional; therefore it was speculated that optineurin has a cytoprotective role in the
retina that is lost by mutations [18]. Some support for this hypothesis was provided by
experiments in which overexpressed optineurin protected NIH3T3 cells from oxidative stress-
induced cell death whereas a glaucoma-causing mutant, E50K, did not [80]. However, this
protective effect of optineurin against oxidative stress is yet to be tested in cells relevant for
glaucoma or ALS. Recently, using a mouse retinal ganglion cell line, RGC-5, it was shown that
knockdown of endogenous optineurin results in induction of apoptotic cell death due to
reduced secretion of neurotrophin 3 (NT-3) and ciliary neurotrophic factor (CNTF) [90].
Addition of NT3 to the medium was able to suppress this cell death. The level of NT-3 or CNTF
mRNA was not affected significantly upon knockdown of optineurin. Knockdown of opti‐
neurin resulted in breakdown of the Golgi structure [30, 90] and accumulation of NT-3 positive
vesicles due to a block in vesicle trafficking in the secretory pathway [90]. Overexpression of
optineurin sensitizes RGC-5 cells to TNFα-induced cell death but interestingly, in Hela cells,
overexpressed optineurin does not increase TNFα-induced cell death. In fact, in Hela cells
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optineurin inhibits TNFα-induced cell death [91]. This is consistent with the observation that
an interplay between polymorphism in TNFα and optineurin gene increases the risk of
glaucoma [92]. Thus it appears that maintenance of optimum level of optineurin is important
for survival of RGCs. The mechanism by which optineurin causes different effects in RGCs
and in Hela cells is not known.

5.5. Regulation of mitosis by optineurin

Polo-like kinase (Plk1) is an important regulator of various events in cell division cycle such
as G2/M (Gap2 of interphase to mitosis) transition, centrosome maturation, chromosome
segregation and cytokinesis. The precise control of these events depends on the kinase activity
of Plk1 [93-95]. During mitosis optineurin is phosphorylated by Plk1 at Ser177 that leads to its
relocalization to the nucleus from the Golgi. In the nucleus optineurin enhances phosphory‐
lation of MYPT1 (myosin phosphatase target subunit 1) by Cdk1 (cyclin dependent kinase 1)
that leads to binding of MYPT1 with Plk1 and inactivation of Plk1. Knockdown of optineurin
leads to defects in chromosome separation and formation of multinucleate cells [39]. Formation
of multinucleate cells upon optineurin knockdown has been observed in RGC-5 cells also [90].
Thus optineurin is involved in a feedback mechanism by which Plk1 modulates localization
of optineurin that in turn regulates Plk1 activity and mitosis progression [39].

5.6. Role of optineurin in antiviral signalling

Our body responds to viral infection through innate immune response and produces type I
interferons (IFNα / IFNβ). These induce signalling to activate transcription of many genes to
produce an antiviral state in the cells [96]. A tight regulation of this antiviral signalling is
necessary to prevent unwanted tissue damage due to inflammatory response. Optineurin has
emerged as one such negative regulator limiting IFNβ production in response to RNA virus
infection [40]. This negative regulation of IFNβ production is mediated by interaction of
optineurin with TBK1 (TANK binding kinase 1), a protein kinase involved in the activation of
IRF3/7 (interferon regulatory factor 3/7) transcription factors [97]. Optineurin inhibits TBK1-
mediated phosphorylation of IRF3 induced by Sendai virus or extracellular poly (I:C) [98]. But
another group has suggested that optineurin is an activator of TBK1 and mediates IFNβ
production in response to lipopolysaccharide or poly (I:C) [99]. UBD of optineurin plays an
essential role in this process. However, a negative regulatory role for optineurin in innate
immune response is supported by the observation that optineurin inhibits IRF3 activation in
response to MDA5 (melanoma differentiation associated gene 5) or TRIF (TIR-domain-
containing adapter-inducing interferon-β) overexpression [98].

6. Functional defects caused by optineurin mutants

Considering the importance of diverse cellular functions optineurin assists in, defects caused
by its mutants are imperative. Recent work has revealed some of the normal cellular functions
of optineurin. However, our understanding of functional defects due to mutations in opti‐
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neurin, is only beginning to emerge. So far, functional defects caused by only two disease
associated mutants are known. Here we are providing some insight into how optineurin
mutants might be leading to defective cellular functions.

6.1. Defective NF-κB regulation

Aberrant NF-κB signalling has been implicated in many neurodegenerative diseases like
Alzheimer's, Parkinson's and Huntington's diseases, and glaucoma [100, 101]. Recently it
has been shown that a glaucoma-associated mutant of optineurin, H486R, is defective in
inhibiting  TNFα-induced  NF-κB  activation  [76].  The  H486R  mutant  is  associated  with
JOAG and POAG patients, and this mutant has not been found in any normal individual
[23,  102].  This  mutation  lies  in  the  ubiquitin-binding  domain  (Figure  1A).  The  H486R
mutant  shows drastically  reduced interaction with CYLD and also shows somewhat  re‐
duced interaction with polyubiquitinated RIP [76].  The inability of  H486R mutant to in‐
hibit  TNFα-induced  NF-κB  activation  is  primarily  due  to  defective  interaction  with
CYLD although reduced interaction with RIP may also contribute to a small extent. This
conclusion is  supported by  the  finding that  overexpressed CYLD was  unable  to  deubi‐
quitinate RIP and inhibit TNFα-induced NF-κB activity in presence of the H486R mutant
[76]  (Figure  5C).  Thus  it  is  clear  that  the  interaction  of  optineurin  with  CYLD plays  a
crucial role in the regulation of TNFα-induced NF-κB activation [76].

What is the mechanism of pathogenesis of glaucoma caused by the H486R mutant? In
glaucoma, loss of vision occurs due to the death of retinal ganglion cells in the optic nerve
head. Several mechanisms have been implicated as cause of RGC death in glaucoma such as
direct effect on RGCs, activation of glial cells to secrete cytotoxic proteins like TNFα, changes
in trabecular meshwork, and autoimmunity [3, 103]. However, unlike E50K mutant, the H486R
mutant does not cause RGC death in cell culture or in transgenic mice [91, 104]. Therefore, it
is likely that indirect effects through other cells might contribute to H486R-induced glaucoma.
Increased NF-κB activity is associated with autoimmune response and also with glaucomatous
trabecular meshwork [78, 79, 105]. Deregulation of NF-κB by H486R mutant provides a basis
for exploring its indirect mechanisms of neurodegeneration associated with glaucoma. Since
CYLD knockout mice show autoimmune defects [106], it is possible that the H486R mutant,
by blocking the function of CYLD, might also cause autoimmune defects relevant for glauco‐
ma. Whether increased NF-κB activity associated with glaucomatous trabecular meshwork
[78] is a cause or an effect of elevated IOP is not known. The relevance of NF-κB deregulation
by H486R-optineurin to elevated IOP is not known but an interesting possibility is that
increased NF-κB activity in trabecular meshwork might cause increased IOP by altering
growth or other properties of trabecular meshwork cells.

The ALS-associated mutant E478G is unable to inhibit TNFα-induced NF-κB activation but
the molecular mechanism of this defect is not known [17]. This mutant is predicted to be
defective in binding to ubiquitin but this is yet to be tested. It would be of interest to know
whether this mutant is defective in binding to CYLD or not. Relevance of defective NF-κB
regulation by E478G mutant to disease pathogenesis is not clear.
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6.2. Defective cell survival and membrane vesicle trafficking

The E50K is a dominant mutation [18], which upon overexpression induces death of RGC-5
cells in culture but not of other cell lines tested. None of the other glaucoma-associated mutants
tested (H26D, H486R, R545Q) induced RGC death [91]. This suggests that the E50K mutant
causes glaucoma by directly inducing death of RGCs. Transgenic mice expressing E50K mutant
showed apoptotic death of RGCs suggesting, therefore, that RGC-5 cell line is a useful cell
culture model to study molecular mechanisms of pathogenesis of glaucoma [104]. The E50K
transgenic mice showed degeneration of entire retina resulting in reduced thickness of retina
[104]. The E50K-induced death of RGCs is mediated by oxidative stress although the mecha‐
nism of induction of oxidative stress by E50K is not known. The oxidative stress is due to
formation of reactive oxygen species probably produced by mitochondria because E50K-
induced RGC death and production of reactive oxygen species were abolished by coexpression
of mitochondrial superoxide dismutase [91]. The E50K mutant inhibits endocytic trafficking
and recycling of transferrin receptor leading to accumulation of transferrin receptor in large
foci/vesicular structures (recycling endosomes, autophagosomes). This defective Rab8
mediated TfR trafficking by E50K mutant is due to altered interaction of this mutant with Rab8
and transferrin receptor [31, 32]. Optineurin functions as an adaptor protein to mediate
negative regulation of Rab8 by the GTPase activating protein, TBC1D17. The E50K mutant
recruits TBC1D17 more efficiently to the multimolecular complex leading to enhanced
inactivation of Rab8 by TBC1D17. This leads to inhibition of Rab8-mediated TfR trafficking
and recycling. This hypothesis is supported by the observation showing that E50K-optineurin
dependent inhibition of transferrin receptor trafficking can be prevented by knockdown of
TBC1D17 or by expressing a catalytically inactive mutant of TBC1D17. A constitutively active
mutant of Rab8, Q67L also reverses E50K-optineurin induced inhibition of transferrin receptor
trafficking [45]. Whether E50K-induced TBC1D17-mediated Rab8 inactivation, or defective
TfR trafficking, play a role in RGC death, is yet to be investigated. A blockade in axonal
vesicular trafficking of brain-derived neurotrophic factor and its receptor, that are vital for
RGC survival, has been considered as one of the causes for glaucomatous cell death [107, 108].

It appears that the molecular mechanism of defective TfR trafficking by the E50K mutant is
somewhat complex. Optineurin forms a multimolecular complex containing Rab8 and TfR as
seen by co-immunoprecipitation [31, 32]. Co-immunoprecipitation identifies protein-protein
interactions, which may be direct or indirect (mediated by another protein) [109]. The E50K
mutant forms a stronger complex with transferrin receptor and Rab8. Stronger colocalization
of E50K mutant with Rab8 and transferrin receptor in the same structures/foci provides
support for this suggestion [31]. But, direct interaction between E50K mutant and Rab8 is lost
as shown in mammalian cells and also by yeast two-hybrid assay [45, 104]. Based on these
observations it appears that in the multimolecular complex, direct interaction between E50K
mutant and Rab8 is lost but indirect interaction (through other proteins) is increased. There‐
fore, it is likely that the functional positioning of these proteins in the multimolecular complex
is altered in such a way that the inactivation of Rab8 by TBC1D17 is increased in E50K-
expressing cells [45]. This is depicted schematically in Figure 3.
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Optineurin plays a role in maintaining the structure of the Golgi complex and expression of
E50K mutant results in breakdown of the Golgi [110]. However, the molecular mechanism of
this effect of E50K mutant and its relevance to RGC death are not known. Whether Golgi
breakdown is a contributory factor for E50K-induced defective trafficking and hence RGC
death is not clear. The relationship between Rab8 inactivation and Golgi breakdown by E50K
is yet to be investigated.

6.3. Defective autophagy

Formation of aggregates is one of the hallmarks of many neurodegenerative diseases like
Alzheimer's, Parkinson's, Huntington's diseases and prion deseases. Accumulation of aggre‐
gates is indicative of either an inability to degrade mutant protein or an overall inhibition of
the cellular trafficking and degradative machinery [111-113].

Overexpression  of  optineurin  results  in  the  formation  of  vesicular  structures  or  foci.
Some  of  these  foci  are  autophagosomes  and  overexpression  of  E50K  mutant  results  in
the  formation  of  larger  autophagosomes  [89].  This  formation  of  larger  autophagosomes
by  E50K  mutant  is  perhaps  due  to  a  block  in  autophagy,  which  partly  contributes  to
E50K-induced death of RGCs. This conclusion is supported by the observation that rapa‐
mycin, an inducer of autophagy, reduces E50K-induced death of RGC-5 cells [89].  How‐
ever,  the  mechanism  of  increased  formation  of  larger  autophagosomes  in  E50K
expressing cells is not known. Interaction of E50K with ubiquitinated proteins is perhaps
required for autophagosome formation because inactivation of UBD by point mutation in
E50K causes nearly complete loss of foci formation [31].

6.4. Other defects of optineurin mutants

RNA virus infection is sensed by components of innate immune response, including RIG-1
(retinoic acid inducible gene 1), MDA5 (melanoma differentiation associated gene 5) and Toll
like receptors [114-116]. This sensing of receptors leads to activation of TBK1 and IRF3 [117].
Optineurin is a negative regulator of IRF3 activation, which is involved in IFNβ production
[40]. ALS-associated mutants of optineurin, E478G and Q398X, are defective in this negative
regulation [98]. Whether any of the glaucoma-associated mutants show this defect is yet to be
examined.

Optineurin interacts with proteins involved in immunity, IK-cytokine and BAT4 [36]. But the
functional significance of these interactions is not known.

7. Conclusions and future directions

Optineurin functions as an adaptor protein and thereby plays a crucial role in several functions
including vesicle trafficking in the secretory and recycling pathways, NF-κB signalling, control
of mitosis, Golgi organization, autophagy and antiviral signalling. The relationship between
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these different functions of optineurin is not clear. Since optineurin is an adaptor protein,
mutations in it can lead to altered interactions with other proteins impairing its normal cellular
functions. Identifying the functions that are affected by disease-associated mutations of
optineurin is a major challenge towards understanding the molecular mechanisms of etiopa‐
thogenesis of neurodegenerative disease like glaucoma. Presently, our understanding of the
molecular mechanisms of functional defects caused by E50K mutation, the best studied
mutant, is far from complete. Several questions remain to be answered. How does E50K
mutation cause a block in autophagy? Does E50K mutant cause inhibition of secretion of
neutrophins/survival factors? Is Rab8 involved in this process? Does impaired transferrin
receptor trafficking or function contribute to E50K-induced RGC death? How does H486R
mutant cause glaucoma? Does it cause autoimmune defects by impairing the function of
CYLD? How do other mutants of optineurin alter its function? Why some mutations cause
ALS and others cause glaucoma? Are mutations of optineurin also prevalent in other neuro‐
degenerative diseases? Is interaction of optineurin or its mutants altered with huntingtin or
its mutants? If so, what is its relevance for Huntington’s disease and glaucoma? Role of various
mutants of optineurin in affecting known functions of optineurin needs to be examined. This
would help in understanding the molecular mechanisms of pathogenesis of glaucoma and
other neurodegenerative diseases. Most of the optineurin mutants do not directly induce death
of RGC-5 cells upon overexpression, indicating, therefore, that these optineurin mutations
might cause glaucoma by indirect mechanisms involving defects in other cells/tissues (Figure
6]. Survival of RGCs is influenced by other accessory cells like glial cells. Role of optineurin
mutants in autoimmunity and glial cell activation needs to be explored.

Figure 6. Overview of role of optineurin mutations in causing Glaucoma.
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Functional defects caused by mutations in optineurin in cells other than RGC, especially glial
cells could also be relevant for glaucoma pathogenesis. However, molecular mechanism of
such effects and relevance to glaucoma needs to be established. Transgenic and knockout
animal models are needed to understand the complex and diverse mechanisms involved in
the pathogenesis of glaucoma and ALS caused by mutations in optineurin.
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