
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 1

Placenta-Derived Stem Cells as a Source for
Treatment of Lung and Liver Disease in Cystic Fibrosis

Annalucia Carbone, Stefano Castellani,
Valentina Paracchini, Sante Di Gioia,
Carla Colombo and Massimo Conese

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/55650

1. Introduction

In the first part of this chapter we will summarize the main clinical aspects of cystic fibrosis as
well as the pathophysiology of lung and liver diseases, with particular reference to the role of
airway and biliary duct epithelia, where the cystic fibrosis gene is expressed. In the second
part we will describe the main features of placenta-derived stem cells and their potential use
for the treatment of lung and liver diseases in cystic fibrosis.

1.1. Cystic fibrosis

Cystic fibrosis (CF) is an autosomal recessive disease of epithelia in the lung, liver, pancreas,
small intestine, reproductive organs, sweat glands and other fluid-transporting tissues [1, 2].
In Caucasians the disease affects about 1 in 2500 live births and is the most common eventually
lethal genetic disease [3]. The cause of CF is different mutations in the CFTR (cystic fibrosis
transmembrane conductance regulator) gene, the product of which is a protein expressed in
the apical membrane of most epithelia. This membrane protein is a cyclic AMP (cAMP)
regulated chloride (Cl-)-channel involved in different regulatory processes of the cell, e.g. both
transcellular and paracellular ion and water transport [1, 4].

Chronic  progressive  obstructive  lung  disease  and  pancreatic  insufficiency  are  the  main
clinical symptoms of CF, where pulmonary disease is the major cause (95%) of morbidity
and  mortality  [5].  However,  liver  disease  is  also  increasing  as  the  life  span  of  these
individuals becomes longer.
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Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
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The succession of events leading from the defective CFTR to the clinical symptoms is not
completely understood. However, it is obvious that the abnormal ion transport with hyper‐
absorption of Na+ and impaired Cl- and HCO3- secretion in airway epithelial cells and
cholangiocytes leads to a disturbance of the fluid lining the airways and the bile ducts [6-10].

1.1.1. The CFTR gene

The CFTR gene was identified in 1989 and this has sharply accelerated the research on CF. The
gene, which is situated on the long arm of human chromosome 7 (7q31.2), spans approximately
250 kilobases (kb) of nucleotide sequences together with its promoter and regulatory regions.
The 27 exons form a 6.5 kb long coding sequence, which is capable of encoding a protein of
1480 amino acids [11].

The CFTR gene product is not limited to the cells of epithelial origin. In fact, CFTR mRNA
transcripts and/or CFTR protein have been demonstrated in lung fibroblasts, blood cells,
hematopoietic stem/progenitor stem cells (HSPC), alveolar macrophages, and smooth muscle
cells [12-14]. In addition to its typical plasma membrane location, CFTR was also found in
membranous organelles such as lysosomes of alveolar macrophages [15] and in both apical
and basolateral membrane of the sweat duct [16].

Although over 1,900 different mutations in the CFTR gene are known (Cystic Fibrosis Mutation
Database, http://www.genet.sickkids.on.ca/cftr/Home.html), approximately 66% of the
patients worldwide carry the F508del mutation (a deletion of three nucleotides that results in
a loss of phenylalanine at position 508 of the CFTR protein) with somewhat higher prevalence
in Western Europe and USA [17]. This type of mutation causes an incorrectly assembled CFTR
protein resulting in endoplasmatic reticulum (ER) retention and degradation of the protein
[18] as well as defective regulation [19]. Patients homozygous for F508del usually have more
pronounced clinical manifestations compared to heterozygotes and genotypes without
F508del [20-22] although these differences are highly variable [23].

1.1.2. The CFTR protein

Based on the amino-acid sequence and its structure, CFTR is identified as a member of the
superfamily of ATP-binding cassette (ABC) transporters. However, among the thousands of
ABC family members, only CFTR is an ion channel [24, 25]. ABC transporters are ubiquitous
in the entire animal kingdom due to their role in coupling transport to ATP hydrolysis. They
also are involved in many genetic diseases [26]. Like other ABC transporters CFTR contains
two membrane-spanning domains (MSDs), two hydrophilic nucleotide-binding domains
(NBDs) located at the cytoplasmic site of the protein, and, as a unique feature among ABC
transporters, a regulatory domain (R domain) located between NBD1 and MSD2. The R
domain contains several consensus phosphorylation sites for protein kinases A (PKA) and C
(PKC) [27]. The opening and closing of the CFTR Cl- channel is tightly controlled by the balance
of kinase and phosphatase activity within the cell and by cellular ATP levels [28]. Activation
of PKA causes the phosphorylation of multiple serine residues within the R domain leading
to conformational changes in this domain [29] relieving its inhibitory functions on CFTR
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channel gating [30]. Once the R domain is phosphorylated, channel opening requires binding
of cytosolic ATP. NBD1-NBD2 dimerization induces channel opening, whereas ATP hydrol‐
ysis at the NBD2 induces dimer disruption and channel closure [24, 31, 32]. Finally, channel
activity is terminated by protein phosphatases that dephosphorylate the R domain and return
CFTR to its quiescent state [28].

Besides its cAMP-induced chloride channel function, CFTR is reported to have important
regulatory functions on other ion channels and transporters. Below some of these interactions
are presented: HCO3- is conducted from the cell into the lumen [33] through reciprocal
regulatory interactions between CFTR and the SLC26 chloride/bicarbonate exchanger [34] and
loss of this mechanism contributes to both airway and pancreatic-duct disease in CF [33, 35].
CFTR enhances ATP release by a separate channel [36], not yet identified [37]. This CFTR
mediated release, although debated, is thought to be stimulated by hypotonic challenge to
strengthen autocrine control of cell volume regulation through a purinergic receptor-depend‐
ent signalling mechanism [36, 37]. Furthermore, transport of glutathione is directly mediated
by CFTR, which is essential for control of oxidative stress [38]. The interaction between CFTR
and epithelial sodium channel (ENaC) is of crucial importance for lung disease development
(see below). CFTR downregulates calcium-activated chloride channels (CaCC) [39], and
stimulates outwardly rectifying chloride channels [40]. Other channels regulated are the
volume-regulated anion channel [41] and ATP-sensitive KATP channels such as inwardly
rectifying outer medullary potassium channels [42].

Regulatory sites on NBD1 interact with several of the above processes. For example, NBD1
contains a CFTR-specific regulatory site that downregulates ENaC. This regulatory site is also
needed for CFTR-mediated interactions with other transporting membrane proteins [1, 43].
Several studies also have identified a short stretch of amino acids (-DTRL-) at the COOH
terminal end, forming a PDZ binding domain [1, 44]. This PDZ binding domain interacts with
different PDZ-domain-containing proteins, anchors CFTR to the cytoskeleton and stimulates
the channel activities through downstream signaling elements [44, 45].

2. The airway epithelium

The airway epithelium is a target for potentially noxious substances and pathogens. It plays a
critical role in maintaining a sterile undamaged airway and also separates the connective tissue
as well as the smooth muscle from the airway luminal contents. In addition to its barrier
function, the airway epithelium has a regulated fluid and ion transport together with a
secretory function, although its function is mainly absorptive [46]. It can produce mucus, and
can release mediators of the immune system such as lysozyme, lactoferrin, mucous glycopro‐
tein, immunoglobulins, chemokines, cytokines, lectins and β-defensin (cationic antimicrobial
peptides) [47, 48].

Furthermore, the airway epithelium produces antioxidants such as glutathione and ascorbic
acid [49]. Aside from these protective functions it also regulates the airway physiology via
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production of smooth muscle relaxant factors such as prostaglandin E2, nitric oxide and
enzymes, which catabolize smooth muscle contractile agonists [50, 51].

In normal human airways the surface epithelium is on average 50 μm thick and rests on a
basement membrane. The epithelium in the major bronchi and proximal bronchioles is ciliated
pseudostratified with the main cell types: ciliated and secretory columnar cells, and underlying
basal cells. In addition, immune cells, inflammatory cells and phagocytic cells migrate to and
remain within the epithelium [52].

More distally, in the terminal bronchioles, the epithelium changes towards a simple ciliated
columnar and, finally, to simple cuboidal epithelium with ciliated and non-ciliated cells (Clara
cells) [53]. In addition brush cells (columnar with microvilli only) have been identified in the
respiratory tract from nose to alveoli [54]. Scattered along the respiratory tree, various
progenitor niches are present in the airway epithelium [55].

It has been widely accepted that acinar gland serous cells are the predominant site for CFTR
expression in the human large airways, arguing for a dominant role of submucosal glands in
the volume regulation of airway surface liquid (ASL) and CF [56-59]. However, these findings
have later been debated. It has been demonstrated that normal (but not the F508del) surface
airway epithelia express CFTR in every ciliated cell, also in glandular ducts, with decreased
expression towards the distal airways. This suggests a key role for the superficial epithelium
in the initiation of ASL volume depletion and as the site for early disease [60]. It also supports
a role for CFTR in regulating glandular secretion homeostasis, but predominantly in the
submucosal ducts rather than in the serous acini as was earlier proposed.

2.1. Ion and water transport in airway epithelium

Net vectorial fluid transport depends critically on ENaC and CFTR operating in concert with
the paracellular and transcellular pathways [61].

Fluid absorption is mainly controlled by the transport of Na+ through apical ENaC, which is also
the dominant basal ion transport process. Fluid secretion is regulated by cell-to-lumen move‐
ment of Cl-, via CFTR, CaCC and volume regulated chloride channel, and/or HCO3- via the
interactions between CFTR and the SLC26 channel. In both cases the transport occurs along
the electrochemical gradient and the movement of counterions likely takes place predomi‐
nantly through leaky tight junctions [61].

Over the basolateral membrane a Na+ gradient is maintained by the Na+-K+-ATPase, which
pumps 3 Na+ ions out of the cell for every 2 K+ ions coming in. As a result the intracellular
concentration of Na+ is low (20 mM), whereas the K+ concentration is high (150 mM) [62]. In
addition, the Na+-K+-2Cl- co-transporter moves Cl- against its electrochemical gradient and
accumulates Cl- inside the cell to be released via apical channels. Secretion of Cl- is electrically
coupled to efflux of K+ through basolateral K+ conductance channels [63]. Through the
paracellular pathway, Cl- is absorbed or Na+ secreted and the water-flow is regulated by
diffusion following osmotic gradients.
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The maintenance of the electro-osmotic gradients is dependent on limiting back diffusion. The
tightness of the paracellular barrier and the molecular selectivity together contribute to the
overall epithelial transport characteristics [64]. In many epithelia the transport of different ions
is performed by different cell types, however, in airway epithelia the ciliated cell is responsible
for both secreting Cl- and absorbing Na+ [65].

2.2. The airway surface liquid

ASL, the fluid covering the airway epithelium, consists of a periciliary layer (PCL), which is a
watery layer surrounding the cilia, and of mucus on top of the cilia. Mucus is produced mainly
by the submucosal glands, while a small amount is produced by the goblet cells. In normal
airways PCL height is defined as the length of an outstretched cilium (~6 μm) [66], whereas
the ASL layer (mucus plus PCL) varies in thickness of 20-150 μm for different species (20-58
μm in humans) [67]. ASL is the first line of defense against inhaled pathogens and is important
for mucociliary clearance. It contains e.g., mucins, phospholipids, albumin, lactoferrin,
lysozyme, proteases, defensins and other peptides, ions and water [68], see also paragraph 2.1.
The composition, volume and physical properties of the ASL depend manly on secretions of
the airway submucosal glands and the absorptive properties of the surface epithelial cells.
Regulation of the balance between absorption and secretion determines the net transport of
ions across the epithelium through transcellular and paracellular pathways and, thus the mass
of salt on an epithelial surface [69].

2.3. Pathogenesis of CF lung disease

The lung of CF patients is normal at birth, but soon after birth an endobronchiolitis ensues
with surprisingly few pathogenic bacterial species (Pseudomonas aeruginosa in most cases), and
which is associated with an intense neutrophilic response localized to the peribronchial and
endobronchial spaces [70-72]. The neutrophil-dominated inflammatory response is harmful
for the host by causing exaggerated production of inflammatory cytokines and proteases
which may sustain infection [73]. CF primarily affects the airways and submucosal glands with
sparing of the interstitium and alveolar spaces until late in the disease [74, 75]. The CF lung
disease is characterized by a picture of airway epithelial injury [76] and remodeling, such as
squamous metaplasia [77], cell hyperproliferation [78], basal and goblet cell hyperplasia, and
hypersecretion of mucus due to the inflammatory profile [79-81]. The epithelial regeneration
characterized by successive steps of cell adhesion and migration, proliferation, pseudostrati‐
fication, and terminal differentiation is disturbed and characterized by delayed differentiation,
increased proliferation, and altered pro-inflammatory responses [82].

There are several hypotheses about the early pathogenetic steps in the CF lung disease and
how defective CFTR leads to the airway disease:

• The low ASL volume hypothesis claims that the ASL is isotonic both normally and in CF. CFTR
functions both as a Cl- channel and as an inhibitor of the ENaC. In CF airway epithelia, with
an absence of either molecular or functional CFTR, there will be unregulated Na+ absorption
and a decreased capacity to secrete Cl-. This leads to dehydration of the airway surface, with
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a collapsed PCL, concentration of mucins within the mucus layer, and adhesion of mucus
to the airway surface [83].

• The high salt hypothesis suggests that the ASL normally is hypotonic [84] and provides an
optimal environment for defensins. According to this view the ASL in CF patients would
have a higher salt concentration than normal because the absorbing function of ENaC
depends on the state of CFTR and cannot be activated when CFTR is defective or absent [84].

• The low pH hypothesis focuses on the interactions between CFTR and the SLC26 and proposes
an acidic ASL. This may compromise the function of airway immune cells and increase toxic
oxidant species. Lowering the pH may also eliminate electrostatic repulsive charges
between organisms and facilitate "tighter" biofilm formation as well as reduce electrorepul‐
sive forces between bacteria and negatively charged mucins. Furthermore, ciliary beat
frequency in bronchial epithelium is reduced when external pH falls [85]. All the above
factors may inhibit mucociliary clearance (MCC) and thus elimination of bacteria from the
airways [86].

• The low oxygenation hypothesis postulates that the oxygen content of the ASL is low, due to
build-up of mucus plugs, resulting in enhanced growth of the facultative anaerobic
P.aeruginosa [87].

• The defect gland function hypothesis suggests that the primary defect in CF is reduced fluid
secretion by airway submucosal glands and possibly altered secretion of mucous glycopro‐
teins [88].

• The soluble mediator hypothesis proposes that signalling molecules within the ASL itself are
controlling ASL volume [89]. These molecules are ATP, which is breathing- or shear-stress
induced [90], and adenosine. ATP interacts with receptors such as the purinergic P2Y2
receptors and adenosine reacts with the adenosine A2b receptors, that mediate inhibition
of ENaC and activation of both CFTR and CaCC [91, 92]. This mechanism is also supposed
to include PDZ interactions and cytoskeletal elements [1].

An interesting question is what the role of aquaporins (AQP) is in the production of ASL,
compared to paracellular water flow and CFTR. In the epididymis, CFTR appears to regulate
AQP-mediated water permeability [93]. In this tissue, CFTR is co-localized with AQP9 in the
apical membrane, and this association promotes the activation of AQP9 by cAMP [94]. In a
heavily debated study, concerning the clinical benefit of nebulized hypertonic saline in cystic
fibrosis, an important role of amiloride-inhibitable AQP water channels in the generation of
ASL was proposed [95]. However, although the positive effect of hypertonic saline as such is
not disputed, the question whether this effect is mediated by AQP has received conflicting
answers [96, 97] and is still open. Recently, it has been found that interleukin (IL)-13 enhances
the expression of CFTR but abolishes the expression of AQP in airway epithelial cells [98]. In
conclusion, the relation between CFTR and AQP needs further study.

The differences in the proposed hypotheses are due to difficulties in determining the accurate
composition of the ASL because of the very small depth of the layer. Among the problems
encountered there are difficulties to collect an adequate amount of ASL without disturbing the
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epithelium and inducing secretion from submucosal glands or leakage of interstitial fluid into
the lumen, which may modify the composition of the ASL [99].

Furthermore, fluid secretion by submucosal glands differs markedly between mammalian
species. For example, in transgenic mice that serve as animal models for CF, the fluid transport
in the airways is much less affected than in CF patients [100]. It is also possible that variant
forms of ENaC or different regulatory components operate in different systems [101].

3. The biliary duct epithelium

The biliary tree is a complex network of conduits within the liver that begins with the canals
of Hering and progressively merges into a system of ducts, which finally deliver bile to the
gallbladder and to the intestine. Cholangiocytes are the epithelial cells forming the biliary
epithelium which shows a morphological heterogeneity that is strictly associated with a variety
of functions performed at the different levels of the biliary tree [102]. Thus, the canals of Hering,
located at the ductular-hepatocellular junction, constitute the physiologic link of the biliary
tree with the hepatocyte canalicular system and they are the site where a facultative progenitor
cell compartment resides; these liver progenitor cells are variably elicited only after liver injury.
Given the strong capacity of mature hepatocytes to proliferate, cholangiocyte ability to behave
as liver progenitor cells becomes evident only when hepatocellular proliferation is hampered
as a result of severe liver damage, as that induced by several toxins or drugs, or occurring
under certain conditions, i.e. viral hepatitis or non alcoholic steatohepatitis [103]. Cells lining
the intrahepatic biliary tree have different functional and morphological specializations: the
terminal cholangioles (size <15 μm) have some biological properties such as plasticity (i.e., the
ability to undergo limited phenotypic changes) and reactivity (i.e., the ability to participate in
the inflammatory reaction to liver damage); interlobular (15-100 μm) and large ducts (100 μm
to 800 μm) modulates fluidity and alkalinity of the primary hepatocellular bile.

3.1. Ion and water transport in cholangiocytes

In addition to funnelling bile into the intestine, cholangiocytes are actively involved in bile
production. In humans, around 40% of the total bile production is of ductal origin. Cholan‐
giocytes exert a series of reabsorptive and secretory process which dilute and alkalinize the
bile during its passage along the biliary tract. Modifications of ductal bile appear to be tightly
regulated by the actions of nerves, biliary constituents, and some peptide hormones like
secretin [104]. Accordingly to in vivo and in vitro models, it is possible to distinguish between
three different bile flow fractions: 1) the canalicular bile salt-dependent flow that is driven by
concentrative secretion of bile acids by the hepatocytes followed by a facilitated efflux of water;
2) the canalicular bile salt-independent flow, which is also created by hepatocytes but through
active secretion of both inorganic (bicarbonate) and organic (glutathione) compounds; and 3)
the ductal bile flow, that is the bile salt-independent flow contributed by cholangiocytes,
mainly through production of a bicarbonate-rich fluid in response to secretin and other
regulatory factors. Cl- secretion into the ductal lumen is the driving force of a chloride/
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bicarbonate exchanger that exports HCO3
- into the bile flowing into the biliary tree. Indeed,

this AE (anion exchanger) activity is facilitated by the outside to inside transmembrane
gradient of Cl- at relatively high intracellular concentrations of HCO3-, specially upon secretin
stimulation. The AE activity in the liver is operated by AE2/SLC4A2 which is localized not
only in the canaliculi but also in the luminal membrane of bile duct cells [105]. Experiments of
RNA interference with recombinant adenovirus expressing short/small hairpin RNA have
confirmed that AE2/SL4A2 is indeed the main effector of both basal and stimulated Na+-
independent Cl-/HCO3

- exchange in rat cholangiocytes [106]. Besides acid/base transporters
cholangiocytes possess other ion carriers like those for Cl-, Na+, and K+, which greatly contrib‐
ute to intracellular pH regulation and bicarbonate secretion. Thus, CFTR had been localized
at the apical side, where it plays a role in biliary excretion of bicarbonate [107, 108]. Although
bicarbonate permeability through activated CFTR has been shown in several epithelia [109],
its main contribution to biliary bicarbonate secretion appears to occur through a coordinated
action with AE2/SL4A2 [106, 110, 111]. In addition to CFTR, cholangiocytes possess a dense
population of Ca2+-activated Cl- channels. These channels are responsive to interaction of the
purinergic-2 (P2) receptors with nucleotides (mainly ATP or UTP) [112, 113]. The apical fluxes
of anions results in increased osmotic forces in the bile duct lumen which in the presence of
AQPs contributes to water flux. AE2/SLC4A2 and CFTR colocalize with AQP1 in cholangiocyte
intracellular vesicles wich coredistribute to the apical cholangiocyte membrane upon both
cAMP and secretin stimulations [114].

3.2. The pathogenesis of CF liver disease

CF is associated with liver disease in almost 30% of all  patients. In general,  CF-associat‐
ed liver disease develops during the first  decades of life and does not progress rapidly.
The  diagnostic  criteria  were  initially  established  by  Colombo et  al.  [115].  Hepatobiliary
disease in CF encompass a wide variety of complications, including steatosis, focal biliary
cirrhosis (FBC), multilobular biliary cirrhosis (MBC), microgallbladder, distended gallblad‐
der,  cholelithiasis,  intraheapatic  sludge  or  stones,  and  cholangiocarcinoma  [116].  The
pathogenesis of steatosis (fatty liver) is not directly ascribed to the CFTR gene defect but
has been attributed to malnutrition,  essentially fatty acid deficiency,  carnitine or choline
deficiency, or insulin resistance [117].

With  regarding  to  the  pathogenesis  of  FBC  and  MBC,  various  hypotheses  have  been
proposed [118, 119]:

• The low chloride secretion hypothesis proposes that loss of CFTR function leads to blocked
biliary ductules with thick periodic acid-Schiff positive material leading to acute and chronic
periductal inflammation, bile duct proliferation and increased fibrosis in scattered portal
tracts. Hepatic stellate cells (important drivers of hepatic fibrosis) become activated to
produce collagen and stimulate the bile duct epithelium to produce the profibrogenic
cytokine TGF-β. The progression of FBC to MBC and portal hypertension, which occurs in
up to 8% of patients, may take years to decades, and should be viewed as a continuum [120].
Considering CFTR as a driving force for Cl-/HCO3

- exchange, the postulated sequence of
CF-associated hepatobiliary complications is that loss of functional CFTR protein in the
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apical membrane of cholangiocytes presumably initiates a cascade of abnormal Cl- and
HCO3

- secretion, decreased bile flow, bile duct plugging by thickened secretions, and
cholangiocyte/hepatocyte injury [10].

• The cholangiocyte damage hypothesis has been put forward by the studies of Freudenberg et
al. in the F508del mouse model for CF [121]. These mice present with increased fecal loss of
bile acids and a higher bile salt-to-phospholipid ratio in cell membranes, which was found
to be associated with damage to intrahepatic bile ducts determining increased permeability
of unconjugated bilirubin into cholangiocytes. They suggest that cholangiocytes injury is
caused by a more hydrophobic bile acid pattern and an increased detergency from aug‐
mented bile salt-to-phospholipid ratio caused by hyperbilirubinbilia. In addition, lower
gallbladder pH values and elevated calcium bilirubinate ion products in bile of CF mice
raise the likelihood of supersaturating bile and forming black pigment gallstones [122].

• The purinergic hypothesis suggests that CFTR regulates the release of ATP into the bile duct
lumen which regulates cholangiocyte secretion via the activation of the purinergic P2Y
receptors [123]. Accordingly, Fiorotto et al. [124] have demonstrated that the choleretic effect
of ursodeoxycholic acid (UDCA) is mediated via CFTR-dependent ATP secretion.

• The mechanosensitive pathway hypothesis indicates that the mechanical effects of fluid flow or
shear stress at the apical membrane of biliary epithelial cells results in stimulation of ATP
release and Cl- secretion [123, 125]. The decreased bile flow due to CFTR dysfunction may
be associated with alterations in mechanosensitive pathways which exacerbate abnormali‐
ties in Cl- secretion and bile formation [123, 125].

• Finally, the biliary HCO3
- umbrella hypothesis postulates that adequate apical biliary HCO3

-

secretion would appear crucial for protection of cholangiocytes against uncontrolled
invasion of protonated bile acid monomers from bile via apical membranes into the
cholangiocyte interior, inducing damage and apoptosis [126]. The Cl-/HCO3

- exchanger AE2/
SLC4A2 and an intact glycocalyx appear to be crucial for the biliary HCO3

- umbrella [127].

4. Placenta-derived stem cells

The placenta is a highly specialised organ, about 15 to 25 centimetres in diameter, that plays
an important role in maintaining normal pregnancy and supporting the normal growth and
development of the fetus. It is made up of a fetal and a maternal component: the fetal compo‐
nent include amnion and chorion as well as the chorionic plate, from which chorionic villi
extend and make intimate contact with the uterine decidua during pregnancy; the maternal
part of the placenta is the decidua basalis and it derived from endometrium.

As reported by Parolini et al. [128], different cell types can be isolated from the regions of the
placenta:

• human amniotic epithelial cells (hAEC),

• human amniotic mesenchymal stromal cells (hAMSC),

Placenta-Derived Stem Cells as a Source for Treatment of Lung and Liver Disease in Cystic Fibrosis
http://dx.doi.org/10.5772/55650

11



• human chorionic mesenchymal stromal cells (hCMSC),

• human chorionic trophoblastic cells (hCTC).

In several studies hAEC, hAMSC, and hCMSC have been isolated and characterized for
phenotypic and pluripotency molecular markers; moreover, has been demonstrated that these
cells display differentiation potential and immunomodulatory effects [129].

hAEC express a pattern of mesenchymal markers while are negative for those of hematopoietic
origin (CD90+, CD73+, CD105+, CD44+, CD29+, CD45−, CD34−, CD14−, HLA-DR−), and these cells
are capable to differentiate in vitro into cell types of all 3 germ layers [128]. Like the amniotic
epithelial fraction, the human amniotic and chorionic mesenchymal regions display the same
pattern of phenotypic markers of bone marrow (BM) MSC, also displaying the expression of
pluripotency markers (such as Oct-4) and the capability to differentiate toward different
lineages including osteogenic, adipogenic, chondrogenic, and vascular/endothelial [128].

Placenta-derived stem cells seems to have a multipotent potential towards other cell types
different from mesenchyme cells. hAMSC and hCMSC were shown to differentiate in vitro
into a range of neuronal, oligodendrocyte and astrocyte precursors [130-132]. In addition, the
use of amniochorionic membrane as a scaffold has been proposed for improving osteogenic
differentiation of chorionic membrane-derived cells [133]. Alviano and colleagues reported
that hAMSC display the ability to differentiate into endothelial cells in vitro [134]. Recently it
has been shown that hAEC can differentiate in vitro in cells with hepatic characteristics, in
particular in cells with the ability to differentiate into parenchymal hepatocytes as well as
biliary cells that form duct-like three-dimensional structures when cultured on extracellular
matrix [135]. hAMSC were demonstrated to differentiate into hepatocyte-like cells as judged
by functional and phenotypic markers [136].

As regard the osteogenic and adipogenic differentiation of hAEC and hAMSC, discrepant
results have been reported [137, 138], most likely due to the heterogeneous nature of these cell
populations and due to the need to isolate the right population of progenitor cells from
placental tissues. In this respect, recent efforts have been dedicated to optimizing isolation,
culture, and preservation methods for placenta-derived cells; these include a study to deter‐
mine the quantity and quality of amnion cells after isolation and culture [138], while other
studies aimed to define long-term expansion methods to obtain a large cell population for
analysis before use in cell-based therapies.

Sources such as amnion tissue offer outstanding possibilities for allogeneic transplantation
due to their high differentiation potential and their ability to modulate immune reaction.
Limitations, however, concern the reduced replicative potential as a result of progressive
telomere erosion, which hampers scalable production and long-term analysis of these cells.
The establishment and characterization of human amnion-derived stem cells lines immortal‐
ized by ectopic expression of the catalytic subunit of human telomerase (hTERT) resulted in
continuously growing stem cells lines that were unaltered concerning surface marker profile,
morphology, karyotype, and immunosuppressive capacity with similar or enhanced differ‐
entiation potential for up to 87 population doublings [139].
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Interestingly, two groups found a more reliable and unlimited non-animal source for large-
scale expansion of hMSC for future allogeneic clinical use: they cultured MSC with animal-
free culture supplements such as human platelet lysate (PL), a suitable alternative to fetal calf
serum (FCS) showing that these cells exhibit an increased proliferation potential and in vitro
life span compared to cells cultured with FCS [140, 141]. On the other hand, it has been
demonstrated that phenotypic shift of hAEC in culture is associated with reduced osteogenic
differentiation in vitro, therefore different culturing methods may influence cell behavior [137].

In a recent comparative phenotypical study, BM- and placenta-derived mesenchymal cells has
been shown that have a very similar morphology, size and cell surface phenotype for charac‐
teristics MSC markers [142]; in contrast, differences in proliferation potential have been
observed between these two cell types [142]. Another study found different expressions of the
chemokine receptors CCR1 and CCR3, which are only present on placenta-derived cells, while
the adhesion molecules such as CD56, CD10, and CD49d have been shown to be more highly
expressed on placenta-derived mesenchymal cells [143]. On the basis of numerous studies in
the literature which clearly show the lack of significant differences between BM- and placenta-
derived mesenchymal cells types, and on the basis of the fact that placenta is readily and widely
available, a good manufacturing practice-compliant (GMP) reagents and protocols has been
established for isolating and expanding human placenta-derived MSC that can be directly
translated to the clinical trial setup [144].

4.1. Immunomodulatory features of placenta-derived stem cells

Since the placenta is fundamental for maintaining fetomaternal tolerance during pregnancy,
the cells present in placental tissue may have immunomodulatory characteristics; this aspect
contributes to make cells from placenta good candidates for possible use in cell therapy
approaches, with the possibility of providing cells that display immunological properties that
would allow their use in an all-transplantation setting.

It has been demonstrated that cells derived from placenta are negative for the expression of
major histocompatibility complex (MHC) class II and for co-stimulatory molecules; all this is
reflected as immune tolerance [128, 145]. Furthermore, these cells possess remarkable immu‐
nosuppressive properties and can inhibit the proliferation and function of the major immune
cell populations, including dendritic cells (DCs), T cells, B cells and natural killer (NK) cells.
Most of these studies have been recently summarized in up-to-date reviews [146-148]. Here,
we give a brief account of the major findings concerning hAMSC.

Numerous  studies  showed  that  amniotic  and  chorionic  membrane-derived  cells  can
suppress the T lymphocyte proliferation induced by alloantigens, mitogens, anti-CD3 and
anti-CD28 antibodies in in vitro and in vivo models [149-152]. The suppression of lympho‐
cyte population was shown to be not dependent on cell death but on decreased prolifera‐
tion and increased numbers of regulatory T cells [145]. Inhibition of T cell proliferation by
placenta-derived stem cells appears to be mediated by both cell–cell interaction [153] and
release of soluble factors such as indoleamine 2,3-dioxygenase (IDO), transforming growth
factor β (TGF-β), and IL-10 [145, 154, 155]. The immunosuppressive activity of hAMSC on
T cells seems to be not only direct but involves also DCs. Indeed, cells derived from the
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mesenchymal region of human amnion impaired the differentiation of monocytes into DCs
by inhibiting the response of the former to maturation signals, reducing the expression of
co-stimulatory molecules and hampering the ability of monocytes to stimulate naive T cell
proliferation [156]. The mechanism involved is not known, however, this inhibitory effect
might be mediated via soluble factors, like IL-6, and may be dose-dependent, as it has been
shown for BM-derived MSCs [157] (Figure 1).

This immune-privileged status of placenta-derived stem cells has been indicated as the cause
of lack of rejection in allo- and xeno-transplantation settings. In this regard, several studies
examined the fate of amniotic membrane derived stem cells grafts. Wang et al. [158] studied
allogeneic GFP+ mouse intact amniotic epithelium grafts heterotopically transplanted in the
eye. Kubo et al. [159] studied xenotransplanted human amniotic membrane in the eye of rats.
Several preclinical studies have already reported prolonged survival of human placenta-
derived cells after xenogeneic transplantation into immunocompetent animals including
swine [152] and bonnet monkeys [128], with no evidence of immunological rejection.

Figure 1. Effects of placenta-derived stem cells on immunocytes. Placenta-derived cells exert immunomodulatory ef‐
fects both on dendritic cells and T cells. Their inhibitory role is dependent on cell–cell contact and secreted soluble
factors. Since most of the studies have focused on hAMSC, this cell type is represented in the scheme. iDC: immature
dendritic cell; IDO: indoleamine 2, 3-dioxygenase; IL-6: interleukin-6; IL-10: interleukin-10; mDC: mature dendritic cell;
TGF-β: transforming growth factor β.
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4.2. Clinical application of placenta-derived stem cells

More than once century ago, Davis was the first to report the use of the amniotic membrane
(AM) to heal skin wounds [160], prompting subsequent applications in the treatment of leg
ulcers [161, 162] and burns [163], as well as for applications in ophthalmology [164]. These
studies have suggested that placenta-derived stem cells may be useful for treating a range of
pathologic conditions, including neurological disorders [165-167], spinal cord injury [128,
168], critical limb ischemia [169], inflammatory bowel diseases [170], and myocardial infarction
[171]. Here, we will focus on the potential application of placenta-derived stem cells to lung
and liver, the major organs interested by CF.

5. Potential application of placenta-derived stem cells to CF

5.1. Placenta-derived stem cells for lung diseases

The first report demonstrating a therapeutic effect of placenta-derived stem cells in lung
diseases is that by Cargnoni and colleagues [172]. In a mouse model of bleomycin-induced
lung injury, transplantation of fetal membrane-derived cells resulted in a reduction in the
severity of pulmonary fibrosis. This result was obtained when cells were administered either
systemically (intravenous or intraperitoneal) or locally (intratracheal) 15 min after intratra‐
cheal bleomycin instillation and in two different settings, i.e. either using allogeneic or
xenogeneic (a mixture of 50% human amnion/chorion mensenchymal stem cells and 50%
hAEC) cells. Although the inflammatory score was not decreased, a reduction in the number
of infiltrating neutrophils was observed. It is worth noting that that the presence of neutrophils
is known to be associated with poor prognosis in idiopathic pulmonary fibrosis in humans
[173]. The question arises whether these anti-inflammatory and anti-fibrotic effects may be due
to the engraftment of placenta-derived stem cells or to the secretion of soluble factors. In this
study allogeneic or xenogeneic cells were detected in the injured lung of transplanted mice,
although not in a quantitatively fashion, by means of PCR analysis, and these results are in
accordance with those obtained by Bailo and colleagues, who demonstrated microchimerism
upon transplantation of human amnion and chorionic cells in neonatal swine and rats [152].
The release of soluble factors has been addressed in a further study. The administration of
conditioned medium generated from hAMSC to bleomycin-treated mice determined a
reduction in lung fibrosis scores in terms of fibrosis distribution, fibroblast proliferation,
collagen deposition and alveolar obliteration [174]. This study support the increasing evidence
that MSC isolated from various sources produce bioactive molecules, so that injection of
conditioned medium obtained from MSC could be an effective experimental treatment for
different tissue injuries [175, 176]. Further studies are therefore warranted to elucidate the
mechanisms of action of placenta-derived cells in this model, in particular paracrine factors
that act to down-regulate neutrophil recruitment.

It has to be said that the role of exogenous stem cells in pulmonary fibrosis is controversial,
meaning that some studies have demonstrated that these cells can act as a potential source of
fibroblast, which may accentuate the fibrotic process [177]. Since these findings were obtained
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with BM-derived stem cells, it should be further assessed if a similar behaviour is presented
by amniotic-derived stem cells. Of note, placenta-derived cells did not exert any profibrotic
effect after their transplantation [172].

In vitro studies have so far demonstrated that co-cultures of hAMSC and CF epithelial cells
originated from bronchi can elicit CFTR protein expression in 33-50% hAMSC, in front of 6%
prior to the co-cultures, and the lower the hAMSC:CFBE41o- ratios the lower the CFTR
expression in hAMSC [136]. Indirect co-cultures data indicate that this effect is primarily due
to the contact between hAMSC and epithelial cells, and not due to factors acting by a paracrine
manner. BM-MSC acquired an airway epithelium phenotype when co-cultured with respira‐
tory epithelial cells and determined a partial resumption of the chloride secretion defect in CF
epithelia [178]. Preliminary analysis of the chloride transport defect in co-cultures between CF
cells and hAMSC showed a partial correction of the chloride efflux (Carbone et al., unpublished
results). Furthermore, since only 6-20% of corrected cells is needed to revert the basic defect
in chloride secretion [179], our data showing that 33-50% of hAMSC acquired CFTR expression
shed a positive light on the use of amnion MSCs in the CF treatment. Overall, these data point
out to a cross talk between amniotic and epithelial cells, for which a critical number of hAMSC
is needed. Indeed, in other co-culture systems, developed with MSC and chondrocytes, it has
been shown universally that the more chondrocytes the lower the expression of extracellular
matrix genes and functional properties of engineered cartilage [180, 181]. Since the cellular
interactions between epithelial and mesenchymal cells in monolayer co-culture are likely to
be bi-directional, a possible mode of action could be cross talk between cells via gap junctions,
which has been observed in vivo in the lung between transplanted MSC and resident epithelial
cells [182].

Overall, the potential usefulness of placenta-derived stem cells in CF lung disease might be
either in the correction of the early basic defect (chloride transport) or in late remodelling
events (pulmonary fibrosis).

5.2. Placenta-derived stem cells for liver diseases

Several preclinical studies have reported to date that placenta-derived stem cells can engraft
into the liver and perform hepatic functions in vivo. Takashima and colleagues [183] showed
that after transplantation of human amniotic membrane into the peritoneum of SCID mice,
human albumin could be detected in the sera and peritoneal fluid of these animals from day
1 until day 7. Sakuragawa and colleagues [184] showed that the transplantation of hAEC
transduced with the β-galactosidase gene into the livers of SCID mice resulted in detection of
β-galactosidase-positive cells at 1 week after transplantation, indicating that the transplanted
cells had been integrated into the hepatic parenchyma within a few days [184]. More recently,
it has been shown that six months after transplantation of hAEC into the livers of SCID/beige
mice that had been pretreated with retrorsine, most mature liver genes were expressed at levels
comparable to those of authentic human adult livers, including the major CYP genes, other
metabolic enzymes, plasma proteins, and hepatocyte-enriched transcription factors and genes
encoding hepatic-transporter proteins [185].
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These studies provide compelling evidence in support of the functional hepatic potential of
hAEC in vivo, thereby supporting the potential of hAEC as a useful tool for liver regeneration
in the future.

MSC represent an alternative tool for the establishment of a successful stem-cell-based therapy
of liver diseases [186] with preliminary clinical improvements in acute and chronic hepatic
diseases [187, 188]. To date, several studies on animal models reported the beneficial effects of
MSC in promoting hepatic tissue regeneration [189]. Overall, a number of different mecha‐
nisms contribute to the therapeutic effects exerted by MSC, among which their differentiation
into functional hepatic cells. However, these studies have not provided definitive evidence
that MSC have a capability to differentiate into functional hepatocytes in vivo [190]. Rather, the
observed improvements could be attributed to the known property of MSC to produce a series
of growth factors and cytokines that could suppress inflammatory response, reduce hepato‐
cytes apoptosis, regress liver fibrosis, and enhance hepatocytes functionality [191, 192].

Although  numerous  studies  have  reported  that  BM-derived  MSC  can  reduce  carbon
tetrachloride (CCl4)-induced liver  fibrosis  in mice,  the mechanism by which MSC repair
the fibrosis is  unclear,  and the results are controversial  [190,  193-197].  One possibility is
that MSC differentiate into hepatocytes, because of the in vivo  niche, and secrete growth
factors that promote liver regeneration. Another possibility is that MSC suppress hepatic
stellate cells  activity and secrete metalloproteinases (MMPs),  thereby eliminating deposi‐
tion  of  extracellular  matrix  [198].  It  has  been  demonstrated  that  fibrosis,  infiltration  of
neutrophils,  synthesis of collagen I and α-smooth muscle actin (α-SMA), and expression
of  inflammatory were all  reduced by infusion of  isogenic  MSC [199].  It  is  possible  that
these responses were partly due to the upregulation of cytoglobin expression by hepatic
stellate cells, which protect against oxidative stress and controls tissue fibrosis and at the
same time inhibits the activation of those cells to become myofibroblasts [200]. Finally, it
has been demonstrated that intravenous administration of MSC caused an increase in IL-10
mRNA in the liver and protein in the blood in a CCl4-induced liver fibrosis rat model [201].
IL-10 is an inhibitor of many cytokines that stimulate liver fibrosis,  such as IL-6, TNF-α
and TGF-β, all downregulated by the MSC infusion. In addition, IL-10 can suppress tissue
inhibitor  of  metalloproteinase  (TIMP)-1  expression  and  thereby  relieve  MMP-1  to  de‐
grade liver collagen deposits [202, 203].

In a recent study, hAMSC were infused in mice with CCl4-induced hepatic cirrhosis and
exerted various beneficial effects such as reduction of hepatic stellate cell activation, decrease
of hepatocyte apoptosis, and reduction of hepatic fibrosis [204]. Infusion of hAMSC also
depressed hepatocyte senescence and resulted in engraftment of hAMSC into the host liver as
judged by the expression of the hepatocyte-specific markers, human albumin and α-fetopro‐
tein. Finally, a study demonstrated that human AM, when applied as a patch onto the liver
surface, reduced progression of experimental biliary fibrosis induced in rats by the biliary duct
ligation procedure [205]. Again, a beneficial effect related to the release of soluble factors by
the human AM patch has been invoked, since no massive (or at least very low/undetectable)
engraftment of AM-derived cells occurred in the host liver.
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6. Conclusion

Placenta-derived stem cells are endowed with interesting features that are important for
choosing them as a source for approaches aimed to regenerative medicine: immune-privileged
status, secretion of biomolecules with anti-scarring and anti-inflammatory properties, and,
least but not last, no ethical concerns. Although the AM and AM-derived stem cells have been
used in the clinics for over one hundred years, their employment in lung and liver diseases is
coming on the stage only in the last few years. Placenta-derived stem cells have been recently
more thoroughly characterized for their phenotype, multipotency and expression of pluripo‐
tency genes.

In CF, lung disease has been the target first of gene therapy approaches brought to the clinical
stage [206, 207], hesitated in a slow progression due to limited efficiency of gene transfer
vectors and pathophysiological barriers, and then of stem cell-based experimental treatments
in mice [208]. Despite a very low level of engraftment of donor HSPC into the nose and the
gut, significant CFTR mRNA expression and a measurable level of correction of the electro‐
physiological defect were observed after transplantation of wild-type marrow cells into CF
mice [209]. It is uncertain whether this effect is due to the presence of CFTR-expressing
epithelial cells derived from donor cells or to the paracrine effects of transplanted cells. Other
sources, such as umbilical cord blood, embryonic stem cells, and induced pluripotent stem
cells are being evaluated [210, 211]. Recent in vitro data on the acquisition of CFTR expression
by hAMSC indicate placenta-derived stem cells as a possible source for treating the early
phases of CF lung disease. Anyhow, caution should be taken when stem cell-based therapies
are proposed for an inflammatory disease like that of CF lung, in view of the fact that these
cells could be immunosuppressive and/or contribute to the inflammatory process. There is no
available information concerning the immunomodulatory effects of placenta-derived stem
cells in CF lungs.

Liver fibrosis is a common outcome of a variety of chronic liver diseases following different
insults, including the biliary disorder occurring in CF. Orthotopic liver transplantation remains
the only viable therapeutic option to treat CF patients with hepatic cirrhosis, and hepatocyte
transplantation has never been attempted in this disease. The use of progenitor cell transplan‐
tation is emerging as a potential alternative, and several potential sources have been identified
for the isolation of these cells [212]. For the treatment of liver cirrhosis, this approach has been
performed mainly with BM-derived MSC [213, 214]. Given the drawbacks related to the use
of BM-derived MSC (limited frequency, invasive procedure, age and disease state affecting
the collection of healthy autologous BM), placenta-derived stem cells could represent a prime
candidate for the treatment of liver fibrosis, since they are immunotolerated, can be isolated
and produced at high yield, and do not provoke ethical debate. AM and AM-derived stem
cells have been demonstrated to halt the progression of liver fibrosis and its evolution towards
cirrhosis, but the long-term safety and therapeutic efficacy are not known yet, which warrant
further studies. Moreover, optimal therapeutic regimens for clinical application of placenta-
derived stem cells, such as optimal doses, transplantation route and interval period for
transplantation should be evaluated in detail [215].
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