
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 6

Intelligent Traffic System: Implementing
Road Networks with Time-Weighted Graphs

Hatem F. Halaoui

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/55654

1. Introduction

This section introduces the chapter’s main subject. First, spatial temporal and spatio-temporal
databases are presented as the main databases used in all Geographical Information Systems
(GISs) including driving direction systems. Second, a brief introduction of GIS is presented.
Finally a brief overview of existing driving path application is included as applications similar
of the work proposed here.

1.1. Spatial databases

As most kinds of applications need databases, Geographical Information Systems use what is
called spatial databases. Spatial (from space) databases are databases used to store information
about geography like: geometries, positions, and coordinates. Also they include spatial
operations to be applied on such kinds of data like distance, area, perimeter, direction, and
overlap of geometries.

Who might use spatial databases? The following do use spatial databases:

• Mobile phone users: where is the nearest gas station?

• Army field commander: enemy movement?

• Insurance risk manager: houses to be affected?

• Medical doctor: same treatments in some area?

• Transport specialist

• Sports: what seats have good view?

© 2013 Halaoui; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

• Emergency services: locate calls.

1.2. Temporal and spatio-temporal databases

A database contains information and transactions that need to be stored, manipulated and
retrieved. A number of computer applications that use databases deal only with the most recent
or current data. Such a database is called snapshot databases, which represents the data at the
current time with recent values. On the other hand, in some applications, users might need to
know not just the current information but also past or future information as well. Databases
dealing with past, present, and future data are called temporal databases or historical data‐
bases [5]. Such databases support applications such as managerial information, and geograph‐
ical information. An example of this is a bank account where the customer might need to know
old balances or old transactions. In such a case, users need a history of the information. These
databases process a temporal dimension to store and manipulate time-varying data. In
temporal databases, time is involved in two common ways [5]:

• Time stamp: one attribute is used to save the time of the validity

• Time interval: two attributes are used to indicate the interval of validity (start time and end
time).

It is obvious that most spatial databases are also changing with time. For example, road
networks will be constantly changing, areas of lands on maps may change, a moving plane
will change its position over time, and so on. In such a case, we have spatial or geographical
data that is changing with time. In this case spatial database becomes temporal as well and is
called spatio-temporal database. Such databases are categorized in three main categories:

• Discretely changing spatio-temporal databases: like the changes of the geometry of land
parcels where it could occur once every year or more.

• Continuously changing spatio-temporal databases: mostly deal with moving objects like
plane or cars where the position of the object is changing continuously with time.

• Third category that is a combination of the above.

In reality, most spatial databases change with time and hence most of them are spatio-temporal
databases.

1.3. Geographical information systems

Geographic Information System (GIS) is a collection of computer hardware, software for
capturing, managing, analyzing, and displaying all forms of geographical information [5].

Geographical Information Systems are being involved in most aspects of life and businesses.
All GIS’s use spatial databases as their data warehouse that are manipulated and presented in
a user interface. Later in this chapter, driving direction example queries are given as examples
of GIS applications.

Global Navigation Satellite Systems - From Stellar to Satellite Navigation146

1.4. Driving path and GNSS as a GIS applications

Global Navigation Satellite System or GNSS is a satellite navigation system that uses satellites
to provide autonomous geo-spatial positioning with global coverage. It allows small devices
(especially mobile) to receive and determine their location (longitude, latitude, and altitude)
to within few meters using time signals transmitted along a line-of-sight by radio waves from
satellites. These devices calculate the precise time as well as position, which can be used as a
reference for scientific experiments.

Finding the driving path is one of the most frequent queries in GIS applications. There are
many factors that influence the criteria of finding the driving path; the following are the most
important:

• Distance: What is the distance between the origin and destination?

• Road situation: is the road closed?

• Road traffic: how much traffic is on the road?

The chapter is organized as follows: this section introduces the subject in general. Section 2
presents some related and previous work including widely used applications. Section 3
presents our intelligent traffic system as the main solution of the problem at hand and finally
section 4 discusses some conclusions.

2. Related and previous work

An overview of related practical and theoretical related work is presented in this section.
Example queries are also illustrated. Moreover, the section briefly presents existing artificial
intelligence in such applications. Finally, A*Traffic is presented as the main algorithm used in
this chapter where a proposal of a time-weighted graph is used as the main data structure
where A*Traffic is applied.

2.1. Driving direction applications: Google earth as an example

This sub-section presents one of the most widely used applications for finding driving
directions: Google Earth. As a note, the application is not only used as driving directions
application only but also offers other GIS services which are out of the scope of this chapter.

2.1.1. Google earth

Google Earth [9, 10] is a geographical system that offers satellite images of the locations along
with spatial information such as coordinates and elevation. It contains about 70 TB of Data [10].
It provides three main kinds of data: Raster data, Spatial and Non-spatial data, and Video.
Moreover, Google Earth offers a set of functionalities, an important subset of which is:

Intelligent Traffic System: Implementing Road Networks with Time-Weighted Graphs
http://dx.doi.org/10.5772/55654

147

• Answers location queries: the user gives a location (New York, USA) as input and gets a
geographical image as an output. The image can be explored in details; this feature includes:
cities, businesses, public places, etc.

• Shows directions: the user gives an origin and destination as input and gets a map as output
showing the directions with driving hints on the map.

• Displays spatial information: Google earth shows spatial information like coordinates,
elevations, altitude, and others.

• Has learning abilities: Google Earth saves recently and regularly visited locations and
queries so that the user avoids delays the next time these locations or queries asked.

• Includes pre-known locations: Google Earth offers a list of the most used locations like
government offices, schools, etc.

• Provides user interaction: the user is able to put place marks on the map so he/she can avoid
delays the next time visits the same place is visited.

• Provides prepaid online service that provides the customer with live video (with restriction
and delay due to security) of any place in the world.

• Other products like Google Earth PRO: it is a paid service that makes it very easy to research
locations and present discoveries. In just a few clicks, the user can import site plans, property
lists or client sites and share the view with his/her client or colleague. Moreover, the user
can export high-quality images to documents or the web.

In addition to introducing Google Earth, this section present a driving directions query as an
example of the driving direction services that Google Earth offers, which is directly related to
the work in this chapter.

2.1.2. Driving direction query by google earth: Form “New York, NY” to “Jersey City, NJ”

Figure 1 shows the driving directions with a map image from New York, NY to Jersey City,
NJ. The figure shows the input (origin and destination) and outputs on the map (Roads and
driving directions). In such queries, “Google Earth” provides driving tips to be followed when
driving from the origin to the destination given in the query. The user can be more specific by
passing a full address (building, street, city, state, and zip assuming U.S.A. is the country.)

2.2. Artificial intelligence and driving directions

Artificial inelegance is used in graph searching algorithms. Russel and Norving [4] presents
several intelligent graph searching algorithms. Here are two important ones:

• Greedy best-first search

• A* search

The main idea behind these algorithms is that they do not try all possible cases to give an
answer. The algorithms use heuristic function to un-check some of the paths. This saves huge

Global Navigation Satellite Systems - From Stellar to Satellite Navigation148

amount of time but does not guarantee a best path. However, finding a good heuristic function
could guarantee up to 95% finding the best path. This section includes the A* search algorithm
to be used in the solution approach presented in this chapter.

2.3. A* traffic: Design, algorithms and implementation for a driving direction system

This section presents the application algorithms and the application of the intelligent driving
path application used in our previous work, which is extended in this chapter. Examples of
executions demonstrated using our testing tool, are presented.

2.3.1. A*: an artificial inelegant algorithm for finding driving directions

A* [2, 4] is an Artificial Intelligent graph algorithm proposed by Pearl. The main goal of A* is
to find a cheap cost graph path between two nodes in a graph using a heuristic function. The
main goal of the heuristic function is to minimize the selection list at each step according to a
logical and applicable criterion. In the graph example, finding the shortest path from one node
to another has to be done by getting all possible paths and choosing the best. This process is
very expensive and time consuming in the presence of a huge number of nodes. On the other
hand, using an evaluation function (heuristic function) to minimize our choices according to
intelligent and practical criterion would be much faster especially for applications requiring
quick output as the driving direction application.

Figure 1. Road and driving directions between New York, NY and Jersey City, NJ

Intelligent Traffic System: Implementing Road Networks with Time-Weighted Graphs
http://dx.doi.org/10.5772/55654

149

The heuristic function is not a constant static function. It is defined according to the problem
in hand and passed to the A* as a parameter.

In the case of A* search for a direction path, the heuristic function F is built up from two main
factors:

H = Straight Line distance to destination (distance between two coordinates).

G = Distance Traveled so far.

F = H + G.

At each node n, we compute F (n) is computed and the next step is chosen accordingly (the
node with the least value of F is chosen).

2.3.2. The A* algorithm

A*(Origin, Destination, F)

1. Define a List L that includes all visited nodes ni with their values of F(ni)

2. Define the Stack S that includes nodes ni with their values F(ni)

3. Start at origin (origin is the starting point)

4. Mark the origin as visited

5. Push origin in the stack S

6. Add origin and F(origin) to L

7. Get top element TE of the Stack S

8. For each unmarked neighbor UNi of TE add UNi and F(UNi) to L

9. From L choose N: the node with the least F(N) then pop all elements in S until predecessor
of N appears on the top

10. Push N in the stack S

11. Go back to step 5 until the destination node appears or no more unmarked nodes exist

12. If no more unmarked nodes exist, return “No Solution” otherwise return the Stack content
as a solution

Note that A* Algorithm is a polynomial time algorithm with time complexity in O(n2) in the
worst case and O(n*logn) in the average and best cases.

Figure 2 is an example of the A* algorithm behavior to find a path starting from “Arad” to
“Bucharest” in Romania [4]. First, we start at Arad and go to the next neighbor with the best
heuristic function (Sibiu). Second, explore all neighbors of Sibiu for the best heuristic function
(evaluation of the function is shown). The algorithm continues to choose the best next step
(with the least value of heuristic function) until it reaches Bucharest.

Global Navigation Satellite Systems - From Stellar to Satellite Navigation150

Figure 2. A* algorithm behaviour to find a path starting from “Arad” to “Bucharest”

Intelligent Traffic System: Implementing Road Networks with Time-Weighted Graphs
http://dx.doi.org/10.5772/55654

151

2.3.3. A*traffic: A variation of A* with road traffic as a factor

A*Traffic could be seen as a variation of A* with the ability to take traffic into consideration
when computing the driving direction solution. The main job is done in the heuristic function
where a new factor is used to choose the next step. The new factor is the average traffic value
(got online from real time databases) represented in the following form time/distance (exam‐
ple: 3 min/km).

The new Heuristic function will be:

F = H + G + T

Where:

H = Straight Line distance to destination (distance between two coordinates).

G = Distance Traveled so far.

T= Average Traffic delay

2.3.4. Testing tool: Query example

This sub-section presents the layout of the testing tool developed to test the algorithm proposed
“A*Traffic”. For this purpose, an example query is presented.

2.3.5. Query example: From “HU, Kantari St, Hamra” to “AUB, Bliss St, Hamra” (Beirut, Lebanon)

This example demonstrates the main feature of the software. It provides driving directions
between “HU, Kantari St, Hamra” (Haigazian University, Beirut, Lebanon) and “AUB, Bliss
St, Hamra” (American University in Beirut) in Beirut, Lebanon. In order to find the driving
directions, the user has to provide a start address and a destination address and clicks on the
“Go!” button. Once the button is clicked, the software generates a path (in blue) between the
start and the destination addresses. The blue path generated is a short path (using A*Traffic)
to follow in order to drive from the start address to the destination address. Figure 3 illustrates
this example.

3. Road networks with time-weighted graphs

This section includes our approach in presenting the intelligent traffic system. Our main idea
is to construct a time graph. We mean by the time graph: a graph representing the map with
edges weighted by numbers (minutes) representing the estimated time needed to drive the
edge (represent a road or part of it). The section starts by presenting the “Time-weighted
Graph”, shows a possible example of the graph, gives an execution example when applying
the dynamic A*Traffic algorithm proposed in our previous work.

Global Navigation Satellite Systems - From Stellar to Satellite Navigation152

3.1. Time-weighted graph

This section includes our graph proposal using time-weights computations possible examples
and executions.

3.1.1. Time weights

Graphs are usually weighted with distances. In this chapter, time will be used as the weight
of the graph edges. The main issue is: how to compute the graph edge weight in terms of time
(minutes)?

To answer this question, we make the following assumptions:

• Each edge in the graph represents a road, street, highway, etc. or part of it

• Each of these (road, streets,..) has a maximum speed limit that is stored in the database

As a result:

The initial weight of the edge (minutes) = (edge distance (miles) ÷ speed (miles/hour)) * 60

3.1.2. Example: Part of Manhattan in a time-weighted graph

To clearly present the suggested idea, an image demonstration will be presented to show how
a graph is built and weights are assigned. The following series of images show some part of
Manhattan (New York, USA) in map, the process of creating vertices and edges, assigning
weights for edges (using stored data) and finally applying the dynamic A* algorithm on such
example. Figure 4 shows the map of Manhattan (from Google maps) and the part where the
test example was done.

Figure 3. Path from “HU, Kantari St, Hamra” to “AUB, Bliss St, Hamra”

Intelligent Traffic System: Implementing Road Networks with Time-Weighted Graphs
http://dx.doi.org/10.5772/55654

153

Figure 4. Manhattan and the chosen part (to be modeled in a graph)

The following figures (5, 6, and 7) show the following:

• Location of vertices in the map (for simplicity, only intersection were chosen)

• Vertices only

• And finally the whole graph: vertices and edges

Global Navigation Satellite Systems - From Stellar to Satellite Navigation154

Figure 5. Modeling graph vertices in the chosen part

Figure 6. Considering graph vertices only

Intelligent Traffic System: Implementing Road Networks with Time-Weighted Graphs
http://dx.doi.org/10.5772/55654

155

Figure 7. Building the graph edges (directed)

Figure 8 shows one of the edges with weight. The weight is computed as described in section
3.1.1. As a result the shown weight was computed as follows: w = 0.22 (distance) * 30 (speed) /
60 = 0.11 minutes

Figure 8. A sample edge with a calculated weight

Global Navigation Satellite Systems - From Stellar to Satellite Navigation156

3.1.3. Online updates with dynamic A*traffic

Dynamic A*Traffic assumes receiving online data whenever a related change occurs. In our
new graph, the traffic system assumes receiving online data about current road situations in
terms of time units. The main question is:

How can we describe the road traffic changes in time units (minutes)?

If the road is categorized as “heavy traffic”, the online system simply does the following:

i. Calculates the average speed (AV) of moving vehicles (not exceeding the max limit)
in the heavy traffic road

ii. Get the distance (D) of the road (or the part) where heavy traffic exists

iii. Sends T where T = (AV/D) * 60

3.1.4. Query Example

Figure 9 (a) shows a calculated query path (using A* algorithm) where figure 9 (b) shows a
recalculation of the same query (with a new path) after online information about the traffic
situation is received. Here are some hints of the shown calculations:

• The calculated time T1 in figure (a) is 3.35 minutes

• After receiving updated data, T1 became 5.30 minutes

• Recalculation is done and another path (figure (b))with 3.83 minutes was found

(a) (b)

Figure 9. a) A short (time) path using A*.(b) Another path for the same query after heavy traffic is recodedAnalysis,
Results, and Conclusions

Intelligent Traffic System: Implementing Road Networks with Time-Weighted Graphs
http://dx.doi.org/10.5772/55654

157

In brief, using dynamic A*Traffic algorithm and applying it on time-weighted graphs has
advantages such as:

• Saves a lot of execution time when finding the path. In an optimal algorithm all possible
paths have to be found and the shortest is selected among them. Such an optimal algorithm
is not in P (class of polynomial time algorithms) which could take years to solve in some
cases. In our case, A* and A* traffic are in P. They guarantee finding a good solution but do
not guarantee an optimal solution.

• Applying time-weighted graphs takes into consideration distance and speed and as a result
the algorithm will return the fastest path rather than the shortest path

• Similar to A*Traffic, our analysis showed that our solution is optimal in 88% of the times
and 97% for short driving paths. The reason for such good results is that the A* algorithm
takes a lot of path related issues into consideration.

Note that our analysis now is focused on timing rather than distance and hence an optimal
solution is a solution with minimum time rather than minimum distance.

Table 1 represents the results gathered from applying 100 executions in each case (long,
average, and short) where:

• Optimal solution: Best solution

• Good solution: takes maximum of 30% more time than optimal solution

• Bad solution: Takes more than 30% more time than optimal solution

Distances
Optimal

solution

Good

Solution

Bad

Solution

Long distances (>300km) 76.4 % 14.2% 9.4%

Average Distances (between 100km and 300km) 90.5% 7.2% 2.3%

Short Distances (<100km) 97.2% 2% <1%

Average 88%

Table 1. Percentages of quality of solutions over different casReferences

Author details

Hatem F. Halaoui

Address all correspondence to: hhalaoui@haigazian.edu.lb

Haigazian University, Lebanon

Global Navigation Satellite Systems - From Stellar to Satellite Navigation158

References

[1] Hatem Halaoui Spatial and Spatio-Temporal Databases Modeling: Approaches for
Modeling and Indexing Spatial and Spatio-Temporal Databases. VDM Verlag, (2009).

[2] Pearl, J. (1984). Heuristics: Intelligent Search Strategies for computer Problem Solv‐
ing. Addison Wesley, Reading, Massachusetts.

[3] Shekhar, S, & Chawla, S. Spatial Databases: A Tour. Prentice Hall. Upper Saddle Riv‐
er, NJ, (2003).

[4] Stuart Russell and Peter Norvig Artificial Intelligence a Modern Approach. Prentice Hall,
Upper Saddle River, New Jersey, (2003).

[5] Hatem Halaoui(2008). Towards Google Earth: A History of Earth Geography". Book chap‐
ter (Chapter XVI), Information Systems Research Methods, Epistemology, and Appli‐
cations, IGI Global.

[6] Halaoui Halaoui. Spatio-Temporal Data Model: Data Model and Temporal Index Us‐
ing Versions for Spatio-Temporal Databases. Proceedings of the GIS Planet 2005, Es‐
toril, Portugal, (2005).

[7] Hatem Halaoui AIRSTD: An Approach for Indexing and retrieving Spatio-Temporal
Databases”. LNCS (IEEE/ACM SITIS 06), Springer-Verlag, (2007).

[8] Hatem Halaoui A Spatio-Temporal Indexing Structure for Efficient Retrieval and
Manipulation of Discretely Changing Spatial Data”. Journal of Spatial Science
(2008). , 53(2)

[9] Google Earth Explore, Search and Discover.Available: http://earth.google.com/tour/
index.html.Access date 22 December (2009).

[10] Google Earth Blog Google Earth Data Size Live Local, New languages coming. Avail‐
able: http://www.gearthblog.com/blog/archives/2006/09/news_round‐
up_google.html.Access date 15 December (2009).

Intelligent Traffic System: Implementing Road Networks with Time-Weighted Graphs
http://dx.doi.org/10.5772/55654

159

