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1. Introduction

For most patients with advanced hepatocellular carcinoma (HCC), surgery with curative
intent or a locally ablative technique, such as percutaneous ethanol injection or radiofre‐
quency ablation, are no longer available [1]. Patients can now be treated using transarte‐
rial  chemoembolization  (TACE)  or  systemic  chemotherapy.  Several  chemotherapeutic
drugs have been developed and tested. The anti-tumor effect of these treatments is limit‐
ed and adverse reactions are not tolerated in advanced HCC patients with liver cirrhosis,
which affects drug metabolism and toxicity [1-3]. Thus far, sorafenib, a multi-targeted ty‐
rosine kinase inhibitor, is the only drug that has been shown to significantly prolong sur‐
vival (by nearly 3 months) in patients with advanced HCC [4, 5]. However, the incidence
of  adverse  drug  reactions  is  high,  particularly  in  elderly  patients,  and  no  second-line
treatment  has  been  established  for  patients  who  have  failed  sorafenib  treatment  [6].
Thus,  new  treatment  modalities  are  urgently  required  to  prolong  survival  in  patients
with advanced HCC while minimizing the risk of adverse reactions.

The 5-year recurrence rate of HCC exceeds 70% after surgery or radiofrequency ablation
due  to  a  high  risk  of  metastasis  and  development  of  de  novo  HCC  in  a  cirrhotic  liver
[7,8].  The  relapse-free  survival  rate  was  reported  to  be  improved  by  adjuvant  therapy
with  vitamin  K2  [9],  retinoid  [10],  or  interferon  [11-13].  These  reports  have  not  as  yet
been  validated,  and these  treatments  to  prevent  relapse  are  not  widely  adopted.  In  re‐
cent years, clinical trials of sorafenib have been conducted to explore its role in adjuvant
therapy [14]. However, these data are unpublished and a standard adjuvant therapy has
not been established. Establishment of an effective preventative method, such as vaccina‐
tion to prevent the occurrence and recurrence of HCC, is also required.
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Immunotherapy is  a  potentially  attractive option for  HCC, and induction of  tumor-spe‐
cific  reactions  without  autoimmunity  is  the  ideal  strategy.  Many  fundamental  studies
have demonstrated that tumor cells  can be targeted by various immune effector mecha‐
nisms.  Previous  immunotherapeutic  clinical  trials  in  patients  with  advanced  HCC have
shown mainly its feasibility and safety [15,16].  However,  no non-randomized phase I  or
II  studies  have  demonstrated  the  efficacy  of  immunotherapy  for  advanced  HCC  [16].
Conversely,  several  randomized  controlled  trials,  in  adjuvant  settings,  have  shown  its
ability to reduce the risk of cancer recurrence [17-19].

This chapter aims to overview current knowledge concerning the progress of immunotherapy
for HCC, including preclinical data and clinical trials, and to introduce our fundamental
studies and clinical trials of the glypican-3 (GPC3)-derived peptide vaccine.

2. Concepts of antitumor immunity

The aim of immunotherapy against cancer is to provide clinical benefit by activating the
immune system. Various immunotherapy strategies have been investigated in preclinical
and  clinical  trials  to  accomplish  this  purpose.  The  diversity  of  strategies  is  due  to  the
fact  that  tumor  cells  can  be  targeted  by  various  immune  effector  mechanisms,  such  as
lymphokine-activated killer  (LAK) cells,  natural  killer  (NK) cells,  T cells,  dendritic  cells,
cytokine  therapy,  and  antibody  treatment.  The  induction  of  long-lasting  tumor-specific
reactions  without  autoimmunity  is  the  ideal  immunotherapeutic  strategy  and  has  been
investigated extensively,  particularly  for  melanoma and renal  cell  carcinoma.  Rosenberg
reported  a  dramatic  clinical  effect  of  adoptive  cell  therapy  (ACT)  using  autologous  tu‐
mor-infiltrating lymphocytes (TILs) against metastatic melanoma [20]. Also, TILs derived
from HCC, after ex vivo  expansion with interleukin-2 (IL-2),  can lyse autologous tumors
[21].  Furthermore,  patients  with  HCC  infiltrated  by  lymphocytes  demonstrate  a  better
prognosis  after  resection [22].  Thus the  immune system,  activated in  various  ways,  can
recognize  and eliminate  cancer  cells,  including  HCC,  although these  cells  may develop
various mechanisms of escape from this action (Figure 1).

2.1. HCC antigenic targets

Tumor-specific antigens are the principal targets of immunotherapy, including in cancer
vaccines, in ACT, and as monoclonal antibodies (mAbs). Thus, identification of appropriate
tumor-specific antigens is the first and important step for progress of immunotherapy. Tumor-
specific CD8+ T cells are considered to be critical for cancer control. They recognize 8- to 11-
amino acid peptides that are derived from intracellular proteins called tumor antigens, which
are presented in association with HLA class I complexes. Various tumor antigens and their
cytotoxic T lymphocyte (CTL) epitopes have been identified and investigated in HCC.

Alpha-fetoprotein (AFP) is a representative HCC tumor-specific antigen. The onco-fetal
antigen AFP, considered an ideal serological marker, is expressed in 50–80% of HCC. Various
human leukocyte antigen (HLA)-A2- or HLA-A24-restricted AFP-specific epitopes have been
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identified. AFP has been shown to be an effective tumor rejection antigen in murine HCC [23].
Additionally, an AFP-derived peptide vaccine has been demonstrated to induce antigen-
specific CD8 T-cell response in HCC patients [24]. In HCC, AFP is the most commonly
investigated antigen, and several AFP-based immunotherapy regimens have been reported;
however, no dramatic clinical benefit was observed [24,25].

Figure 1. Immunotherapy against hepatocellular carcinoma cells. A number of strategies exist for induction of antitu‐
mor immunity against hepatocellular carcinoma cells. Tumor-specific cytotoxic T lymphocytes (CTLs) activated by vari‐
ous immunotherapies are capable of recognizing and eliminating cancer cells. However, tumor cells have developed
various mechanisms of escape from antitumor reactions. Increased comprehension of the mechanisms underlying the
immune-privileged status of the liver and escape of tumors from immune reactions will increase the efficacy of immu‐
notherapy.

MAGE and NY-ESO-1, cancer testis antigens, are also expressed in HCC tumors. Normally,
tumor testis antigens are expressed only in the testis and/or ovary. Additionally, major
histocompatibility complex (MHC) class I antigens are not expressed on germ cells; thus, they
are considered promising cancer vaccine candidate antigens. MAGE-A was initially identified
in melanoma [26], and later found to be expressed in another cancers, including HCC [27],
lung cancer, breast cancer, oral squamous cell carcinoma, and esophageal carcinoma. Some
CTL epitopes of the MAGE family have been identified in HCC.

NY-ESO-1 was identified in a patient with squamous cell carcinoma of the esophagus [28].
NY-ESO-1 is expressed in various cancers, including melanoma, lung cancer, ovarian cancer,
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breast cancer, and HCC. NY-ESO-1 is characterized by its high immunogenicity and is
considered a good target molecule for antigen-specific immunotherapy.

GPC3, a heparan sulfate proteoglycan, was previously reported to be overexpressed in HCC
[29]. The carcinoembryonic antigen GPC3 plays an important role in cell growth and differ‐
entiation and is considered an ideal tumor antigen for immunotherapy; this antigen is
discussed further below.

2.2. Dendritic cells

Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs), and are composed
of multiple subsets, primarily conventional and plasmacytoid DCs [30]. DCs play an important
role in both induction of antitumor immunity and tolerance. The DC vaccine, loaded with
tumor-specific antigens, is considered to stimulate a specific T-cell response. Several methods
of antigen loading to DCs exist, including peptide pulsing, whole protein loading, and genetic
engineering. DC-based immunotherapy is highly complex due to the various possible
strategies, such as the DC subset used, the method of antigen loading, and the administration
route (subcutaneous, intravenous, intralymph node, or intratumoral). Figdor et al. provided a
roadmap for standardization and quality control of DC vaccines [31]. In HCC patients,
enhanced NK-cell activation and decreased regulatory T-cell (Treg) frequencies have been
identified after administration of DC vaccines [32]. Many studies suggested that DC-based
immunotherapies for HCC could stimulate a tumor-specific T-cell response leading to clinical
benefit without any significant toxicity.

2.3. Cytokine therapy and immunostimulatory mAbs

The effects of immunostimulatory cytokines in HCC have been investigated, such as interfer‐
on-alpha (IFN-α), interferon-gamma (IFN-γ), and interleukin (IL)-2. These elicit a nonspecific
immune response.

As an antiviral  agent,  IFN-α is  often used against hepatitis  B or hepatitis  C virus infec‐
tion  to  prevent  progression  to  HCC.  IFN-α,  by  enhancing  cytotoxicity,  tumor  antigen
presentation,  proliferation  of  lymphocytes,  and  anti-angiogenesis,  induces  an  antitumor
response [33,34].  IFN-α treatment for HCC has been reported to have some clinical effi‐
cacy,  likely by preventing or  delaying tumor recurrence after  surgical  resection or  abla‐
tion  [35,36].  IFN-α  has  been  tested  in  combination  with  chemotherapy  for  advanced
HCC [37,38].  Adverse side effects  are an important issue in IFN-based therapy,  particu‐
larly for patients with severe liver injury.

IFN-γ, which improves antigen presentation and lymphocyte activation, has also been used
for advanced HCC in combination with chemotherapy [39] or granulocyte-macrophage colony
stimulating factor (GM-CSF) [40]. However, no clinical response was identified.

IL-2, one of the most immunostimulatory cytokines, plays an important role in regulation of
immune activation and homeostasis. IL-2 has various effects on immune cells, such as CD4+
T cells, CD8+ T cells, B cells and NK cells [41]. The effect of IL-2 in various cancers has been
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investigated, particularly melanoma and renal cell carcinoma. In HCC, several IL-2 treatment
regimens have been reported, with or without combination therapy [42,43].

In 1975, the procedure for generation of hybridomas was published [44]. Subsequently, mAbs
have been developed as diagnostic and therapeutic agents. In the field of cancer therapy, mAbs
that activate the immune system against tumor cells, inhibit cancer cell-intrinsic signaling
pathways, bring toxins close to cancer cells, or interfere with the tumor-stroma interaction have
been developed [45].

Several anti-costimulatory molecule antibodies that activate the immune response have been
investigated. For example, a mAb against the costimulatory molecule CD28, the receptor of
the family of B7 antigens, has been investigated. For T-cell activation, both binding of the T-
cell receptor to antigen and costimulatory signaling by CD28 are needed [46]. Some CD28
mAbs called ‘superagonists’ can stimulate and expand T cells in the absence of T cell antigen
receptor (TCR) ligation [47]. In a phase I trial of an anti-CD28 mAb, severe toxicity was
observed [48].

The CTL-associated antigen 4 (CTLA-4), a homolog of CD28, is an inhibitory receptor for B7
[49] that functions as an immune check point and downregulates T-cell activation pathways
by competing with CD28 for binding to B7 [50,51]. The clinical benefit of ipilimumab, anti
CTLA-4 mAb, against advanced melanoma has been reported [52,53]; its use has been
approved by the United States Food and Drug Administration.

2.4. Escape mechanisms from immune reactions

As mentioned above, cancer cells can be targeted by various immunotherapeutic strategies.
However, cancer cells possess mechanisms of escape from the immune response. Additionally,
the liver is considered an immune-privileged organ. The liver contains at least three types of
APCs; i.e., Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), and dendritic cells,
which might be associated with its immune-privileged status [54]. KCs and LSECs constitu‐
tively express the anti-inflammatory cytokines IL-10 and transforming growth factor beta
(TGF-β) [55,56]. These immunosuppressive cytokines may play a role in immune privilege by
influencing T-cell differentiation and suppressing APC maturation. Furthermore, hepatic
stellate cells (also known as Ito cells), a liver-specific cell population that is found between the
sinusoids and hepatocytes, promote hepatic inflammation. Hepatic stellate cells express TGF-
β only after chronic liver injury [57,58].

2.4.1. Impairment of DC function

One of the mechanisms of tumor escape from the immune response is impairment of DC
function. In cancer patients, inadequate DC function has been suggested to be related to non-
responsiveness to antitumor immunity [59]. Immunosuppressive factors that inhibit DC
maturation are released from tumors. For instance, human cancer cells release vascular
endothelial growth factor (VEGF), which inhibits the maturation of DCs [60]. Other cytokines
derived from tumors, such as IL-6 [61] and IL-10 [62], also influence the function of DCs.
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Additionally, DCs have reduced function in cancers, including HCC, in that they cannot
stimulate T cells [63,64].

2.4.2. Antigen presentation

It is clear that the level of MHC class I expression on the cell surface is crucial for CD8+ T cell
cytotoxicity against target cells. Decreased or absent MHC class I expression, which facilitates
tumor escape from immune surveillance, has been reported in various tumors. Additionally,
in HCC, HLA class I expression on tumor cells may be down-regulated [65,66]. However,
strong HLA class I expression in HCC has also been reported [67]. Thus, the level of MHC class
I expression in HCC is unclear. Furthermore, expression of the co-stimulatory molecules B7-1
and B7-2 is reduced in HCC [66]. Such down-regulation causes impairment of tumor-antigen
processing and presentation.

2.4.3. Inhibitory molecules

Another escape mechanism involves over- or reduced expression of molecules associated with
cell death, such as Fas/FasL, PD-1/PD-L1, CTLA-4, and Decoy receptor 3. Fas is a cell-surface
protein that belongs to the family of tumor necrosis factor (TNF) receptors [68]. Fas ligand
(FasL) is a type II membrane protein that binds to Fas [69]. Cross-linking of Fas with FasL
induces apoptosis of Fas-bearing cells [70]. FasL is found in immune-privileged sites, such as
the testis and eye [71,72]. HCC tissues have been reported to express Fas weakly and at a low
frequency [73]. Additionally, elevated soluble Fas (sFas) levels in HCC patients have been
reported [74]. Loss of cell-surface Fas in HCC and neutralization of FasL by sFas might be
involved in tumor cell immune escape [75].

PD-L1 is member of the B7 family that can interact with programmed death-1 (PD-1). Its recep‐
tor, PD-1, is expressed on activated T and B cells and elicits inhibitory signals [76]. PD-L1 is ex‐
pressed on dendritic cells, macrophages, and parenchymal cells, as well as various human
cancer cells. The objective response of the PD-1 antibody against non-small cell lung cancer,
melanoma, or renal cell cancer has been suggested to be related to PD-L1 expression on tumor
cells [77]. In HCC, PD-1 expression is upregulated on effector-phase CD8+ T cells, particularly
in tumor-infiltrating CD8+ T cells [78]. High expression of PD-1 on T cells both in TILs and pe‐
ripheral blood mononuclear cells (PBMCs) is correlated with a poor prognosis in HCC patients
after surgical resection [78]. Additionally, PD-L1 expression on Kupffer cells (KC) has been
shown to be increased in tumor tissues in patients with HCC, and is correlated with poor surviv‐
al [79]. These suggest that effector phase T-cell inhibition is associated with tumor survival.

Decoy receptor 3 (DcR3), a member of the TNF receptor superfamily, might also be involved
in immune escape. DcR3 inhibits FasL-induced apoptosis by binding to its ligand Fas.
Additionally, DcR3 overexpression in HCC has been reported [80,81].

2.4.4. Regulatory T cells

CD4+CD25+ regulatory T cells (Tregs) can suppress other immune cells and are critical
mediators of self-tolerance. Tregs also suppress the immune response against cancer cells.

Liver Tumors - Epidemiology, Diagnosis, Prevention and Treatment64



High numbers of Tregs were detected in peripheral blood and TILs in HCC patients [82, 83].
CD4+CD25+FoxP3+ Tregs could impair the cytotoxic function of tumor-infiltrating CD8+ T
cells [84]. Levels of the immunosuppressive cytokine IL-10 are increased in HCC patients, a
finding that is related to Treg induction [85]. Thus, CD4+CD25+ Tregs may play an important
role in regulating the immune response against HCC.

The goal of immunotherapy against human cancers, including HCC, is to impact target tumor
cells without influencing normal cell function. Comprehension of the mechanisms of the
immune-privileged status of the liver and escape of tumors from immune reactions will
increase the efficacy of immunotherapy.

3. Clinical trials

Clinical trials of immunotherapy to enhance anti-tumor responses in patients with advanced
HCC, or to reduce the risk of recurrence after curative treatment have been conducted (Table 1).

Author Country Year Indication Immunotherapy n Clinical result Reference

Takayama T, et al. Japan 2000 Adjuvant

(resection)

RCT: activated

autologous lymphocyte

vs. no treatment

76 and

74

Significantly longer

recurrence-free

survival after

transfer of

activated

lymphocytes

(p=0.008)

[17]

Llovet JM, et al. Spain 2000 Advanced HCC RCT: IFN-α2b vs. no

treatment

30 and

28

RR: 2/30 (7%),

DCR: NA

No significant

difference in RR

and survival

[156]

Ikeda K, et al. Japan 2000 Adjuvant

(resection or

ethanol

injection)

RCT: IFN-β vs. no

treatment

10 and

10

Significantly longer

recurrence-free

survival after IFN-β

therapy (p=0.0004

[11]

Kubo S, et al. Japan 2001 Adjuvant

(resection)

RCT: IFN-α vs. no

treatment

15 and

15

Significantly longer

recurrence-free

survival after IFN-α

therapy (p=0.037)

[12]

Reinisch W, et al. Austria 2002 Advanced HCC GM-CSF + IFN-γ 15 RR: 1/15 (7%),

DCR: 10/15 (67%)

MST: 5.5 months

[40]

Palmieri G, et al. Italy 2002 Advanced HCC Low dose IL-2 18 RR: 3/18 (17%),

DCR: 16/18 (89%)

MST: 24.5 months

[42]
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Author Country Year Indication Immunotherapy n Clinical result Reference

Ladhams A, et al. Australia 2002 Advanced HCC Dendritic cell pulsed

with autologous tumor

2 Slowing in the rate

of tumor growth in

one of two

patients

[157]

Sakon M, et al. Japan 2002 Advanced HCC 5-FU + IFN-α 11 RR: 8/11 (73%),

DCR: 9/11 (82%)

MST: NA

[158]

Iwashita, et al. Japan 2003 Advanced HCC Dendritic cell pulsed

with autologous tumor

10 (8

HCC)

RR: 0/8 (0%), DCR

6/8 (75%)

MST: NA

[114]

Patt YZ, et al. USA 2003 Advanced HCC 5-FU + IFN-α2b 43 RR: 9/36 (25%),

DCR 22/36 (61%)

MST: 19.5 months

[37]

Stift A, et al. Austria 2003 Advanced HCC Dendritic cell pulsed

with autologous tumor

20 (2

HCC)

RR: NA, DCR: NA

MST: 10.5 months

Constant

remaining of AFP

over a period of 6

months in one of

two patients

[159]

Feun LG, et al. USA 2003 Advanced HCC Doxorubicin + 5-FU +

IFN-α2b

30 RR: 2/30 (7%),

DCR: 3/30 (10%)

MST: 3 months

[160]

Komorizono Y, et

al.

Japan 2003 Advanced HCC Cisplatin + 5-FU + IFN-α 6 RR: 2/6 (33%), DCR

3/6 (50%)

MST: NA

[38]

Butterfield, et al. USA 2003 Advanced HCC AFP peptide vaccination 6 RR: 0/6 (0%), DCR

0/6 (0%)

MST: 8 months

[24]

Shiratori Y, et al. Japan 2003 adjuvant

(ethanol

injection)

RCT: IFN-α vs. no

treatment

49 and

25

Longer recurrence-

free and overall

survival after IFN-α

therapy (p-value

not shown)

[13]

Kuang M, et al. China 2004 Adjuvant RCT: autologous

formalin-fixed tumor

vaccine vs. no treatment

18 and

21

Significantly longer

recurrence-free

survival after

vaccination

(p=0.003)

[18]

Shi M, et al China 2004 Advanced and

early HCC

Cytokine induced killer

cell

13 RR: NA, DCR: NA

MST: NA

[161]

Sangro B, et al. Spain 2004 Advanced HCC Intratumoral adenovirus

encoding IL-12 genes

21 (8

HCC)

RR: 1/8 (13%), DCR

7/8 (88%)

MST: NA

[162]
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Author Country Year Indication Immunotherapy n Clinical result Reference

Lee WC, et al. Taiwan 2005 Advanced HCC Dendritic cell pulsed

with autologous tumor

31 RR: 4/31 (13%),

DCR 21/31 (68%)

MST: NA

[163]

Kumagai, et al. Japan 2005 Advanced HCC Intratumoral dendritic

cell injection after

ethanol injection

4 Feasibility study [164]

Yin XY, et al. China 2005 Advanced HCC Cisplatin + doxorubicin +

5-FU + IFN-2α

26 RR: 4/26 (15%),

DCR 13/26 (50%)

MST: 6 months

[165]

Chi KH Taiwan 2005 Advanced HCC Local radiation +

intratumoral DC

injection

14 RR: 2/14 (14%),

DCR 9/14 (64%)

MST: 5.6 months

[113]

Mazzolini G, et al. Spain 2005 Advanced HCC Dendritic cell

transfected with

adenovirus encoding

IL-12 gene

17 (8

HCC)

RR: 0/0 (0%), DCR:

2/8 (25%)

MST: NA

[166]

Butterfield, et al. USA 2006 Advanced HCC Dendritic cell pulsed

with AFP peptide

10 RR: 0/10 (0%), DCR

0/10 (0%)

MST: 7.5 months

[25]

Nakamoto Y, et

al.

Japan 2007 Advanced and

early HCC

Non-RCT: TACE +

dendritic cell vs. TACE

alone

10 and

11

No significant

difference in

survival

[141]

Vitale FV, et al. Italy 2007 Advanced HCC 5-FU + IFN-α2b 9 RR: 3/9 (33%), DCR

4/9 (44%)

MST: 11.5 months

[167]

Weng DS, et al. China 2008 Adjuvant (TACE

and RFA)

RCT: cytokine induced

killer cell vs. no

treatment

45 and

40

Significantly longer

recurrence-free

survival after

immunotherapy

(p=0.01)

[168]

Hui D, et al. China 2009 Adjuvant

(resection)

RCT: cytokine induced

killer cell 3 courses vs. 6

courses vs. no treatment

41, 43

and 43

Significantly longer

recurrence-free

survival after

immunotherapy

(p=0.001 and

0.004)

[169]

Palmer DH, et al. UK 2009 Advanced HCC Dendritic cell pulsed

with liver tumor cell line

lysate (HepG2)

35 RR: 1/25 (4%), DCR

7/25 (28%)

MST: 5.6 months

[170]

Olioso P, et al. Italy 2009 Advanced HCC Cytokine induced killer

cell + IFN-α

12 (1

HCC)

Complete response

Survival time: 33

months (alive)

[171]
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Author Country Year Indication Immunotherapy n Clinical result Reference

Hao MZ, et al. China 2010 Advanced HCC Non-RCT: TACE +

cytokine induced killer

cell vs. TACE alone

72 and

74

Significantly longer

survival after

combination

therapy (p<0.001)

[172]

Greten TF, et al Germany 2010 Advanced HCC a telomerase peptide

vaccine in combinatuon

with a low dose

cyclophosphamide

40 RR: 0/40 (0%), DCR

17/37 (45.9%)

MST: 9.8 months

[139]

Ma H, et al. China 2010 Adjuvant (RFA) RFA and autologous

RetroNectin activated

killer cells

7 During a seven-

month follow-up,

no severe adverse

events, recurrences

or deaths

[173]

Zhou P, et al. China 2011 HCC with

hepatitis

B(PMWA)

Immature DCs, cytokine-

induced killer cells (CIK),

cytotoxic T lymphocytes

(CTL) and tumor lysate-

pulsed DC

10 This phase I study

revealed this

therapy was safe

and increased the

percentage of

effector cells.

[174]

Sawada Y, et al. Japan 2012 Advanced HCC GPC3-derived peptide

vaccine

33 RR: 1/33 (3%), DCR

20/33 (60.6%)

MST: 9.0 months

OS was

significantly longer

in patients with

high GPC3-specific

CTL frequencies

[120]

HCC; hepatocellular carcinoma, LAK; lymphokine-activated killer cell, IL; interleukin, RR; response rate, DCR; disease
control rate, MST; median survival time, IFN; interferon, NA; not assessed, RCT; randomised control trial, CTL; cytotoxic T
lymphocyte, TIL; tumor-infiltrating lymphocyte, TACE; transcatheter arterial chemoembolization, GM-CSF; granulocyte
macrophage colony-stimulating factor, RFA; radiofrequency ablation therapy, PMWA; percutaneous microwave ablation

Table 1. Immunotherapeutic clinical trials in HCC after 2000

3.1. Cytokine therapy

3.1.1. IFN-α

IFN-α has direct antitumor effects on tumor cells, including induction of lymphocytes,
macrophage cytotoxic activities, and anti-angiogenesis.

A number of trials have evaluated the clinical efficacy of IFN-α in HCC. Lai et al. report‐
ed that IFN-α was useful in patients with inoperable HCC, in terms of both prolonging
survival and inducing tumor regression [86]. However, a high IFN-α dose can cause tox‐
icity [12]; thus, systemic administration of IFN-α [12] or IFN-β [11] should be considered
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as supportive treatment after hepatectomy or tumor ablation, which may prevent or de‐
lay  tumor recurrence.  Combination therapy with  IFN-α and chemotherapy was applied
in  advanced  HCC  patients;  however,  no  benefit  was  identified  other  than  tolerance  of
the therapy for cirrhotic patients [13].

3.1.2. IL-2

IL-2 is an immunostimulatory cytokine that is used singly or in combination with other
treatments in patients with liver tumors. Systemic induction of IL-2 produces objective
responses against HCC when administered alone [42] or in combination with melatonin [43]
or lymphokine-activated killer (LAK) cells [87].

3.1.3. IFN-γ

Lygidakis et al. reported that combination therapy with hepatic transarterial locoregional
chemotherapy and immunotherapy that included IFN-γ and IL-2 is a promising therapeutic
approach for advanced HCC [39]. This highlights the effect of IFN-γ. Moreover, GM-CSF and
IFN-γ were effective in selected advanced HCC patients [40].

Systemic IL-12 and TNF-α treatment has been reported to cause severe toxicity in other
cancers. However, there is to our knowledge no report of their effect against primary or
metastatic liver cancer.

Although cytokine treatment for HCC can have positive outcomes, toxic effects can result,
including systemic vascular leak syndrome.

Cytokines, such as IL-7 and IL-15, may be reasonable adjuvants due to their vaccination and
culture properties.

3.2. Gene transfer

Transfer of immunostimulatory cytokine genes has effects on immune tolerance against
tumors. Clinical trials with gene transfer therapy have been evaluated. Presently, this proce‐
dure is a safe and represents a novel therapeutic approach.

There are two main approaches to transfer of genes: 1) direct injection of vectors expressing
cytokines, chemokines, or costimulatory molecules into tumor lesions, or 2) use of tumor cells
or DCs transduced ex vivo with vectors expressing cytokines or costimulatory molecules [88].

IL-12 is a potent cytokine that shows antitumor activity in some models [89,90]. Although the
effect of IL-12 gene transfer for liver tumor treatment in animal models has been reported, its
use in early clinical trials of cancer patients has shown no significant benefit [91].

Abnormally elevated levels of Th2 cytokines, such as IL-10, skews the immune response to
favor tumor growth. Conversely, Lopez et al. showed that the combination of autologous
inactivated tumor cells expressing IL-12 and IL-10 induced tumor remission in 50–70% of mice
with large established colon or mammary tumors and spontaneous lung metastases, with
consequent establishment of an antitumor immune memory [92]. Systemic injection of IL-2 in
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patients with metastatic renal carcinoma and melanoma showed a low efficacy and high
toxicity. A phase I–II clinical trial of recombinant adenovirus encoding the IL-2 gene was
performed in patients with advanced carcinoma. Only one patient showed a positive response
in terms of tumor necrosis [93].

Molecules such as HLA-B7 are important for promotion of specific T-cell responses. Total or
selective loss of MHS class I antigens has been reported in some malignancies [94,95]. Animal
studies have demonstrated that injection of foreign MHC molecules can result in immunologic
destruction of the tumor by eliciting a T-cell-dependent immune response not only to the
foreign MHC protein, but also to previously unrecognized tumor-associated antigens. Rubin
et al. showed that indirect intralesional gene transfer therapy of both HLA-B7 and β2-micro‐
globulin for colorectal cancer (CRC) patients with hepatic metastasis had no serious toxicity
and was feasible; however, details of any antitumor effect were not reported [96].

Oncolytic virotherapy is based on the ability of viral vectors to replicate selectively in cancer
cells and thus exert a direct antitumor effect [97]. Adenovirus is one of the most common viral
vectors [98]. dl1520 is a mutant oncolytic adenovirus [99]. Habib et al. reported that dl1520 gene
therapy had no significant antitumor effect in HCC patients compared with percutaneous
ethanol injection [100]. A phase I clinical trial of intratumoral administration of a first-
generation adenoviral vector-encoding herpes simplex virus thymidine kinase (HSV-TK) gene
(Ad.TK) to HCC patients was conducted. Treatment was well-tolerated and no dose-limiting
toxicity occurred. Sixty percent of patients showed tumor stabilization and, importantly, two
patients who received the highest dose showed signs of intratumoral necrosis using imaging
procedures [101].

Additionally, Kottke et al. showed that, in mice, oncolytic virotherapy could lead to direct
tumor cell lysis and could trigger innate immune-mediated attack on tumor vascularization
when combined with antiangiogenic cancer therapy [102].

Transfer of cytokine genes and oncolytic viruses is currently under development and repre‐
sents a promising new approach for treatment of human cancer. Recent technical advances in
the genetic modification of oncolytic viruses have improved their tumor specificity. Clinical
trials with oncolytic viruses demonstrate the safety and feasibility of this approach. Systemic
administration of oncolytic viruses represents a novel approach to treatment of a range of
tumors [103].

3.3. Effector cells and adoptive T-cell therapy

Several trials have evaluated the induction of various types of cytotoxic lymphocytes. One
report compared adoptive chemoimmunotherapy with chemotherapy. Chemoimmunothera‐
py comprised arterial infusion of adriamycin, recombinant interleukin-2, and lymphokine-
activated killer cells, whereas chemotherapy comprised administration of adriamycin alone.
No significant difference between the two groups was found; thus adoptive chemoimmuno‐
therapy was concluded to not be an ideal adjuvant protocol after hepatic resection [104].

The reason that LAK cells demonstrate no benefit may be their lack of tumor-antigen specif‐
icity. In contrast, TILs with anti-tumor activity are induced during the natural course of tumor
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growth. Thus, TILs have been shown to contain tumor antigen-specific T cells [20]. In one
study, indium¹¹¹-labeled TILs activated by IL-2 and CD3 mAbs were injected via intrahepatic
arteries in three patients with hepatic malignancies and their distribution was evaluated. TILs
accumulated in the liver and persisted for at least 48 h after infusion. After intra-arterial
chemoimmunotherapy that included TILs, two of three patients achieved a partial therapeutic
response. This method may facilitate accumulation of TILs at tumor sites, likely augmenting
the antitumor effects of adoptive immunotherapy [105].

In the largest randomized trial, 150 patients who had undergone curative resection for HCC
received either IL-2 with anti-CD3-activated peripheral blood lymphocytes or underwent
observation. Adoptive immunotherapy decreased the frequency of recurrence and prolonged
the time to first recurrence compared with the control group. Additionally, the immunother‐
apy group demonstrated a significantly longer recurrence-free survival and disease-specific
survival than the control group. However, overall survival did not differ significantly between
groups, providing more objective support for the potential of immunotherapy [17].

Adoptive T-cell therapy includes passive transfer of antigen-reactive T cells to a tumor-bearing
host to initiate tumor rejection. Based on animal models, effector T cells with tumor-specific
reactivity are superior to non-specific effector T cells in terms of mediating tumor regression
in vivo [106].

However, translation of these successful methods into patients is not yet feasible due to
difficulties in generation of tumor antigen-specific T cells ex vivo  [107]. In general, adop‐
tive T-cell therapy is accomplished by harvesting cells from peripheral blood, tumor sites
(TILs),  or  draining  lymph  nodes,  and  identifying  tumor-associated  antigens  (TAAs).
TAAs  are  ectopically  expressed  or  overexpressed  in  tumor  cells  relative  to  normal  tis‐
sues.  One  of  the  most  important  HCC  TAAs  is  AFP.  AFP-based  immunotherapy  has
been applied in HCC. Grimm et al. immunized mice bearing m-AFP-expressing HCC us‐
ing DNA expression vectors encoding mAFP. Some mice developed mAFP antibody re‐
sponses, which were associated with a significant survival benefit.  These data suggested
that AFP has the potential  to function as a tumor antigen,  inducing CTLs and CD4+ T-
cell-mediated regression of AFP-positive HCC [108].

Many other TAAs that are tumor-specific “cancer-testis” antigens in HCC (MAGE, GAGE,
BAGE, NY-ESO, CTA, TSPY, FATE/Bj-HCC-2, and GPC3, among others) have been identified
[109]. GPC3 is a specific immunomarker of HCC and induces effective antitumor immunity in
mice [110]. Several antigens, such as CEA and CP1, are also known to be TAAs of CRC liver
tumors [111].

3.4. APCs

A number of strategies utilize the immune-activating ability of professional APCs, partic‐
ularly  DCs.  T-cell  activation  can  result  from  DC  cross  presentation.  Thus,  mature  DCs
can induce antitumor immunity [112].  A phase I  study of  the safety and efficacy of  di‐
rect injection of autologous immature DCs into tumors under radiotherapy was conduct‐
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ed. A decrease in the AFP level of greater than 50% was identified in three patients, and
NK activity was enhanced [113].

Addition of tumor lysate or purified proteins to immature DCs improves their function as
APC. Iwashita et al. used autologous DCs pulsed with tumor lysate (TL) and evaluated their
safety and feasibility. Immunization with TL-pulsed DCs was well-tolerated and feasible. In
one patient, one of two liver tumors showed necrotic changes and, in two patients, serum levels
of tumor markers decreased after vaccination [114].

Morse et al. concluded that combination therapy with DCs pulsed with a CEA peptide and
adjuvant cytokines (IFN-α and TNF-α) in patients with CEA-expressing malignancy showed
no toxicity and was feasible [115]. Brat et al. showed that peptide-loaded DCs enhanced NK
cell activation and decreased Treg frequencies in vaccinated HCC patients [32].

Thus, the potential of DCs to improve treatment of many cancers has been confirmed, and
various strategies are now being developed.

3.5. Peptide vaccines

Douglas et al. showed that gp100 peptide vaccine and IL-2 combination therapy resulted in
progression-free survival longer than IL-2 alone in patients with advanced melanoma [116].
The peptide vaccine was tolerated and yielded favorable immunologic responses, such as
induction of peptide-specific CTLs or reduced Tregs [117,118].

Regarding HCC, the AFP-derived peptide vaccine induced antigen-specific CD8 T-cell
responses; however, no dramatic clinical benefit was identified [24].

The GPC3-derived peptide vaccine can induce high-avidity CTLs capable of killing GPC3-
expressing HCC cells [119]. A phase I trial of the GPC3-derived vaccine for advanced HCC
indicated that the vaccine was well-tolerated and that peptide-specific CTLs could be a
predictive marker of overall survival [120]. The GPC3 peptide vaccine is discussed further in
the next section.

4. The GPC3-derived peptide vaccine: our fundamental sutdies and clinical
trials

4.1. GPC3, an ideal tumor antigen

GPC3 is a member of the glypican family of heparan sulfate proteoglycans, which are attached
to the cell surface via the glycosylphosphatidylinositol (GPI) anchor [121]. GPC3 forms a
complex with Wnt molecules and promotes the growth of HCC by stimulating canonical Wnt
signaling [122]. We reported that GPC3 was specifically overexpressed in human HCC based
on cDNA microarray data [29]. We reported that GPC3 is an ideal tumor antigen for immu‐
notherapy in mouse models [110] and is correlated with a poor prognosis in human HCC
[123,124]. We identified both HLA-A24(A*2402) and H-2Kd-restricted GPC3298–306 (EYIL‐
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SLEEL), as well as HLA-A2(A*0201)-restricted GPC3144-152 (FVGEFFTDV), as peptides that can
stimulate GPC3-reactive CTLs without inducing autoimmunity [110,125]. By performing a
binding assay, we confirmed that the HLA-A*02:01-restricted GPC3144–152 (FVGEFFTDV)
peptide can also bind to HLA-A*02:06 and HLA-A*02:07. We also conducted a preclinical study
in mice to design an optimal schedule for a clinical trial of the GPC3-derived peptide vaccine.
This preclinical study showed that incomplete Freund’s adjuvant (IFA) is indispensable for
peptide-based immunotherapy, and that the immunological effect of the peptide vaccine was
dose dependent [126].

4.2. Phase I clinical trial of a GPC3-derived peptide vaccine

Based on these results, we conducted a phase I clinical trial of this GPC3-derived peptide
vaccine in patients with advanced HCC, the results of which were published recently [120].
Thirty-three advanced HCC patients were administered GPC3 vaccination intradermally
(injections on days 1, 15, and 29 with dose escalation). GPC3298-306 (EYILSLEEL) was used in
HLA-A24-positive patients and GPC3144-152 (FVGEFFTDV) in HLA-A2-positive patients. GPC3
peptide vaccination was well tolerated. One patient showed a partial response, and 19 showed
stable disease 2 months after initiation of treatment. Four of the 19 patients with stable disease
had tumor necrosis or regression that did not meet the criteria for a partial response. The
disease control rate (partial response + stable disease) was 60.6%, 2 months after initiation of
treatment. Levels of the tumor markers AFP and/or des-γ-carboxy prothrombin temporarily
decreased in nine patients. We also analyzed the GPC3-specific CTL frequency by ex vivo IFN-
γ enzyme-linked immunospot (ELISPOT) assay. In 30 patients, numbers of GPC3 peptide-
specific CTLs increased in peripheral blood after GPC3 peptide vaccination. We established
several GPC3144–152 peptide-specific CTL clones with antigen-specific killing activity against
tumor cells from PBMCs of patients vaccinated in this trial [119]. Tumor biopsies were
performed (with informed consent) in seven patients to evaluate infiltration of CD8-positive
T cells by immunohistochemical staining. Many CD8-positive T cells infiltrated tumors after
vaccination. This study showed that the peptide-specific CTL frequency was correlated with
overall survival in HCC patients receiving peptide vaccination. In multivariate analysis, the
GPC3 peptide-specific CTL frequency was the predictive factor for overall survival in this trial.
Analysis of all 33 patients showed that the median overall survival was 12.2 months (95%
confidence interval, 6.5 to 18.0) in patients with high GPC3-specfic CTL frequencies, compared
with 8.5 months (95% confidence interval, 3.7 to 13.1) in those with low GPC3-specfic CTL
frequencies (P = 0.033). This study provided much immunological evidence that suggested the
potential for improvement of overall survival.

4.3. Ongoing trials of GPC3-based immunotherapy

We subsequently conducted a phase II study of the GPC3-derived peptide vaccine as an
adjuvant therapy for patients with HCC (University Hospital Medical Information Network
Clinical Trials Registry, UMIN-CTR number: 000002614). Forty patients with initial HCC who
had undergone surgery or radiofrequency ablation were enrolled in this phase II, open-label,
single-arm trial. Ten vaccinations were performed over 1 year after curative treatment. The
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primary endpoints were the 1- and 2-year recurrence rates. The secondary endpoints were
immunological responses, as measured by IFN-γ ELISPOT assay. Currently, the correlation
between the time of recurrence and immunological responses is being analyzed.

We are conducting a subsequent trial for advanced HCC to assess whether TILs with an anti-
tumor effect are indeed increased (UMIN-CTR number: 000005093). In all cases, liver biopsies
will be performed before and after GPC3 peptide vaccination, according to the protocol. In the
phase I trial, we did not confirm whether the TILs detected after vaccination were GPC3
peptide-specific. In the ongoing trial, we could detect GPC3 peptide-specific CTLs in liver
biopsy specimens by flow cytometry using dextramer staining.

We expect that the results of these studies will validate the biomarkers and provide a ra‐
tionale  for  a  larger  randomized  clinical  trial  to  determine  the  efficacy  of  the  GPC3-de‐
rived peptide vaccine. Conversely, the antitumor effect in advanced cancer of the peptide
vaccine alone is  not  dramatic.  Thus,  we aim to  develop combinatorial  approaches  [127]
or  strong  antigen-specific  immunotherapies,  such  as  ACT  following  lymphodepletion
[20].  Additionally,  clinical  trials  of  the  adoptive  transfer  of  GPC3-specific  CTLs  in  pa‐
tients with HCC in Japan are planned [128].

5. Development of immunotherapy and potential of combined therapy

Combinatorial strategies could comprise either a combination of classic chemo- or radiother‐
apy or simultaneous application of different immunotherapeutic approaches. Many preclinical
studies have shown synergistic effects of combined therapy, standard cytotoxic chemotherapy
[127], or radiotherapy [129]. Elimination or inhibition of Treg activity by low-dose cyclophos‐
phamide or antibodies against CD25 was shown to be a rational approach [130-132]. Simulta‐
neous administration of antibodies against CTLA-4 [133] or PD-1[131] may modify the tumor
immunosuppressive microenvironment, thereby increasing the efficacy of immunotherapy.

5.1. Potential of combination therapies

Some chemotherapeutic agents upregulate TAA expression or reduce tumor cell resistance to
specific CTLs [134]. Subtoxic-dose chemotherapy increased the susceptibility of tumor cells to
the cytotoxic effect of CTLs [127].

Cell-surface expression of MHC class I molecules was increased for many days in a radiation
dose-dependent manner using a murine model [135]. Conversely, exposing HCC to low-dose
radiation increases the efficacy of DC-mediated immunotherapy due to upregulation of MHC
class II and Fas expression after irradiation [136].

HCC thermal ablation induced or enhanced T-cell responses specific for HCC–associated
antigens in PBMCs derived from 20 patients with HCC [137]. Similarly, the effect on the
immune system of radiofrequency ablation was greater than that of surgical resection in both
HCC patients and tumor-bearing mice. All seven patients with GPC3-expressing HCCs
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exhibited an increase in GPC3-specific CTLs after radiofrequency ablation or TACE, but not
after surgical resection [138].

5.2. Clinical trials of combinatorial approaches

Several clinical trials of combinational approaches have been reported.

Greten et al. reported the effect of low-dose cyclophosphamide treatment in combination with
telomerase peptide (GV1001) vaccination in 40 patients with advanced HCC [139]. GV1001
treatment resulted in a decrease in the number of CD4+CD25+Foxp3+ Tregs; however, no
GV1001-specific immune responses were detected after vaccination.

Conversely, a randomized phase II trial of a multiple tumor-associated peptide vaccine for
renal cell carcinoma showed that a single dose of cyclophosphamide reduced the number of
Tregs and that immune responders had prolonged survival if pretreated with cyclophospha‐
mide (hazard ratio = 0.38; P = 0.040) [140]. There was no difference in survival of nonimmune
responders in the cyclophosphamide and non-cyclophosphamide arms. Thus the synergistic
effects of cyclophosphamide might require a specific immune response.

Nakamoto et al. reported that transcatheter arterial DC infusion into tumor tissues following
transarterial embolization treatment was feasible and safe in 10 patients with cirrhosis and
HCC [141]. There was a trend for patients infused with DCs to display a longer recurrence-
free survival. Thus transcatheter arterial infusion might be rational for specifically inducing
immune effects in the target lesion.

Thus far, few clinical trials of the combination of immunotherapy and chemotherapy in HCC
have been reported because chemotherapy, with the exception of sorafenib therapy, has not
been demonstrated to be useful. Further studies are necessary to increase the clinical efficacy
of immunotherapy for advanced HCC. There is hope that the combination of well-designed
clinical trials of innovative immunotherapeutic approaches will lead to development of
efficient new therapies for treatment of HCC.

5.3. mAbs

Use of mAbs that target tumor antigens is an important therapeutic approach for cancer
treatment. mAbs can act as both agonists and antagonists by binding important key receptors
to control immune responses [142].

5.3.1. CD28

Antibodies against CD28 are known to induce antitumor immunity in combination with bi-
specific antibodies that bind to both the tumor antigen and the TCR-CD3 complex [143].
However, CD28 antibodies can activate T cells directly, as shown in a phase I dose escalation
trial using a CD28 mAb that reported severe toxicity, including a systemic inflammatory
response. Thus infusion of CD28 mAbs is associated with serious difficulties [48].
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5.3.2. CD137

CD137, a member of the TNF receptor superfamily, is expressed on antigen-activated T cells
(CD4+,Cd8+ Tregs and NK cells), DCs, cytokine-activated NK cells, eosinophils, mast cells,
and endothelial cells of some metastatic tumors, and binds to a high-affinity ligand expressed
on several APCs such as macrophages and activated B cells [144]. An anti-CD137 mAb
promoted survival of T cells and prevented cell death [145,146]. These suggest that anti-CD137
mAbs can enhance T cell-mediated immune responses. Melero et al. reported the antitumor
effect of an anti-CD137 mAb on Ag104 sarcoma and P815 mastocytoma in mice [144].

Unfortunately, Niu et al. reported that single injection of anti-CD137 caused anomalies such
as splenomegaly, hepatomegaly, lymphadenopathy, multifocal hepatitis, anaemia, altered
trafficking of B cells and CD8+ T cells, loss of NK cells, and a 10-fold increase in bone marrow
cells bearing the phenotype of hematopoietic stem cells [147].

5.3.3. OX40

OX40 (also known as CD134 and TNR4) is a member of the TNFR family that is expressed on
activated CD4+ and CD8+ T cells. The OX40 ligand is expressed on activated APCs (DC, B cells,
and macrophages), and possibly also on activated T cells and endothelial cells. OX40 ligand
stimulates T-cell proliferation and ensures T-cell long-term survival. OX40 or OX40L deficien‐
cy leads to weaker CD4+ T-helper immune responses in mice. Moreover, expression of
exogenous OX40L by tumor cells increases their immunogenicity, and causes their rejection
by CD4+ T helper 1 cells and CTL responses. No side effects induced by OX40 ligand have yet
been reported, although the possibility cannot be excluded because OX40 has been found on
CD4+ lymphocytes infiltrating multiple sclerosis and inflammatory bowel disease lesions.
Phase I clinical trials of a murine anti-human OX40 mAb have been initiated in patients with
advanced cancer of multiple tissue origins, although repeat administration of this xenogeneic
antibody will be limited due to immune responses against the murine sequences of the
antibody [148].

5.3.4. GPC3

Chugai Pharmaceutical Co., Ltd. developed the GPC3 antibody (GC33) for treatment of HCC.
They demonstrated antitumor efficacy of GC33 in several human liver cancer xenograft models
and the important role of antibody-dependent cellular cytotoxicity (ADCC) in the antitumor
mechanism of GC33. They also showed that macrophages play an important role in this
antitumor activity, which is unlikely to be direct ADCC by macrophages themselves [149].
Clinical trials of GC33 in advanced HCC patients are ongoing.

5.3.5. CTLA-4

CTLA-4 is an immunosuppressive receptor on T cells. Via ligand binding, CTLA-4 generates
inhibitory signals that reduce T-cell proliferation and IL-2 secretion. Administration of CTLA-4
mAbs demonstrated antitumor effects in some murine malignant models [150,151].
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Prieto et al. followed patients with melanoma treated with CTLA-4 mAb (ipilimumab) and
either the gp100 peptide or IL-2. Ipilimumab induced durable, potentially curative tumor
regression in a small percentage of patients with metastatic melanoma; furthermore, combi‐
nation with IL-2 increased the complete response rate [152]. Some phase II clinical trials have
reported the safety and therapeutic effect of CTLA-4 mAb in HCC patients. CTLA-4 mAb
showed promising antitumor effects against HCC in addition to antiviral activity against
hepatitis C virus [153].

5.3.6. PD-1

PD-L1 is a member of the B7 family that can interact with programmed death-1 (PD-1). Its
receptor PD-1 is expressed on activated T and B cells and elicits inhibitory signals [76]. A phase
I trial using a fully human IgG4 PD-1 blocking antibody (MDX-1106) demonstrated objective
responses with limited toxicity in patients with treatment-refractory solid tumors [154]. The
objective responses of non-small cell lung cancer, melanoma, or renal-cell cancer associated
with PD-1 antibody may be related to PD-L1 expression on tumor cells [77]. In HCC, PD-L1
expression is correlated with tumor aggressiveness and postoperative recurrence [155].

A number of other mAbs have demonstrated benefits for the treatment of HCC as well as
undesired effects associated with their high affinity and selectivity. The most promising
observations are that mAb therapies have synergistic effects in combination with other
strategies.

6. Conclusion

To date, there is no report of adequate antitumor efficacy of immunotherapy in clinical trials
involving advanced HCC patients. However, the available data suggest that immunotherapy
has the potential to improve survival without impairing the quality of life, and is expected to
be effective for prevention of recurrence.

Immunotherapy for HCC is still in the preclinical and clinical trial phases of development;
however, it will become available and be clinically successful in the near future. Analysis of
the correlation between clinical and immunological responses is required for to demonstrate
the efficacy of immunotherapy. The challenge remains to design clinical trials to appropriately
evaluate novel immunotherapies or combination therapies, and allow feedback to facilitate
ongoing development.
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