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1. Introduction 

The technological development is one of the reasons why there is a variety of new materials 
that can be applied to various situations. This situation enables many materials to be applied 

in different areas: engineering, medicine, agriculture, arts, space field, among others. Alloys 

with shape memory effect (SME) are materials that exhibit interesting characteristics and 
can be applied in various situations.  

The SME in Fe-based alloys results from the reverse motion of Shockley partial dislocation 

during heating (Otubo, 2002) and (Bergeon et al. 1997). Figure 1 shows a schematic figure of  

 
Figure 1. Shape Memory Effect (Nascimento, 2008).  
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SME. The original form of the material is a star, Fig. 1-(1). This star is deformed beyond its 

elastic limit, Fig. 1-(2) and the original crystal structure (f.c.c.) is transformed into h.c.p. 
structure. During the heating, reversion to the f.c.c. structure occurs and the original shape 
is recovered Fig. 1-(3). Reversion to the matrix phase (austenite) is not complete because a 
martensite residual amount exists which is not recovered during the heat treatment. 
Chemical composition and austenite grain size are important factors that affect the shape 

recovery in iron based shape memory alloys. 

In this study, structural parameters of stress induced ε-martensite were analyzed for Fe-
Mn-Si-Cr-Ni-(Co) different chemical compositions. The material was hot rolled at 1473 K 
followed by a heat-treatment at 1323 K for different times to obtain different austenite 
grain sizes samples. Two parameters were considered: austenitic grain and training 
cycles. 

2. Iron shape memory alloys – history 

Iron based shape memory alloys have been largely investigated during the last years. The 
Shape Memory Effect (SME) is a physical phenomenon which results in recovery of the 
original shape through temperature variation after the material has been deformed beyond 

its elastic limit. The alloys that exhibit this characteristic are known as Smart Materials - a 
group of materials that show reproducible and stable responses, through significant 
variations of at least one property, when subjected to external stimuli. Table 1 shows some 
of these materials and their properties.  

In iron based alloys the SME, is related with the (f.c.c.)  (h.c.p.) nonthermoelastic 
martensitic transformation (Bergeon et al. 1997). This effect is the result of the reverse 
motion of Shockley partial dislocation during heating. In general, the technological 

development was largely responsible for, the emergence of new compositions with SME. 
The ferrous alloy was developed as an alternative to NiTi alloys and also the copper base 
compositions due to its low cost and properties similar to nitinol alloy.  

Fe-Mn-Si alloys began to be studied in the 80s (Sato et al. 1982). The alloying elements Cr, 
Ni and Co were subsequently used to improve the properties of shape recovery. Fe-Mn-
Si-Cr-Ni-Co alloys were developed, with several attractive properties and a more 

desirable shape recovery making them suitable for various technological applications 
(Shiming et al. 1991), (Bergeon et al. 1997), (Kajiwara et al. 1999), (Arruda, 1999). In Brazil 

the family of iron-based shape memory alloys has been extensively studied since 1995 

(Otubo et al. 1995). 

Tab. 2 presents a list of research groups registered in the CNPq (National Counsel of 
Technological and Scientific Development) investigating the ferrous alloys with EMF in 

Brazil. 

Research groups are listed in Tab. 2 to present the several technological applications and 
basic studies. In this study we will focus on recovery as a function of the initial 
microstructure and training cycles. 
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Smart Materials Properties 

Shape memory alloys and shape memory 

polymers 
Materials in which large deformation can 
be induced and recovered through 
temperature changes or stress changes. 

Magnetic shape memory alloys Materials that change their shape in 
response to significant change in the 
magnetic field. 

Piezoelectric materials  Materials that produce a voltage when 
stress is applied. 

Magnetostrictive materials Materials that exhibit change in shape 
under the influence of magnetic field. 

pH-sensitive polymers Materials that change in volume when the 
pH of the surrounding medium changes. 

Temperature-responsive polymers Materials which undergo changes upon 
temperature. 

Halochromic materials Materials that change their color as a result 
of changing acidity. 

Chromogenic systems Materials that change color in response to 
electrical, optical or thermal changes. 

Ferrofluid  

Photomechanical materials Materials that change shape under 
exposure to light. 

Self-healing materials  Materials that have the intrinsic ability to 
repair damage due to normal usage, thus 
expanding the material's lifetime 

Dielectric elastomers Smart material systems which produce 
large strains (up to 300%) under the 
influence of an external electric field. 

Magnetocaloric materials Compounds that undergo a reversible 
change in temperature upon exposure to a 
changing magnetic field. 

Thermoelectric materials  Materials used to build devices that 
convert temperature differences into 
electricity and vice-versa. 

 

 
Table 1. Smart Materials 
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Research groups -source: CNPq Identification Iron-based alloy 

Development of metallic alloys Fundação Centro 
Tecnológico de Minas Gerais 
– CETEC 

Fe-Mn-Si-(Ni-Cr-Co) 

Development of metallic alloys 
for industrial applications 

Universidade Estadual de 
Campinas – UNICAMP 

Fe-Mn-Si-(Ni-Cr-Co) 

Shape memory alloys - 
characterization and application 

Universidade Estadual de 
Ponta Grossa – UEPG 

Fe-Mn-Si-Ni-Cr-(Co) 
and NiTi 

Shape memory materials Instituto Tecnológico da 
Aeronáutica – ITA 

Stainless steel e NiTi 

Table 2. Research groups of iron shape memory alloy in Brazil (source: CNPq) 

3. Structural and mechanical properties 

Technological applications of these alloys are directly related to the study of their 
mechanical and structural properties. There are several mechanical properties which may be 

mentioned. In this study the relationship between the effect of structural parameters on the 
mechanical properties and shape recovery will be presented through the analysis of samples 
subjected to cycles of training using compression test. Therefore, the results discussed refer 

to the reverse transformation of stress induced -martensite. 

3.1. Structural characterizations 

As it is known, the SME is directly related to processing and reversing the crystalline 

phases. In these materials the following transformations may occur: 

             . . . . . . , . . . ’ . . .  . . . . . . ’ . . .g f c c h c p f c c b c c and f c c h c p b c c        

The predominant type of transformation will depend on factors such as chemical 

composition and thermomechanical treatment cycles. The ' phase is bcc; Shockley partial 

dislocations are specific of compact structures f.c.c. and h.c.p. When the fraction of b.c.c. 
phase increases, there is a decrease in the fraction of compact structures, thus the recovery 

mechanism through partial dislocation Shockley is smaller.  

The three types of crystal structure show interesting peculiarities which are discussed 

below. 

a. Austenitic phase 

The austenitic phase in iron based Fe alloys is known as a strong and stable phase. 
Crystallographically it presents characteristics similar to commercial stainless steels, AISI 
304. It features a cubic crystal structure (f.c.c.) and space group Fm-3m. 

b. Martensitic phase  

In this study there are two important phases resulting from the martensitic transformation: 
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         . . . . . . ’ . . .   . . . ’ . . .f c c h c p b c c or f c c b c c         

The -martensite-phase is of greater interest because the reversion to austenite results in 
SME. Literature data show that the hexagonal structure (h.c.p.) can be mechanically or 
thermally induced. In particular in this case priority is given for the stress induced -
martensite. 

The atomic stacking sequence for the f.c.c. phase is ABCABCABC ... and h.c.p. phase is 
ABABAB. According to studies on stacking faults, they are necessary in the f.c.c structure in 

order to generate the embryos which form the martensitic phase. The overlapping of stacking 

faults form an h.c.p. volume and a reversal movement of Shockley partial dislocation occurs. 
Figure 2 shows a diagram of the stacking sequence to cubic and hexagonal structures. The 
orientation relationship between these phases is shown in Figure 3. 

 
Figure 2. Atomic stacking sequence (ABCABCABC...) for f.c.c. structure with overlapping 
every third crystal plane (111) along [111]. Atomic stacking sequence (ABABAB...) for h.c.p. 
structure with overlapping crystal planes (0001) alternate along [0001] (Van Vlack, 1998). 

The martensite and austenite phases can be identified using different techniques such as X-
ray diffraction (XRD) and optical microscopy. The ferrous alloys, with SME, present a 
diffractogram similiar to AISI 304 commercial austenitic steels. Table 3 shows the position of 
2 reflections corresponding to the martensite and austenite phases. In this study, the XRD 
data were collected between 10 and 100°(2) at room temperature using a Philips 
diffractometer (PW1710) with Cu target and a graphite diffracted beam monochromator, 
step sizes of 0.02° and 2 seconds counting time. 
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Figure 3. Orientation relationship between h.c.p. and f.c.c. phases (Huijun 1999). 

 

Phase (h.k.l.) 2
-austenite  

Structure: cubic 
Space group: Fm-3m 

(111) 
(200) 
(220) 
(311) 

43.7 
50.7 
74.8 
90.8 

-martensite 
Structure: hexagonal 

Space group: P63/mm6 ( = 120o) 

(10.0) 
(10.1) 
(10.2) 

41.0 
46.9 
62.0 

Table 3. Identification of austenite and martensite phases. 

Figure 4 shows the identification of these phases and the effect of the training cycle on a 

sample with grain size 75 m (4 - ASTM).  

 

Figure 4. XRD patterns for 1st, 3rd and 6th thermo-mechanical cycles, deformed state, GS = 75 m 
(Nascimento et al. 2008). 
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Figure 4 shows that with the increasing number of training cycles, the volumetric fraction of 
the martensitic phase increases. Using Rietveld refinement the quantitative analysis of phases 
was estimated considering the integrated intensity of the peaks (10.1) The small shift in the 

position 2 of reflection (111)-austenitic phase shows variations in the lattice parameter of the 
unit cell this phase. These changes can be analyzed using Rietveld refinement. 

In the Rietveld refinement the peak shape, width parameters and background parameters 
are considered. All these parameters were refined adopting the iterative least-squares 
method through minimization of residual parameter. Two structure types were considered: 
(a) cubic symmetry, space group Fm-3m for austenite phase, and (b) hexagonal symmetry, 
space group P63/mmc (with γ = 120°) for the martensite phase. Lattice parameters 
correspond to a similar composition alloy, AISI-304 steel. The thermal parameters (B’s) 
initially used for both phases were Boverall = 0.5 and the peak shape function used was the 
pseudo-Voigt. Figure 5 presents the experimental and refined X ray diffraction patterns as 
well as their difference.  

 
Figure 5. Rietveld refinement (GS = 75 μm), last thermo-mechanical cycle, deformed state (Nascimento 
et al. 2008). 

The ε-martensite lattice parameters for the first cycle were: aε = 2.548(6) Å, cε = 4.162(2) Å. 
The ratio c/a found was c/a = 1.633(2). The standard deviations are shown in parenthesis. 
Austenitic phase indicated lattice parameters similar to those presented in the literature for 
stainless steel (Gauzzi et al. 1999): aγ = 3.587(2) Å. Lattice parameters for the austenitic phase 
presented small variations (< 3%). The discrepancies between the experimental and refined 
profiles for all samples are small, indicating that the unit cell dimensions were accurately 
determined and that the chosen peak shape function pseudo-Voigt was a good choice for 
these samples. The thermal parameters (B’s) presented a variation smaller than 0.5%. These 
structural variations are important because they affect the ratio c/a and also the reversion to 
the cubic austenitic phase (Nascimento et al. 2008). 
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Previous studies (Nascimento et al. 2008) show the effect of training cycles on the lattice 
parameter of the unit cell in stainless shape memory alloy, Figure 6. We note that for the 

sample with smaller grain size (75 m) the a-parameters decreased with increased training 

cycles while the c-parameter increased. These changes affect the SME.  

 
Figure 6. Structural parameters variation for austenite and martensite phases as a function of 
training cycles and grain size (Nascimento et al. 2008).  

 

Figure 7. Structural parameters variation for austenite and martensite phases as a function of the 
grain size. 
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Figure 7 shows the variation of the structural parameters a, c, and the ratio a/c as a function 

of the initial microstructure. These samples showed a smaller variation of grain size and 

consequently lower variation of structural parameters. 

 

 

 

 

 

 

 

Figure 8. Shape memory effect as a function of ratio c/a. 

Another way to identify the phases in alloys with SME is through optical microscopy using 
specific etching. The phases are differentiated through color (color etching method) that 
should be adapted to each sample (Nascimento et al. 2003). Figure 9 shows some images of 

the Fe-Mn-Si-Cr-Ni-Co alloy. In the first image, the austenitic grain boundaries are seen (Fig. 
9a). Austenitic grain orientations are observed by different colors. Deformation twins can 

also be viewed (Fig. 9b). The coexistence of martensite and austenite phases can be observed 
in Fig. 9c. In this case, the darker regions have been identified as the martensitic phase. The 
color etching is also very important to verify the presence of the ’-martensite, considered as 
detrimental to the shape recovery process. This phase was not identified by X-ray diffraction 
because it has a low volumetric fraction (<2%). But, using optical microscopy, the ’-
martensite was identified as spots throughout the sheets of -martensite, Fig. 9d. 
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                                              a)                                                               b) 

      

                                             c)                                                                d) 

Figure 9. Identification of martensite and austenite phases using color etching: 2.0 g K2S2O5 + 0.5g 
NH4HF2 + 50 ml H2O (Bueno et al. 2003). 

3.2. Mechanical properties 

The mechanical properties such as hardness (Vickers hardness and nano hardness) were 

analyzed in samples subjected to compression cycles to study the stress induced -
martensite (Nascimento, 2008). Figure 10 shows the influence of austenite grain size in 
Vickers hardness and the nano hardness of the Fe-Mn-Si-Cr-Ni-Co alloy. 

The Vickers hardness (Fig-10a) shows the contribution of -martensite and austenite phases 
simultaneously. In this case, the behavior is similar to that of the commercial austenitic steel, 

the Vickers hardness decreases as a function of grain size (Nascimento, 2008). Literature 

data indicated a linear relationship between the yield stress () and the inverse of the square 
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root of grain diameter, according to Hall-Petch (Leslie, 1996), (Gladman, 1997). Using 

pyramidal indenter geometry it is possible to estimate the hardness (GPa) of these phases 
separately, Fig. 10(b) and Fig. 10(c). 

The curve of hardness, Fig. 10(c) shows similar behavior to that of the austenite phase curve 

Fig. 10(a). But the martensitic phase, Fig. 10(b), shows an increased hardness due to increase 
in grain size. This result is explained by the fact that increased grain size makes shape  
 

 

a) 

 

Figure 10. a) Hardness (GPa) and Vickers hardness as a function of austenite grain size, recovery state, 
b) Hardness (GPa) curve obtained in nanoindentation tests in Fe-Mn-Si-Cr-Ni iron based shape memory 
alloy.  
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Figure 11. Effect of austenite grain size on the elastic modulus (GPa) to -martensite and 
austenite phases.  

recovery more difficult. In this case, these samples have a higher volumetric fraction of -
martensite residual, a phase which was not recovered at each cycle of thermomechanical 

treatment (Nascimento et al. 2003). Figure 10d shows the typical curve obtained in the 
nanoindentation test. The blue curve is the first training cycle and the red curve is the sixth 

cycle, or thermomechanical cycle. For small contact depths, hardness is analyzed on the 

surface of the material and for greater contact depths, the values of hardness are obtained in 
bulk, approaching conventional austenitic stainless steel. 

The variations of the modulus of elasticity for the martensite and austenite phases are 

shown in Figure 11. For a commercial stainless steel the modulus of elasticity is around 210 
GPa. When we analyze the phases separately, we observed a change in value. This variation 
is due to the difference in chemical composition and also alterations in the volumetric 
fraction of the phases. 

4. Conclusion  

The main conclusion of this study refers to the fact that the initial refinement of the 

microstructure in iron based alloys affects the performance of shape recovery of these 

materials. These changes occur in several aspects: morphology and microstructure of the 

phases, structural parameters, mechanical properties and shape memory effect. Changes 
in the ratio c/a of martensitic phase affect the reverse motion of partial dislocation that is 

also affected by grain size. Samples with larger grain size need to relax the strain by 

creating new guidelines facilitating the precipitation of the ’-martensite. Analysis using 
the Rietveld refinement are important because they allow better evaluation of the 

structural variations. 
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