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1. Introduction 

The study and development of new materials have been used to forge new technology. 

Shape memory alloys (SMA’s) have been cataloged as new materials which applications are 

in fields like the construction industry where these materials have been used as mechanical 

elements of damping; in medicine, SMA’s have been used for biomechanical prosthesis in 

order to correct the position of bones and also to make surgical instruments. In these 

applications, because of their mechanical behavior, SMA’s can substitute more efficiently, 

conventional materials. To get a better understanding of SMA’s, new investigations are 

needed. 

In recent years, the scientific and technologic community has been interested in the study of 

“exotic materials” like shape memory alloys (SMA’s). Shape memory alloys are materials 

that can recover their original shape, after being elastically or pseudo-plastically deformed, 

by increasing their temperature; all these associated to a martensitic transformation [1,2]. 

The martensitic transformation is defined as a first-order displacive process, where a body 

center cubic parent phase (austenitic phase) transforms by a shearing mechanism into a 

monoclinic or orthorhombic martensitic phase [1]. The shape memory effects are useful in 

replacing conventional materials and developing new applications in science and industry. 

The SMA’s present some associated effects like single, double shape memory effects and 

superelastic effect. All these effects are well known and they have been reported in literature 

for several authors [3-7].  

The superelastic effect is one of the reasons that have encourage a continuous effort to 

understand, predict and explode the shape memory behavior of these materials. Since the 
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CuAlBe system appeared in 1982; it is considered one of the first studies that were done in 

Cu-Al-Be shape memory alloys by Higuchi et al. These works studied the influence of the 

thermal stability of Cu-Al-Be alloy which had a nearly eutectoid composition; Higuchi et al. 

observed small changes in the temperatures of transformation and also realized that the 

austenite phase was not decomposed up to 300 ºC. With the thermal cycling also were 

observed the displacement variations; this was confirmed with a coil with a constant load; 

increasing the coil temperature, small displacement were register; thus the two way shape 

memory effect was reported in Cu-Al-Be [8,9].   

After a while other interesting works concerning with this alloy were developed. Belkahla 

et al. reported the elaboration and characterization of a low temperature of the Cu-Al-Be 

shape memory alloy; obviously this work was based in Higuchi’s research. The main 

contributions of this work were the quasi-binary Cu-Al phase diagram with the addition of 

0.47 wt.% of beryllium and the Ms analytical expression, as a function of elements 

composition, to determine the critical temperature that indicates the start of the martensitic 

transformation. This study confirmed that the addition of small concentration of beryllium 

Cu-Al system decreased the eutectoidal temperature around 50 ºC. In addition to the 

temperature decrement, a new ternary domain was observed; here the phase α, β and γ2 

are present [10].   

Jurado et al. were concerned about the order-disorder phase transition in Cu-Al-Be system 

alloys; in this case the studied ally was close to the eutectic composition. The main 

contribution of Jurado et al. was to reveal the effect of beryllium atom on the ordering 

behavior of the Cu-Al based alloys. Nowadays the X-Ray diffraction measurements reported 

by Jurado et al. are very useful to identify the involved phases in this system [11]. 

If order-disorder behavior takes place in CuAlBe system, it is obvious that this material can 

exhibit different mechanical response. The difference in mechanical behavior is due to the 

high anisotropy of this material. As a matter of fact, the Cu-Al-Be system presents three 

kinds of anisotropy. The first type is due to the austenitic phase and it is known as an 

inherent anisotropy. The second type is known as transformational anisotropy; this depends 

on the applied stress level or even the test temperature, preferential crystal orientation due 

to manufacturing process of the material. The last kind anisotropy is related with the 

mixture of austenite and martensite phases; the proportions of both phases, in the alloy, will 

change the mechanical response of this material. In order to clarify the mechanical response 

of this material some studies on the thermomechanical behavior has been done in 

monocrystals of Cu-Al-Be. These studies were able to determine the metastable phase stress 

vs. temperature diagram (σ-T). With this diagram is possible to get the critical stress or 

transformation stress value if the martensite phase is induced by stress [12]. 

Siredey and Eberhardt presented other interesting result, on the fatigue behavior of Cu-Al-

Be monocrystals. A model to explain the fatigue mechanism was proposed. This model was 

based on the assumption that there are different zones where the martensite phase gets 

reordering or other diffusional phenomena, which vary the expected behavior inside the 

material; so the Ms temperature can change locally and it will modify the global behavior of 
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the material [13]. As it was previously mentioned the X-ray and differential screw 

calorimetric studies represent a suitable way to characterize shape memory materials. Balo 

et al. used these techniques to show the influence of heat treatments and beryllium content 

for this alloy. In this study can be observed the indexed X-ray pattern for martensite phase 

in addition the lattice parameters for 18R martensite were reported too [14,15]. 

All previous research has motivated the improvement of the Cu-Al-Be system in order to 

spread its application in different industry branches. One aspect to improve in this system is 

the mechanical properties that depend on the alloy’s microstructure. In other words the 

involved phases and grain size have to be customized. In order to modify the mechanical 

response of Cu-A-Be system several grain refiners have been used. Ultrasonic and 

mechanical tensile testing has proved the influence of those refiners by different authors 

[16,17]. 

More specific studies, to understand the mechanical behavior of SMA, were done using non-

conventional techniques to mimic the martensitic transformation in the superelastic regime 

for both monocrystal and polycrystal CuAlBe undergoing tension [18-20]. As a result, 

scientists have proposed transformation criterions, constitutive equations and also new tools 

to be familiar with the involve mechanisms during the martensitic transformation [21-26]. 

As it can be notice, considerable efforts have been done to understand the complex behavior 

of SMA’s; mainly, because of their properties will eventually lead to replace conventional 

materials with these alloys.  

Although there are several works trying to explain the mechanical behavior of SMA’s 

nobody has studied the stress-induced martensitic transformation and its granular 

interaction in 2D-confined polycrystalline sample of CuAlBe undergoing 3-point bending by 

Digital Image Correlation. That is why the objective of this work is based on getting a 

practical methodology to understand the micro and macromechanical behavior of poly and 

monocrystalline Cu-Al 11.2 wt.%-Be 0.6 wt% , Cu-Al 11.2 wt.%-Be 0.5 wt% (respectively) 

undergoing a stress-induced martensitic transformation by a 3-point bending using digital  

image correlation.  

Taking in to account the good thermal stability, excellent shape memory properties, 

temperature transformation wide ranges, damping capacity and low cost of production, the 

Cu-Al-Be system has become in a excellent alternative to take advantage of the shape 

memory effects; that is why several works will be conducted to get a full understanding on 

the Cu-Al-Be properties.  

2. Experimental details 

The experimental section describes the elaboration and characterization of the material. The 

first part of this section is focused in the elaboration and structural characterization of the 

material. The second part is dedicated to the mechanical arrangement that makes possible 

the simultaneous state of stress (tension and compression) in the sample. 



 
Shape Memory Alloys – Processing, Characterization and Applications 200 

2.1. Material 

As it was previously mentioned, the composition was Cu-Al 11.2 wt%-Be 0.6 wt%, and Cu-

Al 11.2 wt.%-Be 0.5 wt%  which is close to the eutectoidal composition [10]. An induction 

furnace (Leybold-Heraeus) was employed to elaborate the alloy by a melting process; this 

furnace has a controlled atmosphere and in our case argon gas was used. From the castings, 

suitable slices were cut and then hot rolled to obtain thin sheets. The length, width and 

thickness of the sheets were 280, 57 and 0.7-0.9 millimeters, respectively. These dimensions 

were reached after a 191 % hot-rolled (800 °C) deformation process. The hot-rolled process 

was carried out in an oven (Sola Basic-Lindberg model 847) and a roll machine (Fenn Amca 

International). Subsequently, the sheets were subjected to a heat treatment, called 

betatization, to reveal the shape memory effects; the sheets were heated at 750 °C during 15 

minutes and then water-quenched to 95 °C during 20 minutes [24].  Then the samples were 

studied by X-ray diffraction (Bruker AXS modelo D8 Advance) in order to detect the phases 

involved in the alloy; finally Critical transformation temperatures were obtained by DSC 

2910 Modulated de TA Instrument. After this, the sheets were cut in rectangular samples 

according to the beam theory. 

2.2. Three-Point bending test 

Bending tests were carried out on a servohydraulic loading device (MTS 858 MiniBionix 

axial). To acquire images an optical microscope was coupled to a CCD camera. The modular 

microscope works as an infinity-corrected compound microscope with magnifications of 2X. 

To control the MiniBionix MTS a 407 MTS controller was used while data and images 

acquisition were acquired by a National Instruments PXI-1002 chassis and PXI-boards (6281, 

8331 and 1402) connected to a PC. White light illumination (150 W quartz halogen light 

source) was used to observe the microestructural behavior of the SMA under bending (see 

Fig. 1). 

 

Figure 1. Experimental setup 

In order to have a better understanding of CuAlBe mechanical behavior under bending a 

single-crystal of CuAlBe was also studied under the same conditions. Hence it was possible 
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to compare the mechanical behavior of monocrystalline and polycrystalline samples under 

bending. From the image sequence were determine the displacement vector fields at the 

region of interest, using digital image correlation, associated to bending test for both cases.  

With the series of images acquired during the bending test, displacement vector fields were 

calculated from pairs of images. The Willert and Gharib algorithm [27] was used to calculate 

the displacement field uk(xk, yk) and vk(xk, yk), where u and v represent the displacements of 

an analysis object or region of interest in the x and y directions respectively [28, 29]. The x 

and y represent the position coordinates of the analysis object in every image; subindex k 

indicates the corresponding object, which is defined as a 64x64 pixels subregion of interest. 

Hence was possible to observe the mechanical behavior in tension and compression by grain 

simultaneously.  

3. Results 

3.1. X-ray diffraction 

The x-ray spectra are shown in Figure 2. Here it can be observed the all the present phases in 

the monocrystalline and polycrystalline samples corresponds to those reported phases for 

this material (Austenite β and Martensiteβ’, γ2) [11].  It is obvious that the monocrystal 

presents only a peak that corresponds to (440) direction; while the hot-rolled polycrystalline 

sample presents a preferential orientation in (111) and (220) directions; this confirms the 

existence of global crystallographic texture in the polycrystalline sample.   

This result also confirmed the possibility to get the direct transformation by stress 

(Austenitic-Martensitic); in other words the superelastic effect in this alloy will be observed 

when the stress-induced martensitic transformation appears during the mechanical test. The 

β phase or austenite phase is a supercell DO3 wich lattice has a higher order of symmetry 

than β’ martensite phase; this martensite is also known as 18R martensite.  The lattice 

correspondence between martensite and austenite was reported by Zhu et al [30].  In this 

transformation more than one martensite variant can be induced from one austenite. In 

addition it has to be pointed out than martensite variants have identical crystal lattice but 

they can appear in different orientation. The relationship of microstructures is essential to 

get a better understanding of the mechanical response of this smart material. Once the x-ray 

analysis confirmed the existence of monocrystalline and polycrystalline samples, the 

differential screw calorimetric studies were done. 

3.2. Differential screw calorimetric analysis 

The transformation temperatures Ms, Mf, As, Af, and the difference Ms-Mf, Af-As are 

considered as critical factors in characterizing shape memory behavior. There is a strong 

dependence between transformation temperatures and the alloy’s composition and its 

processing, this is based on microstructural defects, degree of order in the parent phase, and 

grain size of the parent phase. The mentioned factors can modify the transformation 

temperatures by several degrees. When the martensitic transformation takes place,  
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Figure 2. X-ray spectra for mono and polycrystalline samples of CuAlBe shape memory alloy 

numerous physical properties are modified. During the transformation, a latent heat 

associated with the transformation is absorbed or released based on the transformation 

direction. The forward, austenite- to-martensite (A-M) transformation is accompanied by the 

release of heat corresponding to a change in the transformation enthalpy (exothermic phase 

transformation). The reverse, martensite-to-austenite (M-A) transformation is an 

endothermic phase transformation accompanied by absorption of thermal energy. For a 

given temperature, the amount of heat is proportional to the volume fraction of the 

transformed material. The two phases also have different resistance due to their different 

crystallographic structures, so the phase transformation is associated with a change in the 

electrical resistivity [31].  

Figure 3 shows the DSC curves for both kind of samples mono and polycrystal. In this figure 

can be realized those discontinuities in the heat flow vs. temperature curve which 

corresponds to exothermic reaction during the direct transformation (Austenite to 

Martensite phase change); additionally the inverse transformation (Martesnite to Austenite 

phase change) is located in the peak that reveals an endothermic reaction. These peaks show 

the four critical temperatures of transformation in these smart materials. The temperatures 

were labeled in figure 3 as follows: Ms corresponds to the beginning of the martensitic 

transformation; Mf indicates the end of martensitic transformation. In the same way As and 

Af indicate the start and the end of the inverse transformation. All these temperatures were 

determined at 10% and 90% of the peak’s areas that defines each transformation; they were 

found using the Universal Analysis 2000 software of TA Instrument. The critical 

temperatures were summarized in table 1. 
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Temperatures (ºC) Monocrystal Hot-rolled Polycrystal 

Ms 0 -69 

Mf -18 -82 

As -8 -81 

Af 5 -66 

Table 1. Critical temperatures of transformation of CuAlBe system. 

After X-ray analysis and DSC studies, the samples were prepared to observe the 

microstructure of the mono and polycrystalline samples under bending. 

 
               a)     b) 

Figure 3. Calorimetric analysis to determine the four critical temperatures that defines the shape 

memory effect in the CuAlBe alloy. a) Monocrystal Sample and b) Hot-rolled Polycrystal Sample 

Monocrystalline and polycrystalline samples of CuAlBe were tested in 3-point bending. 

According to the experimental setup showed in Figure 1, the samples were focused with the 

optical microscope coupled to the CCD camera at the center of the sample (l/2); where l 

represents the support span. In order to observe the stress-induced martensitic 

transformation through the regions of interest, the samples were previously polished and 

chemically etched to reveal the microstructure of each sample (Figure 4). All tested 

specimens were metallographically prepared and chemically etched with a solution of ferric 

chloride  (2g FeCl3 + 95 ml Ethanol + 2ml HCl) before the mechanical test. 

   

Figure 4. Microstructural details of CuAlBe samples in austenitic phase: a) Monocrystal and b) Polycrystal  

1 mm
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The Figure 4(a) shows the monocrystal; here it is evident that there are not any grain 

boundaries while Figure 4(b) shows four grains in a serial arrangement. These two images 

were taken at the same loading conditions. It is clear that the polycrystal is a little bit thinner 

than the monocrystal. The thicknesses were 0.9 and 0.7 mm for monocrystal and polycrystal 

respectively.  

3.3. Mechanical behavior under 3-point bending 

From the 3-point bending test, the force vs. neutral axis displacement curves for monocrystal 

and polycrystal were obtained (Figure. 5). In the case of monocrystal is observed the typical 

reversible hysteretic loop with a second slope close to cero. The polycrystal showed the 

same reversible hysteretic loop but the second slope was higher than monocrystal’s second 

slope; as it was expected. This is due to the transformational deformation that is directly 

associated to stress-induced martensitic transformation, which depends on the applied force 

direction and the crystals orientations. Now taking in to account the Ms temperature for 

monocrystal and polycrystal and the equation of Claussius Clappeyron ߪ௖ = ܶ)ܽܲܯ1.97  ௦) which relates the Ms with the critical transformation stress σc , this transformation stressܯ−

can be easily calculated considering that T corresponds to the test temperature 20ºC; 

furthermore the critical stresses were around 175 and 40 MPa for polycrystal and 

monocrystal respectively. This last result is good agreement with the stress transformation 

values for label B and E in the stress vs. neutral axis displacement curve for both samples. 

 

Figure 5. Force vs. Neutral axis displacement curves obtained from 3-point bending arrangement 

The Figure 5 shows six labels that indicate the associated images in both cases monocrystal 

and polycrystal samples; the monocrystal images correspond from letter A to C and 

polycrystal from D to F. This six labels match with the images presented in Figure 6. These 
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are labeled with the same letters for each case. As it can be observed, the images from A to C 

showed the austenitic phase (Figure 6A), the beginning of martensitic transformation 

(Figure 6B) and almost a total martensitic state for the monocrystal under bending (Figure 

6C). The polycrystalline sample showed the austenitic phase in all grains (Figure 6D), then 

the martensitic plates appear in tension and some martensitic plates in compression almost 

simultaneously (Figure 6E); finally the image (Figure 6F) shows the central region plenty of 

martensitic plates. It has to be pointed out, that the martensitic plates in the monocrystal 

sample grow first up in compression and subsequently in tension; in the polycrystalline case 

happened the opposite.  

  

Figure 6. Mono and polycrystalline samples of CuAlBe under 3 point bending: a. Monocrystalline 

austenitic phase; b. Beginning of the martensitic transformation; c. Almost a total martensitic state for 

the monocrystal under bending; d. Austenitic phase in the polycrystal; e. Growth of the martensite 

plates in tension and compression; f. Several variants of martensite appear in the same grain 

Another interesting observation was about the martensitic variants that grew up in both 

cases. The monocrystalline sample showed two variants according to the established angles 

respect to the horizontal line. In tension appeared a variant with two equivalent directions; 
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at left hand this variant was around 45º and at right hand 48º. In compression the stress-

induced martensitic plates showed just a single direction that it was around 35º (Figure 7a). 

In this case should have appeared two variants close to 45º; nevertheless, a single variant 

grew up; it may due to the interaction with the fulcrum. 

 

Figure 7. Stress-Induced martensitic variants: a) Monocrystal and b) Polycrystal 

The Figure 7b shows the polycrystalline case. Here the central grains showed several 

martensitic variants; the first grain marked in blue showed one martensitic variant around 

46º in tension but in compression the same grain showed two variants the first one was 

around 27º and the second one was around 26º that were different to those in tension; the 

compression variants are almost perpendicular each other; the grain marked in green is 

located at the center of the support span. So it is obvious that there are more martensitic 

plates in this region.  

The martensitic plates are in several directions, all of them are close to -45º or 45º; 

nevertheless, there are a couple of variants that appeared in those directions that have less 

probability to exist according to the applied force direction and the direction of the early 

plates of martensite. These variants where located at 89º and 21º. It has to be pointed out 

that these variants appear in the same grain, which has a fixed crystalline orientation. So 

why do several variants of martensitic plates exist in the same grain? A possible answer is 

the granular interaction due to the martensitic transformation for the polycrystalline sample. 

It is clear that in the present work the crystalline orientation of the samples was not 

measured; however it is possible to infer the growth variants which have more chance to 

appear, if crystal orientations are guessed.  

To identify these variants was used the list of habit planes and directions of Cu-Al-Be 

system reported by Kaouache et al.[21]. In addition to this list, it was used the procedure 

proposed by Bucheit et al. to get the surface transformation in single crystals [32]. Using the 

previous information, the plane stress transformational diagrams for typical crystalline 

orientations of the Cu-Al-Be in the austenitic phase were calculated in this work. The 

diagrams present irregular polygonal regions making evident the material anisotropy 

(Figure 8). This shows the existence of specific variants according to the state of stress (in 
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typical cases like: tension-tension, tension-compression and compression- compression), 

habit plane and crystal orientation.  

The plane stress transformational diagrams are located among [001], [011] and [-111] 

directions. It has to be noticed that these diagrams show significant differences between 

each other according to those guessed crystalline orientations; this means that there will be 

asymmetry and anisotropy between tension and compression in this material. This result 

agrees with the images that show the stress-induced martensitic transformation under 3-

point bending (Figure 6). 

 

Figure 8. Plane stress transformational diagrams for typical crystalline directions of the Cu-Al-Be beta 

phase associated to different crystalline orientations represented in a stereographic projection. 
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From Figure 8 were selected four cases where several martensite variants can appear in 

tension and/or compression under the same applied force direction. The variants were 

identified according to the calculation proposed by Buccheit et al. for each martensitic 

variant taking in to account the guessed orientation. In general the diagrams present 

different variants with the same possibility to appear in accordance with the current state of 

stress; however, in this case the simple tension and compression cases are shown. These 

cases are shown in Figure 9; the mentioned variants present exactly the same trace in each 

circumstance. Here it is shown that several variants can appear because the Schmid Factor is 

equal for each variant; furthermore they have the same chance to grow up in the crystal. It is 

important to say that each variant present different mark on the observation surface as it is 

shown Figure 7. 

 

 

 

 
 

Figure 9. Plane stress transformational diagrams of CuAlBe and the Growth of several martensitic 

variants in a crystal with a fixed crystal orientation under the the same applied force direction. A) this 

figure shows the growth of 12 possible variants  and figure b), c) and d) show four possible variants. 

In order to observe the contribution of several martensitic variants to the micromechanical 

behavior of CuAlBe, digital image correlation was used get the displacement vector fields at 

different state of stress. The displacement vector fields are showed in Figure 10. Here it can 

be observed the curvature of the beam under bending.  
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           a)                 b) 

Figure 10. Displacement vector fields of samples under 3-point bending: a) Monocrystal and b) 

Polycrystal. 

From these displacement vector fields it is possible to observe that a moment (M) is acting in 

the both sides of the samples. In the polycrystalline case this effect is more evident. Isolating 

the rotation in “xy” plane and the “y” displacements was obtained the displacements in the 

“x” direction. These fields were completely overlapped on the corresponding images; they 

are showed in Figure 11. Here it is possible to observe that the samples are under tension 

and compression simultaneously. 

 
a) 

 
b) 

Figure 11. Overlapped displacement vector fields on CuAlBe Sample Undergoing 3 point bending: a) 

Martensitic variants in Monocrystal under tension and compression; b) Martensitic variants in a 

polycrystal. Martensitic reorientation phenomena is observed. 
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In both cases, the parts subjected to tension shows the expected “x” displacements; 

nevertheless, the region under compression for the monocrystal did not present the 

expected displacement vector field. This is due to the growth of a single variant. On the 

other hand, the region in compression of the polycrystal showed the expected displacement 

vector field showing compression. In all cases can be observed that the samples of CuAlBe 

present non-homogeneous behavior but this methodology was able to detect these small 

contributions in displacement caused by different martensitic variants.  

4. Conclusions 

This practical methodology was able to observe the micro and macromechanical behavior of 

Cu-Al 11.2 wt.%-Be 0.6 wt% polycrystal and Cu-Al 11.2 wt.%-Be 0.5 wt% monocrystal shape 

memory alloy undergoing a stress-induced martensitic transformation by a 3-point bending. 

The evolution of the martensitic transformation was registered by the CCD and was 

detected the non-symmetric behavior in tension and compression for both cases mono and 

polycrystalline samples. The overlapped displacement vector fields show the non-

homogenous behavior of monocrystalline and polycrystalline samples of these alloys. This 

methodology was also able to detect the granular interaction in 2D confined grains; this may 

due to the interaction between the growth of martensite plates that modified the local state 

of stress in the grain and their neighbors. It is evident that there is a re-orientation effect of 

the martensitic phase while the load increases. This interaction provokes the apparition of 

several martensitic variants in different directions; this was in good agreement with the 

stress transformation diagrams for CuAlBe alloy. 
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