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1. Introduction 

Shape Memory Alloys (SMAs) are a unique class of metal alloys which can be deformed 

severely and afterwards recover their original shape after a thermomechanical cycle (shape 

memory effect), or a stress cycle within some appropriate temperature regimes 

(pseudoelasticity, also sometimes called in the literature superelasticity, not to be confused 

with hyperelasticity). The mechanisms of this recovery are either a diffusionless 

transformation between the austenite phase (which is a highly ordered phase and is also 

called the parent phase) and the martensite phase (which is a less ordered one) or the 

reorientation (detwinning) of martensite variants. Detailed exposures to the physics of the 

subject may be found in Wayman (1964), Smallman and Bishop (2000) and Bhattacharya 

(2003). As is shown in these studies the thermomechanical response of SMAs is extremely 

complex, a fact that in conjunction with the continuously increasing use of SMAs in several 

innovating applications in many engineering fields results in a greater need for a better 

understanding of these materials. For the past decades several constitutive models have 

appeared within the literature (e.g., Raniecki et al., 1992; Abeyaratne and Knowles, 1993; 

Ivshin and Pence, 1994; Boyd and Lagoudas, 1996; Lubliner and Auricchio, 1996; 

Panoskaltsis et al., 2004), which within the context of a geometrical linear theory can capture 

several aspects of the experimentally observed response. Nevertheless, the physics of the 

problem (e.g., see Smallman and Bishop, 2000), together with some basic results of the 

crystallographic theory of martensitic phase transformations (e.g., Ball and James, 1987; 

James and Hane, 2000; Abeyaratne et al. 2001), suggest that a geometrically non – linear 

approach is more appropriate. Levitas and Preston, (2005) discuss the drawbacks of the 

infinitesimal models and they report that finite rotations of the crystal lattice can occur at 

small transformation strains (small strains and finite rotations) and can crucially affect the 
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phase transformation conditions. Rather recently, several researchers have started to 

develop constitutive models for SMAs within the finite deformation regime. The approaches 

used for the description of the behavior of these materials are many and almost encompass 

all branches of mathematics, physics, material science and continuum mechanics. The 

existing models may be roughly classified in the following categories: (a) Constitutive 

models based on phase field or Landau – Ginzburg theory, (b) models based on irreversible 

thermodynamics and (c) models based on plastic flow theories.  

The basic idea of the phase field theory is that out of all complexities of statistical mechanics 

one can reduce the behavior of a system undergoing a phase transformation to that of a few 

order parameters (i.e., parameters that give a measure of the transformation development), 

governed by a free energy function, which depends on stress (or deformation), temperature 

and those parameters. A characteristic example of modeling phase transformations by 

Landau – Ginsburg theory is provided by Levitas and Preston, 2005.  

Also, in the realm of the so – called non equilibrium (or irreversible) thermodynamics 

several models have been proposed which are based on the use of a set of thermomechanical 

equations describing the kinetics of the martensitic transformations. The constitutive 

equations are developed in a non – linear manner on the basis of the laws of 

thermodynamics. Depending on whether they utilize the full microscopic deformation or 

the phenomenological one, the thermodynamical models may be classified further as 

microscopic (e.g., Levitas and Ozsoy, 2009) or macroscopic (e.g., Müller and Bruhns, 2006). 

Another approach, which besides being thermodynamically consistent may also furnish a 

concrete micromechanical justification, is through the employment of plastic flow theories. 

Recall that the martensite transformation is a diffusionless one during which there is no 

interchange on the position of neighboring atoms but atom movements resulting in changes 

in the crystal structure (e.g., see Smallman and Bishop, 2000, pp. 278 – 279). Based on this 

observation the martensite formation has been explained by a shear mechanism or by a 

sequence of two shear mechanisms. The shear mechanism can take place either by twinning 

or by sliding, depending on the composition and on the thermodynamical conditions 

(Smallman and Bishop, 2000, p. 280). Although in the book of Smallman and Bishop mainly 

martensitic transformation in steel is described, the authors discuss efforts for the 

development of a general theory of the crystallography of martensitic transformations. The 

crystallographic mechanisms of martensite in nickel titanium (NiTi, also known as Nitinol) 

are similar, i.e., slip or twinning, as in the alloys described in the book of Smallman and 

Bishop. As a result it can be considered that the role played by the different transformation 

systems in the martensitic transformations may be suitably parallelized by the role played 

by the slip systems in crystal plasticity. Models based on this idea have been proposed 

among others by Diani and Parks (1998), Thamburaja and Anand (2000) and Anand and 

Gurtin (2003). It should be emphasized that these models are also computationally attractive 

because a lot of work has been put recently in the algorithms of crystal plasticity, both in 

their purely algorithmic as well as in their mathematical aspects, resulting in the 

development of robust algorithms well suited for finite element applications. Accordingly, 
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complex constitutive representations may be considered, since their numerical 

implementation is no longer intractable, no matter how complex they may be. 

An alternative approach, within the context of plastic flow theories, has been proposed by 

Lubliner and Auricchio (1996) and Panoskaltsis et al. (2004), who developed three – 

dimensional thermomechanical constitutive models based on generalized plasticity theory 

in the small deformation regime, and by Panoskaltsis et al. (2011a, 2011b) within finite 

strains and rotations. 

Generalized plasticity is a general theory of rate – independent inelastic behavior which is 

physically motivated by loading – unloading irreversibility and it may be mathematically 

founded on set theory and topology (Lubliner 1974, 1984, 1987). Its particular structure 

provides the theory with the ability to address “non – standard” cases such as non – 

connected elastic domains. 

The objective of this work is twofold: First, to extend the previous works of SMAs modeling 

based on generalized plasticity, providing a general geometrical framework. This general 

framework will in turn constitute a basis for the derivation of constitutive models for 

materials undergoing phase transformations and for arbitrary deformations. Second, as an 

application, to develop a finite strain model, which can simulate several patterns of the 

extremely complex response of SMAs under isothermal and non – isothermal loadings.  

This chapter is organized as follows: In section 2, a general multi – surface formulation of 

non – isothermal generalized plasticity, capable of describing the multiple and interacting 

loading mechanisms which occur during phase transformations (see Panoskaltsis et al., 

2011a, 2011b)) is presented within the context of tensor analysis in Euclidean spaces. The 

derivation of the thermomechanical state equations on the basis of the invariance properties of 

the local form of the balance of energy equation under some groups of transformations, is attained in 

section 3; this is a purely geometrical approach. In particular, the fundamental theorem of 

the covariant constitutive theory of non – linear elasticity (see Marsden and Hughes, 1994, 

pp. 202 – 203) is revisited and is used in place of the second law of thermodynamics, as a basic 

constitutive hypothesis for the subsequent derivation of the SMAs thermomechanical state 

equations. Rate constitutive equations are derived as well. Finally, as an application a 

specific model is derived within a fully thermomechanical framework in section 4. 

Computational aspects and numerical simulations are presented in section 5. 

2. Generalized plasticity for phase transformations 

2.1. Formulation of the governing equations in the reference configuration 

Generalized plasticity is a local internal variable theory of rate – independent behavior, 

which is based primarily on loading – unloading irreversibility. As in all internal – variable 

type theories, it is assumed that the local thermomechanical state in a body is determined 

uniquely by the couple (G, Q) where G – belonging to a space G  – stands for the vector of 

the controllable state variables and Q – belonging to a space Q  – stands for the vector of the 
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internal variables, which are related to phase transformations. Following the ideas presented in 

the review paper of Naghdi (1990) we follow a material (referential) approach within a strain 

– space formulation. Accordingly, G may be identified by (E, T) where E is the referential 

(Green – St. Venant) strain tensor and T is the (absolute) temperature. Depending on the 

nature of the (material) internal variable vector Q, the theory may, in principle, be formulated 

equivalently with respect to the macro –, meso –, or micro – scale structure of the material. 

The central concept of generalized plasticity is that of the elastic range, which is defined at 

any material state as the region in the strain – temperature space comprising the strains 

which can be attained elastically (i.e., with no change in the internal variables) from the 

current strain – temperature point. It is assumed that the elastic range is a regular set in the 

sense that it is the closure of an open set. The boundary of this set is defined as a loading 

surface at Q, (see Eisenberg and Phillips, 1971; Lubliner, 1987). In turn, a material state may be 

defined as elastic if it is an interior point of its elastic range and inelastic if it is a boundary 

point of its elastic range; in the latter case the material state lies on a loading surface. It 

should be added that the notion of process is introduced implicitly here. By assuming that 

the loading surface is smooth at the current strain - temperature point and by invoking some 

basic axioms and results from set theory and topology, Lubliner (1987) showed that the rate 

equations for the evolution of the internal variable vector may be written in the form 

  ( , ) : ,HQ L G Q N G  (1) 

where <·> stands for the Macauley bracket which is defined as:  

   

if 0 

0 if 0,

x x
x

x
 

and H  stands for a scalar function of the state variables. Accordingly, the value of H  must be 

positive at any inelastic state and zero at any elastic one. Finally, L stands for a non - vanishing 

(tensorial) function of the state variables associated with the properties of the phase 

transformation, N is the outward normal to the loading surface at the current state, while the 

colon between two tensors denotes their double contraction operation. Furthermore, the set of 

the material states defined as  ( , ) 0,H H G Q  which comprises all the elastic states is called 

the elastic domain and its projection on the set defined by Q = const. is defined at the elastic 

domain at Q. In general, the elastic domain at Q is a subset of the elastic range (Lubliner, 1987). 

The particular case in which the two sets coincide corresponds to classical plasticity and the 

boundary of the elastic domain, that is the initial loading surface, constitutes the yield surface (see 

Eisenberg and Phillips, 1971; Lubliner, 1987; Panoskaltsis et al., 2008a, 2008b, 2011c). 

It is emphasized that Eq. (1) has been derived under the assumption of a smooth loading 

surface at the current strain – temperature point, which implies that only one loading 

mechanism can be considered. On the other hand, phase transformations include multiple 

and sometimes interacting loading mechanisms, which may result in the appearance of a 

vertex or a corner at the current strain – temperature point. This fact calls for an appropriate 

modification of the rate Equation (1). 
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In order to accomplish this goal we assume that the loading surfaces are defined in the state 

space by a number – say n – of smooth surfaces, which are defined by expressions of the form  

  i( , ) 0,    i=1, 2,..., n.G Q  (2) 

These surfaces can be either disjoint, or intersect in a possibly non – smooth fashion. Each of 

these surfaces is associated with a particular transformation mechanism which may be 

active at the current strain – temperature point. Then, by assuming that each equation 

 i( , ) 0G Q  defines an independent (non – redundant) active surface at the current stress 

temperature point, and in view of Eq. (1), we can state the rate equations for the evolution of 

the internal variables in the following general form 

  
n

i i i
i=1

( , ) : ,HQ L G Q N G  (3) 

where i i,  H L  and iN  are functions of the state variables defined as in Eq. (1) and each set of 

them – defined by the index i – refers to the specific transformation associated with the part 

of the loading surface defined  by  i( , ) 0.G Q  From Eq. (3) one can deduce directly the 

loading – unloading criteria for the proposed formulation as follows: Let us denote by 

admn n  the number of loading surfaces that may be active at an inelastic state i.e. i 0H > , 

and let us denote by admJ the set of admn indices associated with those surfaces, i.e.  

 admJ { {1,2,...,n}/ 0}.H >  

Then Eq. (3) implies the following loading – unloading conditions: 








 

 

 

 

0

0

0



 
 

adm

adm

adm

adm

If J ,  then = .

If J ,  then:

i  If : 0 for all J  then  = ,

ii If : 0 for at least one J  then  .

Q

N G Q

N G > Q

 

Hence, if we denote further by act admn n the number of parts for which (ii) holds, and we 

set: 

  
act admJ { J / : 0},N G >  

the loading criteria in terms of the sets admJ and actJ  may be stated as: 

 





 

  



adm

adm act

adm

If J :                                                          elastic state.

If J  and J :  

           i. If : 0 for all J :                 elastic unloading,

           ii. If :

N G <

N 






  
    


adm

adm act

0 for at least one J :    neutral loading,

If  J  and J :                                      inelastic loading. 

G

 (4) 
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2.2. Equivalent spatial formulation 

The equivalent assessment of the governing equations in the spatial configuration can be 

done on the basis of a push – forward operation (e.g., see Marsden and Hughes, 1994, pp. 67 

– 68; Stumpf and Hoppe, 1997) to the basic equations. For instance, by performing a push – 

forward operation onto Eq. (3) the latter is written in the form 

 
n

i i i
i=1

L ( , , ) ,h rVq l g q F  (5) 

where F stands for the deformation gradient and g stands for the vector of the controllable 

variables in the spatial configuration and is composed by the Almansi strain tensor e – 

defined as the push – forward of the Green – St. Venant strain tensor – and the (scalar 

invariant) temperature T. Moreover in Eq. (5), q stands for the push forward of the internal 

variable vector, and L ( )V  stands for the Lie derivative (e.g., see Marsden and Hughes, 1994, 

pp. 93 – 104; Schutz, 1999, pp. 73-79; Stumpf and Hoppe, 1997), defined as the convected 

derivative relative to the spatial configuration. Finally, ih  stands for the expression of the 

scalar invariant functions iH  in terms of the spatial variables (e, T, q) and the deformation 

gradient F, il  stands for the push – forward of the tensorial functions iL  and ir  denotes the 

(scalar invariant) loading rates which are written in the form  

 
  

 
 

i i
i :L T,

T
r Ve

e
 (6) 

where i  is the expression for the loading surface associated with the index i, in terms of the 

spatial variables. The (spatial) loading – unloading criteria flow naturally from Eq. (5) as: 

  

 

  


adm

adm act

adm

If j :                                                          elastic state.

If j  and j :  

           i. If r 0 for all j :                        elastic unloading,

           ii. If

<

 





  
    

adm

adm act

 r 0 for at least one j :           neutral loading,

If  j  and j :                                      inelastic loading, 

 (7) 

where the sets admj  and actj  are now defined in terms of the spatial variables as,

 admj { {1,2,...,n}/ 0}h > and  act admj { J /r 0}.>  

2.3. Description of rate effects 

Rather recent experimental results (see, Nemat – Nasser et al., 2005a, 2005b) on a NiTi shape 

memory alloy, show that some of the phase transformations depend on the rate of loading. 

Such a behavior can be accommodated by the (geometrical) framework developed here, by 

noting that generalized plasticity can be combined consistently with a rate – dependent 

(viscoplastic) theory. In this case the rate equations for the internal variables may be written 

in the form 
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   
n

i i i i
i=1

[ ( , ) : ( , )],HQ L G Q N G M G Q  (8) 

where the i'sM  stand for additional functions of the state variables enforcing the rate – 

dependent properties of the transformation defined by the part of the loading surface 

associated with the index i. The crucial advantage of this approach lies on the compatibility 

of the two theories, in the sense that neither viscoplasticity, nor generalized plasticity 

employs the concept of the yield surface as its basic ingredient. 

2.4. Transformation induced plasticity   

From a further study of the experimental results of Nemat – Nasser et al. (2005a, 2005b) (see 

also Delville et al., 2011) it is observed that after a stress cycle within the appropriate limits 

for pseudo-elastic behavior permanent deformations appear, a fact which implies that a 

yielding behavior appears within the martensitic transformations.  

Such a response can be described within our framework by introducing m additional 

(plastic) loading surfaces, which control the yielding characteristics of the material. These 

are assumed to be given by expressions of the form 

 i( , , ) 0,    i=1, 2,..., m,G G Q P  (9) 

where P is an additional internal variable vector, which stands for the description of plastic 

phenomena within the material. In turn, the rate equations for the evolution of the plastic 

variables within the generalized plasticity context – which includes classical plasticity as a 

special case (see Lubliner, 1987; Panoskaltsis et al., 2008a, 2011c) – may be stated as 

  
m

i i i
i=1

( , , ) : ,KP T G Q P R G  (10) 

where the functions i i,K T and iR  have an identical meaning with the functions i i,  H L  and 

iN  which appear in Eq. (3). The constitutive modeling of plasticity phenomena within the 

martensitic transformations is nowadays a very active area of research. Recent contributions 

include the phenomenological models by Hallberg et al.  (2007, 2010) and Christ and Reese 

(2009).  

A further observation of Eqs. (9) and (10) and their comparison with the basic Eqs. (2) and 

(3) reveal that both sets of equations show exactly the same qualitative characteristics. 

Accordingly, it is concluded that from a geometrical standpoint the phase transformation 

loading surfaces are indistinguishable from the plastic loading surfaces, which means that 

the internal variable vector P may be absorbed in Q so that the basic equations can 

simulate both phase transformation and plasticity phenomena in a unified format. This 

implies that plastic yielding can be understood within the proposed framework as a phase 

transition.  
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3. The invariant energy balance equation and the thermomechanical state 

equations 

The concept of invariance plays a fundamental role in several branches of mechanics and 

physics. In particular, within the context of continuum mechanics the invariance properties 

of the balance of energy equation, under some groups of transformations, may be 

systematically used in order to derive the conservation laws, the balance laws and/or to 

determine some restrictions imposed on the equations describing the material constitutive 

response (e.g., Ericksen, 1961; Green and Rivlin, 1964; Marsden and Hughes, 1994, pp. 163 – 

167, 200 – 203; Yavari et al., 2006; Panoskaltsis et al., 2011c). For instance, Marsden and 

Hughes (1994, pp. 202 – 203) by studying the invariant properties of the local form of the 

material balance of energy equation, under the action of arbitrary spatial diffeomorphisms, 

determined the thermomechanical state equations for a non – linear elastic material. The 

basic objective of this section is to revisit the approach given in Marsden and Hughes (1994, 

pp. 202 – 203), within the context of the Euclidean space used herein and to show how this 

can used as a basic constitutive hypothesis in place of the second law of thermodynamics for the 

derivation of the constitutive response of the SMA material in question. 

3.1. Revisiting Marsden and Hughes’ theorem  

Unlike the original approach of Marsden and Hughes where manifold spaces are used and 

the invariance of the local form of the material balance of energy equation is examined 

under the action of arbitrary spatial diffeomorphisms, which include also a temperature 

rescaling, we examine the invariance properties of the local form of the spatial balance of 

energy equation under the action of the same kind of transformations, within the context of 

a Euclidean space. Within this framework the basic axioms of Marsden and Hughes (1994, 

pp. 202 – 203) may be modified as follows: 

Axiom 1 (Local energy balance or first law of thermodynamics): For a spatial point with 

coordinates 1 2 3, , ,x x x  and a given elastic thermomechanical process (e, T) the balance of 

energy holds  

     : L ,e div rVh σ e  (11) 

where e  is the energy density,   is the spatial mass density, σ  is the Cauchy stress tensor, 

h is the heat flux vector per unit of surface of the spatial configuration, r  is the heat supply 

per unit mass and a superimposed dot indicates material time derivative. By introducing the 

Helmholtz free energy function  ,  obtained by the following Legendre transformation 

   T,e  

where   is the specific entropy, the local form of the energy balance can be written in the 

form  

          ( T T) : L .div rVh σ e  (12) 
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Axiom 2 (Invariance of Helmholtz free energy): We denote by S  the ambient space, by   the 

deformation mapping, by g  the space of the control variables and by f  the set of the SC  

scalar fields all expressed in the spatial configuration. Next we assume the existence of a 

map   ˆ̂  : ( , , )S g R f such that for any diffeomorphism which includes also a temperature 

rescaling, that is:   ( , ): ( , ) ( , ),S R S Rξ   the following expression holds: 

   ˆˆ ˆ( , ,T)= ( , , T, ),e ξ ξ e   

where ( )  denotes the push – forward operation.  

Axiom 3 (Invariance of the energy balance): For curves 
t

:S Sξ  and 
t

 ( ) ,x R
 t t  t
  ξ  , 

t t t
T = T  and by assuming that  ,   and   are transformed as scalars, the heat flux vector 

is transformed as 
t t t t

  *h ξ h  and the “apparent heat supply” due to entropy production, 

   
tT ,rt t  is transformed as       T ( T )r rt t t t t t t  the balance of energy holds, that is 

                    ( T T ) : L .div rVh σ e  (13) 

Then the basic theorem of Marsden and Hughes (Theorem 3.6 p. 203), takes in our case the 

form: 

Theorem 1: Under axioms 1, 2 and 3 the thermomechanical state equations for the Cauchy 

stress tensor and the entropy density are given as: 

 
   

  
 

,  .
T

σ
e  (14) 

Proof: The proof relies crucially, as in the case examined by Marsden and Hughes, on the 

evaluation of Eq. (13) at time 0 ,t  when 



ot t

ξ 1 (identity),






 ,
t

0t t

ξ
w  and 


 1,  

0t t









u   
t

0t t

where u is the velocity of   at 0.t  Then, since at     
0 = + , T =uT+T,t t v w v  the 

time derivative of the Helmholtz free energy yields: 

 
  



    
 

  : (uT),
T

L
0

wt t
e

e
 (15) 

in which  ( )LW  stands for the autonomous Lie derivative (e.g., see Marsden and Hughes, 

1994, pp. 96 – 98; Yavari et al., 2006). Furthermore it holds that   

  
  : L : L : ,L

o
v wt t vσ e σ e σ e  (16) 

since (see Marsden and Hughes, 1994, p. 98)  
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        L L .L L L L
V V V Vw w w we e e e e e e e  

In light of Eqs. (15) and (16) and the transformation formulae for the heat flux vector and the 

“apparent heat supply” due to entropy production, Eq. (13) at  0t t  can be written as: 

 

   

   

 
 

 
  



 

: (uT)+
T

+ T+ (uT)+div = : (L ) ( T ).

L

L r

w

V w

e
e

h σ e e
 (17) 

Subtracting Eq. (12) from Eq. (17) gives the identity 

 
    

  
 

: (uT)+ (uT) : 0,
T

L Lw we σ e
e

 (18) 

or 

 
    

  
 

( ) : ( + )(uT) 0,
T

Lwσ e
e

 (19) 

from which and by noting that Lwe  and u can be arbitrarily specified, the 

thermomechanical state Equations (14) follow. By performing a pull – back operation to Eqs. 

(14) the following relations are derived 

   
  

 ref ,  ,
T

S
E

 (20) 

where S stands for the second Piola – Kirchhoff stress tensor, ref  for the material mass 

density and   for the expression of the Helmholtz free energy in the material 

configuration. It is concluded that Eqs. (20) are identical to the thermomechanical state 

equations of Marsden and Hughes (1994, p. 203). Thus, we can state the following 

proposition: 

Proposition 1: The invariance of the local form of the balance of energy equation under the 

superposition of arbitrary spatial diffeomorphisms, which also include a temperature 

rescaling, gives identical results with respect to the thermomechanical state equations, 

irrespectively of whether the energy balance equation is considered in its material or its 

spatial form.  

3.2. Thermomechanical state equations for a SMA material  

Building on the previous developments we will derive the thermomechanical state 

equations for a shape memory material with internal variables, which obeys the rate Equations 

(5). The development relies crucially on establishing a new set of axioms which will 

incorporate the presence of the internal variables and their evolution in the course of the 

phase transformations. We proceed as follows: 
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Axiom 1: Since the internal variables are not involved explicitly in the balance laws, for a 

process which is either elastic or inelastic (  admj and  actj ) axiom 1 remains unaltered, 

that is Eq. (12) holds. 

Axiom 2 is modified as follows: 

Axiom 2: In addition to the adopted notation, we denote by q  the space of the internal 

variables in the spatial configuration and we assume the existence of a map 

  ˆ̂  : ( , , , )S g q R f such that for any diffeomorphism which includes also a temperature 

rescaling, that is:   ( , ): ( , ) ( , ),S R S Rξ  the following expression holds: 

     ˆˆ ˆ( , ,T, )= ( , T, , ( , T), ).e q ξ ξ e q ξ e   

Axiom 3: In addition to the energy invariance axiom it is assumed that under the application 

of the diffeomorphism   ( , ): ( , ) ( , ),S R S Rξ  loading surfaces are transformed as scalars, 

that is       ( , ,T, )= ( , T, , ( , T), ).i ie q ξ ξ e q ξ e   

In this case, as in the previous one, the derivation procedure is the following:  

We evaluate Eq. (13) at time 0 ,t  when 



ot t

ξ 1 (identity) and 


 1
0t t

 with w and u being 

the velocities of ξ and   at 0.t  Then 

 
   



      
  

  : (uT) : .
T

L L
0

w wt t
e q

e q
 (21) 

The critical step is the evaluation of the loading rates at  0 ,t t which yields 

 

 

   
 

  
   

  
   

 
   





i i
i

i i i i

( : L T ) =
T

   = : L : T+ (uT).
T T

r

L

0 0

V

Vt t t t

w

e
e

e e
e e

 (22) 

Accordingly, the rate equation for the internal variables evaluated at time  0 ,t t yields 

 
   

 


       

   
   

   



 

n

i i i
i=1

n n
i i i i

i i i i
i=1 i=1

L ( ,T , , )

[ ( ,T, , )( : L T)] [ ( ,T, , )[ : (uT)],
T T

h r

h h L

0

0

V

V t t
t t

w

q l e q F

l e q F e l e q F e
e e

 (23) 

which in view of the rate Equations (5), reads 

 
  

 
 

n
i i

i i
i=1

( ,T, , )[ : (uT)].
T

L h LW wq l e q F e
e

 (24) 
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Upon substitution of Eq. (24), Eq. (21) takes the form 

 
    



        
     

n
i i

i i
i=1

: (uT) : ( ,T, , )[ : (uT)].
T T

L h L
0

w wt t
e l e q F e

e q e
 (25) 

Now, by working in a similar manner as in the previous (i.e., the elastic) case, in light of Eq. 

(25) the basic Eq. (13) evaluated at  0 ,t t yields 

 

      

   

   
  

    

  



 

n
i i

i i
i=1

: (uT)+ : ( ,T, , )[ : (uT)]+
T T

+ T+ (uT)+div = : (L ) ( T );

L h L

L r

w w

V w

e l e q F e
e q e

h σ e e

 (26) 

from which by subtracting the balance of energy Eq. (12) we can derive the identity 

 

    

 

  
 

   


 

 





n
i

i i
i=1

n
i

i i
i=1

: (uT)+ [ : ( ,T, , ) ] :
T

[ : ( ,T, , ) ](uT)+ (uT)- : 0,
T

L h L

h L

w w

w

e l e q F e
e q e

l e q F σ e
q

 (27) 

or equivalently 

 

 

  

 
 

  

 
  

  





n
i

i i
i=1

n
i

i i
i=1

{ [ : ( ,T, , ) ]- }:

[ : ( ,T, , ) ](uT)=0,
T T

h L

h

wl e q F σ e
e q e

l e q F
q

 (28) 

from which and by noting that Lwe  and u can be specified arbitrarily, we arrive at the 

expressions:  

 

 

 

 
 

  

 
  

  





n
i

i i
i=1

n
i

i i
i=1

[ : ( ,T, , ) ],

[ : ( ,T, , ) ].
T T

h

h

σ l e q F
e q e

l e q F
q

 (29) 

Therefore, unlike the classical elastic case, for the SMA material considered, the invariance 

of the local form of the energy balance under superposed spatial diffeomorphisms does not 

yield the standard thermomechanical state equations unless a further assumption is made, 

namely that an unloading process from an inelastic state (i.e., a process with  admj and

actj ) is quasi-reversible, which means that in such a process both the mechanical and the 

thermal dissipations, defined as 

 
    

   
    rm


n n

i i
i i i i

i=1 i=1

: ( ,T, , )( :L ),  : ( ,T, , ) T,
T

d h d hmech V thel e q F e l e q F
q e q

 (30) 
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vanish. If this is the case, the classical thermomechanical state equations (Eqs. (14)) can be 

derived, as in the classical elastic case, directly from Eqs. (29). Thus, we can state the 

following theorem: 

Theorem 2: For the rate – independent SMA material with internal variables whose 

evolution in the course of martensitic transformations is described by the rate equations (5), 

(or equivalently by Eqs. (3)), the invariance of the spatial local balance of energy equation 

under superimposed diffeomorphisms, which also include a temperature rescaling, does not 

yield the standard thermomechanical state equations, unless further assumptions are made. 

It is interesting to note that in the classical theory of thermodynamics with internal variables 

Lubliner (1974, 1987) has arrived at a similar result by working entirely in the reference 

configuration and on the basis of the second law of thermodynamics expressed in the form of the 

Clausius – Plank inequality, which is a stronger (i.e., less general) form of the Clausius - 

Duhem inequality since it ignores dissipation due to heat conduction. In order to obtain the 

standard thermomechanical state equations, Lubliner modifies further the Clausius – Planck 

inequality, by assuming that it holds as an equality for elastic unloading and neutral loading. 

It is remarkable to note that by working with the covariance axiom we do not have to ignore 

dissipation due to heat conduction. Also, in comparing the two approaches we note that 

while in the second law of thermodynamics we focus on all processes, in the covariance axiom we 

focus on all transformations of a given process (Marsden and Hughes, 1994, p. 201).  

4. A constitutive model  

Up to now, the proposed formulation was presented largely in an abstract manner by 

leaving the kinematics of the problem and the number and the nature of the internal 

variables unspecified. The basic objective of this section is the introduction of a material 

model that will help make the application of the generalized plasticity concept in modeling 

phase transformations clearer. The model is based on a geometrically linear model proposed 

earlier within a stress space formulation by Panoskaltsis and co-workers (Panoskaltsis et al., 

2004, Ramanathan et al., 2002) and which has been extensively used in several applications 

of engineering interesting (e.g., see Freed et al., 2008; Videnic et al., 2008; Freed and Aboudi, 

2008; Freed and Banks – Sills, 2007). 

There are two fundamental assumptions underlying the new model which is developed 

here. The first consists of the additive decomposition of the material strain tensor E  into 

elastic eE  and inelastic (transformation induced) TrE  parts, i.e., 

   .e TrE E E  (31) 

Such a decomposition has its origins in the work of Green and Naghdi (1965). The second 

fundamental assumption is that the response of the material is isotropic. Accordingly, it is 

assumed that it can be described in terms of a single scalar internal variable Z, which, as it is 

common within the literature (e.g., Boyd and Lagoudas, 1996; Lubliner and Auricchio, 1996; 

Panoskaltsis et al., 2004; Müller and Bruhns, 2006; Thamburaja, 2010), is identified by the 
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fraction of a single (favorably oriented) martensite variant. In turn, and in view of Eq. (31), 

the internal variable vector is assumed to be composed by the transformation strain tensor 
TrE and the martensite fraction Z. 

By noting that the martensitic transformations to be considered are accompanied by  

variations of the elastic properties of the SMA material and in view of the additive 

decomposition of strain (Eq. (31)), the Helmholtz free energy can be additively decomposed 

in elastic and inelastic (transformation) parts, as follows 

    = ( (Z),T,Z)+ (Z,T).Tr
e TrE E  (32) 

It is emphasized that this is not the conventional decomposition of the free energy function 

performed within the classical inelastic theories (e.g., plasticity, viscoelasticity, 

viscoplasticity), since the elastic part e  depends on the internal variable Z. In this sense 

the decomposition (32) resembles the decompositions employed within the 

thermomechanical treatment of damage (see Panoskaltsis et al., 2004). The elastic part of the 

Helmholtz free energy is assumed to be given as 

           ( (Z),T,Z)= (Z), T (Z),Z,T ,U Z MTr Tr Tr
e E E E E E E  (33) 

where the terms U,   and M  will be defined next. U is the mechanical part of e  and is 

assumed to be given by a similar expression to the stored energy function of a St. Venant – 

Kirchhoff material (e.g., see Holzapfel, 2000, pp. 250 – 251), that is 

        2 2(Z)
(Z), { [ (Z)} (Z) [( (Z)] ,

2
U Z tr trTr Tr TrE E E E E E  (34) 

where   and   are Lame  type of parameters  ( 0,   > 0)
 
and tr denotes the trace 

operator. These parameters are assumed to be dependent on the martensite fraction of the 

SMA, according to the following (power) law  

             (Z) Z ( ),    (Z) Z ( ),n m
A M A A M A

 (35) 

where A , A  are the Lame  type of parameters when the material is fully austenite, M , 

M  are these when the material is fully martensite and n and m are two additional model 

parameters. For the particular case n = m = 1 the rule of mixtures, which has been used 

extensively within the literature (e.g., Anand and Gurtin, 2003; Hallberg et al., 2007) is 

derived.  

For the thermal part of the stored energy function, that is for the functions   T  and 

  (Z)M TrE E  we consider the following expressions: 

 
 

    

 
      

 

     

0
0

0

T
T [(T T ) Tln ],  

T

(Z),Z,T [3 (Z) 2 (Z)] (T T ) [ (Z)],

c

M trTr Tr
tE E E E

 (36) 
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where 0T  is the reference temperature, c  is the specific heat and t  the linear expansion 

coefficient, which may be assumed varying within the phase transformations according to 

expressions analogous to those given in Eq. (35). 

Finally, the transformation part of the Helmholtz free energy is given as  

    T (Z) (Z),uTr Tr Tr  (37) 

where  (Z)Tr  and (Z)uTr  stand for the configurational entropy and the configurational 

internal energy and for which we assume two expressions justified in the work of Müller 

and Bruhns (2006) (see also the thermomechanical theory of Raniecki et al., 1992; Raniecki 

and Lexcellent, 1998), namely 

 
 



  

  

*
0 0

*
0 0

(Z)= Z Z(1-Z) ,

(Z)= Z Z(1-Z) ,

s s s

u u u u

A
Tr

A
Tr

 (38) 

where 
0s A  ,  *s , 0s , 

0u A ,  *u  and 0u  are the model thermal parameters. 

Then in light of the first of Eqs. (20) the second Piola – Kirchhoff stress tensor, after extensive 

calculations, is found to be   

           0( ) 2 ( ) (3 +2 ) (T T ) ,tr Tr Tr
tS E E 1 E E 1  (39) 

where the dependence of the involved quantities on Z has been dropped for convenience. 

The loading surfaces are assumed to be given in the stress – space as a two parameter family 

of von - Mises type of surfaces, that is 

  F( ,T) =   T   = 0,DEV C RS S  (40) 

where .  denotes the Euclidean norm, (.)DEV  stands for the deviatoric part of the stress 

tensor in the reference configuration and C  and R  are parameters. On substituting from 

Eq. (39) into Eq. (40) the equivalent expression for the loading surfaces in the strain – space 

may be derived as   

    ( , ,T) =2  ( )   T  = 0.DEV C RTr TrE E E E  (41) 

For the evolution of the transformation strain we assume a normality rule in the strain – 

space which is given as 

   


 2  = Z ,Tr
LE

E
 (42) 

where L  is a material constant, which is defined as the maximum inelastic strain (e.g., 

Boyd and Lagoudas, 1996; Lubliner and Auricchio, 1996; Panoskaltsis et al., 2004; 
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Ramanathan et al., 2002), which is attained in the case of one – dimensional unloading in 

simple tension when the material is fully martensite. 

The rate equation for the evolution of the martensite fraction Z, is determined on the basis of 

the geometrical framework described in section 2 as follows:  

For the austenite to martensite transformation (A M)  we consider the  M loading 

surfaces as: 

    ( , ,T) =2  ( )   T   = 0,DEV C RTr Tr
M M ME E E E  (43) 

where CM  is a material parameter which can be determined by means of the well – known 

(e.g., see Lubliner and Auricchio, 1996; Panoskaltsis et al., 2004; Ramanathan et al., 2002; 

Christ and Reese, 2009) critical stress – temperature phase diagram for the SMAs 

transformation. Moreover we consider 

 




 

 

( , ,T) =2  ( )  +  = 0,

( , ,T) =2  ( )  +  = 0,

DEV R

DEV R

Tr Tr
Mf Mf

Tr Tr
Ms Ms

E E E E

E E E E
 (44) 

where 

      =  σ (T M ),     =  σ (T M ),R C R CMf Mf M f Ms Ms M s  

where the parameters Mf  and Ms  stand for the martensite finish and martensite start 

temperatures respectively, and σMf and σMs  are two additional parameters which may be 

determined from experimental results. Since Mf is related to the finish values and Ms to 

the starting values of the A M  transformation, the loading surfaces   0Mf  and 

  0Ms  may be considered as the boundaries of the set of all states for which the A M

transformation can be active. Then the constant 1H HM  (see Eq. (3)) may be defined as 

 
 


 

.H Mf Ms
M

Mf Ms

 (45) 

For the function 1 ML L  several choices are possible (see Panoskaltsis et al., 2004). In this 

work, we use a linear expression (see Lickachev and Koval, 1992), which within the present 

strain – space formulation may be written in the form 

 L



 
  

1 Z
( ,  ,T, Z) .

2 (1 Z)
Tr

M
Mf L

E E  (46) 

In view of Eqs. (45) and (46) the rate equation for the evolution of the martensite fraction of 

the material during the A M transformation may be written in the form  
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

  
 

   
 1 Z
Z ,

2 (1 Z)
LMf Ms

M
Mf LMf Ms

 (47) 

where  1L LM  stands for the loading rate in the material description, that is 

 
 

  
 

  : : T.
T

L M M
M MN G E

E
 (48) 

Similarly, for the inverse M A  transformation we define the  A loading surfaces as 

follows  

    ( , ,T) =2  ( )   T   = 0,DEV C RTr Tr
A A AE E E E  (49) 

 




 

 

( , ,T) =2  ( )  +  = 0,

( , ,T) =2  ( )  +  = 0,

DEV R

DEV R

Tr Tr
Af Af

Tr Tr
As As

E E E E

E E E E
 (50) 

where 

      = σ (T A ),     = σ (T A ),R C R CAf Af A f As As A s  

and the parameters CA , Af , As , σAf  and σAs  are material parameters, all related to the 

M A  transformation. By applying analogous to the A M  transformation case 

arguments, we derive the rate equation for the evolution of Z for the M A transformation 

as   

 


 
 

  
 Z
Z ,

2 Z
LAf As

A
Af LAf As

 (51) 

where 

 
 

    
 

  : ( : T)= .
T

L LA A
A A MN G E

E
 (52) 

As a result, the final form for the rate equation for the evolution of the internal variable Z 

(see Eq. (3)) takes the form 

 
 

   
  

       
 1-Z Z
Z .

2 (1 Z) 2 Z
L LMf Ms Af As

M A
Mf L Af LMf Ms Af As

 (53) 

The thermomechanical coupling phenomena, which occur during the martensitic 

transformations may be studied on the basis of the energy balance equation. It should be 

mentioned here that with the aid of the fundamental concept of energy it is possible to relate 

different physical phenomena to one another, as well as to evaluate their relative 
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significance in a given process in mechanics and more generally in physics (Lubliner, 2008, 

p. 44). This will be accomplished as follows: 

The energy balance Eq. (12) can be written in a material setting as    

           
ref ref( T T) : R,DIVH S E  (54) 

where (.)DIV  is the divergence operator, H is the heat flux vector and R is the heat supply 

per unit mass, all expressed in the material description. By taking the time derivative of the 

Helmholtz free energy function and inserting it in Eq. (54) we obtain 

         
  

  
     

ref ref ref ref( : : Z+ T)+ T+ T+ R+ : .
Z T

DIVTr

Tr
E E H S E

E E
 (55) 

This equation in turn, upon substitution of the thermomechanical state Eqs. (20), yields 

     
 


  
ref ref ref( : Z)+ T+ R.

Z
DIVTr

Tr
E H

E
 (56) 

The time derivative of the entropy density is determined by the second of Eqs. (20) as 

         
    

     
   

2 2 2 2

2
: : Z T.

T T ZT T

Tr

Tr
E E

E E
 (57) 

Upon definition of the specific heat c  as 

 
 

 


2

2
T,

T
c  (58) 

and upon substitution of Eqs. (57) and (58) into Eq. (56), the latter yields the temperature 

evolution equation as 

 
       

     
      

     
2 2 2

ref

1
T ( : Z)+( : : Z)T+(R ).

Z T T ZT
c DIVTr Tr

Tr Tr
E E E H

EE E
 (59) 

If we now define the heating due to thermoelastic effects as 

 
   

 
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  
2 2

T( : : )
T T

        

Q Tr
e Tr

E E
E E  (60) 

and the inelastic (transformation) contribution to heating as  

 
     

  
    

    
2 2

( : Z)+T Z= +T Z,
Z T Z T Z

Q DTr
Tr TrTr

E
E

  (61) 
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where 
 

  


 ( : Z)
Z

D Tr
Tr Tr

E
E

 is the inelastic dissipation due to phase transformations, the 

temperature evolution equation takes the following, remarkably simple, form (see also 

Rosakis et al., 2000) 

 


   
ref

1
T + (R  ).c Q Q DIVe Tr H  (62) 

This expression has the obvious advantage of decoupling the elastic and inelastic 

contributions to material heating and is well suited for computational use. 

It is noted that in an adiabatic process, that is in a process with 


 
ref

1
R 0,DIVH   

Eq. (62) takes the form 

   Tc Q Qe Tr , (63) 

from which and by assuming that the temperature evolution due to structural heating Hstr , 

defined as 
     

   
    

  
2 2 2

( : : Z)T
T T ZT

H Tr
str Tr

E E
E E

 (e.g., see Simo and Miehe, 1992), is 

negligible in comparison to that due to inelastic dissipation ,DTr  the temperature evolution 

equation takes the following simple form 

 T .c DTr  (64) 

Finally, as a constitutive law for the heat flux vector we assume the standard Fourier’s law 

(e.g., Simo and Miehe, 1992; Müller and Bruhns, 2006): 

   T.kGRADH   (65) 

5. Computational aspects and numerical simulations 

As a final step we examine the ability of our model in simulating qualitatively several 

patterns of the extremely complex behavior of SMAs under simple states of straining. 

Isothermal and non – isothermal problems are considered.  

5.1. Isothermal problems  

Focusing our attention first in the isothermal case we note that when the total strain tensor E 

is known, the rate equations for the evolution of the internal variables (Eqs. (42) and (53)) 

and the mechanical state (thermoelastic stress-strain law) equation (Eq. (39)) together with 

the appropriate initial and boundary conditions form a system of three equations in the 

three unknowns TrE , Z and S. The numerical solution of this system of equations and 
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accordingly the numerical implementation of the proposed model relies crucially on the 

general loading – unloading criteria (see Eq. (4)), which can be expressed in a remarkably 

simple form, based on the following observation: 

As it has been mentioned the A M  transformation is active when  0,LM  while the 

inverse transformation is active when  0.LA  Since we always have   ,L LM A  it is clear 

that only one phase transformation can be active at a given time of interest. Then we can 

treat the two phase transformations as two different inelastic processes and replace the 

general loading – unloading criteria by the following decoupled ones:  

A M Transformation: 

 
 

 

 
 

 

If 0 :         elastic state,

 If 1 then     

           i.   If <0:                 elastic unloading,

           ii.  If =0:                 neutral loading,

        

H

H

L

L

Mf Ms
M

Mf Ms

Mf Ms
M

Mf Ms

M

M

















   iii. If >0:                 inelastic loading. LM

 

M A Transformation: 

 
 

 

 
 

 

If 0 :         elastic state,

 If 1 then     

           i.   If <0:                 elastic unloading,

           ii.  If =0:                 neutral loading,

        

H

H

L

L

Af As
A

Af As

Af As
M

Af As

A

A

















   iii. If >0:                 inelastic loading. LA

 

Then the governing equations, along with the aforementioned loading – unloading criteria, 

can be solved by a time discretization scheme based on backward Euler. The resulting 

system of the discretized equations is solved by means of a three step predictor - corrector 

algorithm, the steps of which are dictated by the time discrete loading - unloading criteria. 

Algorithmic details regarding the enforcement of the time discrete loading – unloading 

criteria and the solution of the system, within the framework of large deformation 
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generalized plasticity in the case of a single loading surface, can be found in Panoskaltsis et 

al. (2008a, b). 

To this end it is emphasized that predictor – corrector algorithms work well in case of 

domains which are connected. The commonly used predictor – corrector algorithms for 

elastoplasticity employ an elastic predictor and an inelastic corrector. The most important 

assumption is that the solution is unique for a particular set of values of the state variables. 

The predictor step freezes the plastic flow and checks for an elastic solution. The yield 

criterion then is checked and if it is satisfied the elastic solution is acceptable, otherwise the 

inelastic corrector is activated. In the cases of elastic – plastic analysis there exists a set of 

consistency conditions the enforcement of which “returns” the (wrong) elastic solution onto 

the exact solution point on the evolving yield surface. However, in the case of disconnected 

elastic zones separated by inelastic zones the predictor – corrector algorithm is very 

sensitive on the strain step used, while going from an inelastic zone to an elastic one. 

This is the case of SMAs, which have a transformation (inelastic) zone separating the fully 

martensite and fully austenite zones (being treated as elastic zones). During forward or 

reverse transformation, the predictor strain step is very important as we near the elastic – 

plastic (i.e. transformation) boundary. If the predicted solution lies within the 

transformation zone (i.e., outside the elastic range) the corrector step is activated and the 

resulting set of non –linear equations are solved. However, as we approach the end of the 

transformation zone and therefore the boundary between the inelastic and the elastic zones, the 

predictor could predict an elastic solution, which the algorithm accepts as a valid one, but which 

is within the next elastic zone, achieved without the transformation being fully complete (i.e., 

achieved while the state is still inelastic) and is therefore an unacceptable solution. This 

would cause errors in the minimization process and results in jumps in the solution and 

kinks in the stress strain curve. This problem is resolved here by making the strain step very 

small and by checking the limits of the transformation. 

The first problem we study is a standard problem within the context of finite inelasticity and 

is that of finite shear, defined as 

   1 1 2 2 2 3 3,   ,  ,x X X x X x X  

where 1 2 3, ,X X X  are the material coordinates and γ is the shearing parameter. For this 

problem the model parameters are set equal to those reported in the work of Boyd and 

Lagoudas (1994), that is: 

   

    

   

     
M M A A

f s s f M A

Mf Ms Af As L

9,486.95 MPa,  4,887.22 MPa, 21,892.97 MPa,  11,278.20 MPa,

M 5 C, M 23 C, A 29 C, A 51 C, C 11.3 MPa/ C, C 4.5 MPa/ C,

= = = =0 MPa, =0.0635.

o o o o o o  

All numerical tests that performed start with the specimen in the parent (austenite) phase, 

(Z=0).  



 
Shape Memory Alloys – Processing, Characterization and Applications 152 

The first simulation demonstrates the pseudoelastic phenomena within the SMA material. In 

this case the temperature is held constant at some value above fA . The purpose is to study a 

complete stress – induced transformation cycle. The results for this finite shear problem are 

shown for constant material stiffness       A A( 21,892.97 MPa,  11,278.20 MPa),  as 

well for a linear (n = m = 1) and a power (n = m = 5) type of stiffness variation in Figures 1, 2 

and 3. On loading, the material initially remains austenite (elastic region and straight shear 

stress – strain curve). As loading is continuing and the shear strain attains the value at 

which the material point crosses the initial loading surface for the A M  transformation 

 ( 0)Ms , the transformation starts (inelasticity and curvilinear shear stress – strain curve; 

coexistence of the two phases). If the loading continues and the strain crosses the final 

loading surface for the A M  transformation  ( 0),Mf  the material is completely 

transformed into martensite and on further loading since the state of the material is elastic 

the shear stress – strain diagram is straight. Then, during unloading, the material is fully 

martensite (elastic region and straight shear stress – strain curve) until the strain crosses the 

initial loading surface  As( 0)  of the M A transformation, which is subsequently 

activated (phase coexistence, inelasticity and curvilinear shear stress – strain curve). On 

further unloading and when the strain meets the last boundary surface for the M A

transformation  Af( 0) , the material becomes fully austenite and on further unloading the 

stress – strain curve is straight going back to zero, which means that no permanent 

deformation exists and the austenite is completely recovered. This is expected as the 

martensite phase is not stable at a temperature above fA at zero stress level. 

 

Figure 1. Finite shear. Isothermal one – dimensional behavior under monotonic loading. Shear stress 

12S
 
vs. shear strain  .  
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Figure 2. Finite Shear. Isothermal one – dimensional behavior under monotonic loading. Normal stress 

11S vs. shear strain  .   

 

 

Figure 3. Finite Shear. Isothermal one –dimensional behavior under monotonic loading. Normal stress 

22S vs. shear strain  .  
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Next, the model is tested under multiple shear stress cycles, by subjecting it to partial 

unloading (incomplete M A  transformation) and partial reloading (incomplete A M  

transformation). The results for linear stiffness variation are illustrated in Figure 4. A series 

of loops appears inside the complete loading – unloading cycle. These loops exhibit slight 

ratcheting which stabilizes in a few cycles. The response of the model is absolutely compatible 

with that described by other investigators (e.g., see Ivshin and Pence, 1994; Lubliner and 

Auricchio, 1996). In view of Figure 4 and since the dissipated energy can be estimated by 

the area of the 12S  loop, the dissipated energy in the case of partial unloading and 

reloading is the area of the loop times the number of the loops. This explains the 

important property of the high internal damping of SMA materials. (For a discussion of 

the relation between areas of stress-strain diagrams and dissipated energy see Lubliner 

and Panoskaltsis, 1992.) 

The ability of the model to simulate phase transformations and the corresponding stiffness 

variations under cyclic loading is demonstrated further by three additional tests. The first 

one illustrates the case of partial loading with complete unloading, the second the case of partial 

unloading with complete loading and the third the case of a series of partial loading and partial 

unloading. The results are shown in Figures 5, 6 and 7 respectively. 

 
 

 
 

Figure 4. Finite Shear. Pseudoelasticity with partial loading and unloading. Shear stress 12S vs. shear 

strain  .  
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Figure 5. Finite Shear. Partial loading followed by complete unloading. Shear stress 12S vs. shear strain 

 .  

 

 

Figure 6. Finite Shear. Partial unloading followed by complete loading. Shear stress 12S vs. shear strain 

 .  
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Figure 7. Finite Shear. Series of partial loading and partial unloading. Shear stress S12 vs. shear strain . 

5.2. Non – Isothermal problems 

In this section we examine the ability of the model in predicting pseudoelastic phenomena 

under non – isothermal conditions. In general, the numerical treatment of the coupled 

thermomechanical problems is performed on the basis of a split of the governing equations 

(equations of motion, constitutive equations, energy balance equation and the appropriate 

boundary conditions) into their mechanical and thermal parts. Most popular among the 

several computational schemes which have been proposed within the literature is the 

isothermal split proposed in the work of Simo and Miehe (1992). However, this rather straight 

forward numerical scheme has the disadvantage of not being unconditionally stable. An 

alternative time integration algorithm relies on the so-called adiabatic split (see Armero and 

Simo, 1993). In this approach, the problem is divided in a mechanical phase during which 

the entropy is held constant, followed by a thermal phase in which the configuration is held 

constant, leading to an unconditionally stable algorithm.  

Nevertheless, since our objective is to discuss the proposed framework in its simplest setting, 

we consider two rather simple problems, namely a simple shear and a plane strain problem, 

where the equations of motion and the (mechanical) boundary conditions are trivially 

satisfied. Accordingly, within our simulations, a simultaneous solution of the remaining governing 

equations, namely the constitutive equations and the balance of energy equation, is performed.  

First, an adiabatic test in finite simple shear is considered. We assume that due to the 

dynamic rates resulting in adiabatic response, heat exchanges due to conduction, convection 

and radiation can be neglected in comparison to the temperature changes induced by 
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inelastic (transformation) dissipation, which leads to thermomechanical processes that can 

be considered as homogeneous. The elastic constants, the mass density and the thermal 

parameters used in this simulation are those considered in the work of Müller and Bruhns 

(2006), that is: 

   

  

   

   

     

A A

3 2 6 o
ref t

* *
0 0

25,541.80 MPa,  13,157.90 MPa,

6.45 10  k/m mm , 8.8 10 1 / K, c=837.36 J/kg.K

16800.0 J/kg, 64.50 J/kgK, 4264.5 J/kg, 11.5 J/kgK, u s u s

 

while the other parameters are set equal to those used in the isothermal problems studied 

before. The shear stress – strain curves predicted by the model, for both adiabatic and 

isothermal cases, are shown in Figure 8. It is observed that the stress – strain curves have 

similar qualitative characteristics with the adiabatic and the isothermal curves of a perfect 

gas in a pressure – volume diagram, with the adiabatic stress curve being above the 

corresponding isothermal one. This fact has to be attributed to material heating due to 

inelastic dissipation during the A M transformation, which shifts the stress – strain curve 

upwards. Moreover, due to the higher stress attained during the A M  transformation, 

the initial loading surface for the inverse transformation  As( 0)  is triggered at a higher 

stress level, a fact which results in a corresponding higher stress – strain unloading curve. 

The corresponding temperature – shear strain curve for the adiabatic specimen is shown in 

Figure 9 (for constant stiffness). Consistently with the experimentally observed adiabatic 

response of a SMA material, the model predicts heating of the material during the forward 

A M  transformation and cooling during the inverse M A  transformation.  

 

Figure 8. Finite Shear. Adiabatic and isothermal one – dimensional behavior under monotonic loading. 
Shear stress 12S vs. shear strain  .  
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Figure 9. Finite Shear. Adiabatic one – dimensional behavior under monotonic loading. Temperature T
vs. shear strain  .  

 

 

Figure 10. Plane strain (restrained tension). Monotonic loading at various temperatures. Normal stress

11S vs. axial displacement .  
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Figure 11. Plane strain (restrained tension). Monotonic loading at various temperatures. Normal stress

33S  vs. axial displacement .  

 

 

Figure 12. Plane Strain (biaxial extension). Monotonic loading at various temperatures. Normal stress

11S  vs. axial displacement .  
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Figure 13. Plane strain (biaxial extension). Monotonic loading at various temperatures. Normal stress

33S  vs. axial displacement .  

Next, we study a plane strain model, that of the biaxial extension of a material block. The 

straining occurs along 1 2and X X  axes while the block is assumed to be fixed along the 3X  

direction. This problem is defined as  

     1 1 2 2 3 3(1 ) ,  (1 ) ,  ,x X x X x X  

where λ and ω are the straining parameters. 

The isothermal stress – displacement curves for the limiting cases   0 (restrained tension) 

and  =   (biaxial tension) for three different material temperatures ( 0 fT 60 C A ,o >   

f 0 sA T 45 C A ,o> >  s 0A T 25 Co> ) are shown in Figures 10, 11, 12 and 13. By referring to 

these figures for 0 fT A> , we easily verify  the ability of the model in predicting 

pseudoelastic phenomena in two dimensions.  

The isothermal tests for f 0 sA T A> >  and s 0A T>  are conducted in order to show the ability 

of the model in predicting the shape memory effect. In the first of them, upon loading the 

A M  transformation is activated, but since the temperature is less than the temperature 

required for the complete reverse transformation at zero stress, upon unloading the two 

phases coexist and permanent deformations appear. However, these deformations are 

recovered after increasing the temperature. In the second test the temperature initially is 

kept constant at a value less than the austenite start temperature at zero stress. As a result, at 
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the end of the stress cycle the material is completely in the martensite phase and large 

permanent deformation appears. Nevertheless, like in the previous test, this deformation 

may be eliminated upon heating. For these new non – isothermal (i.e. heating) problems we 

assume thermal boundary conditions corresponding to convective heat exchange between 

the specimen and the surrounding medium on the free faces (with area A ) of the specimen. 

In this case the normal heat flux is given by Newton’s law of cooling (e.g., see Simo and 

Miehe, 1992) as: 
u

H   0(T T ),hA  with h  being the constant convection coefficient, which 

is chosen as  3 o17.510  N/mm Kh , and T  is the surrounding medium temperature. By 

assuming that the size of the tested material is small, the contribution to the material heating 

due to heat conduction can be neglected, so that the temperature evolution equation (see Eq. 

(62)) can be written in the form  

u
H


   

ref

1
T .c Q Qe Tr  

The results of these tests are illustrated in Figures 14 and 15, where the elongation along 1X  

axis is plotted versus the surrounding medium temperature. The slight increase of the 

elongation of the SMA material due to the (elastic) thermal expansion occurring prior to the 

activation of the M A transformation, for initial temperature 0 sT <A , is noteworthy 

(Figure 15).  

 

Figure 14. Plane strain. Shape memory effect s 0 f(A <T <A ).  Axial displacement   vs. surrounding 

medium temperature T .  
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Figure 15. Plane strain. Shape memory effect
 0 s(T <A ).  Axial displacement   vs. surrounding 

medium temperature T .  

6. Concluding remarks 

In this chapter we developed a geometrical framework for the establishment of constitutive 

models for materials undergoing phase transformations and in particular for shape memory 

alloys. The proposed framework has the following characteristics: 

i. It is quite general for the derivation of the kinetic equations governing the transformation 

behavior and it can describe multiple and interacting loading mechanisms. 

ii. It formulates general loading – unloading criteria, in both their material and spatial 

settings, that can be systematically employed for the numerical implementation of the 

derived constitutive models.  

iii. It can describe rate effects. 

iv. It can model non-isothermal conditions. 

v. It can model transformation induced plasticity by considering it as an additional phase 

transformation.  

vi. It employs the invariance of the spatial balance of energy equation under the 

superposition of arbitrary spatial diffeomorphisms – that is spatial transformations 

which can change the Euclidean metric – as a basic constitutive hypothesis, in place of 

the second law of thermodynamics. 
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As an application a specific three – dimensional thermomechanical constitutive model for 

SMA materials is derived. The model can simulate several patterns – under isothermal and 

non-isothermal conditions – of the extremely complex behavior of these materials such as: 

a. The pseudoelastic behavior observed under monotonic loading. 

b. The pseudoelastic behavior observed under several cyclic loadings. 

c. The stiffness variations occurring during phase transformations. 

d. The shape memory effect. 

Additionally, the basic differences between the classical return mapping algorithms and the 

one used here for the case of not connected regions, have been outlined. 
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