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1. Introduction

In recent years many mutations in genes that are responsible for several Mendelian eye
diseases  have  been  identified  and  characterized.  Genome-wide  association  studies  also
advanced our knowledge of  complex diseases [1-4].  However,  for  many diseases,  varia‐
tion in phenotype with a single genotype,  disease susceptibility among individuals,  dis‐
cordance in monozygotic twins, progressive nature of the disorder and age-related onset
cannot be explained by accumulating mutations alone [5-6]. Therefore, there must be an‐
other layer of information. This missing link could be epigenetic factors. The term epige‐
netics refers to the mitotically heritable changes in the pattern of gene expression without
any changes in the DNA sequence and the term epigenomics denotes the study of epige‐
netics on a genome wide basis. Epigenetics is an emerging field in ophthalmology and is
involved in the regulation of gene expression during normal eye development. It has also
a role in the etiology and progression of several common human diseases [7]. Epigenetic
regulation through environmental factors such as diet, smoking and pollution may result
in changes in gene expression that may lead to an increase in disease susceptibility, varia‐
tion in phenotype and progressive nature of many common diseases such as age-related
macular  degeneration  and  glaucoma.  These  epigenetic  changes  may  be  age-related  and
cell or tissue specific. They may also persist throughout the lifetime of an individual. An
understanding of the role of epigenetics is important to the success of the stem cell-based
therapies [8].  Although epigenetic studies on glaucoma are limited at present [9],  in this
short  article,  an attempt has been made to summarize this  emerging concept  of  genetic
and epigenetic contribution to the manifestation of glaucoma.
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2. Genetic contribution to glaucoma: Classification and pathophysiology

Glaucoma is a group of complex, genetically and clinically heterogeneous condition and af‐
fects all age groups throughout the world [10]. Approximately 70 million people worldwide
are affected and it is one of the leading causes of bilateral blindness in humans [11]. The
glaucomas are classified into primary and secondary glaucomas and within these two
groups the disorder is divided into primary open-angle (POAG; the trabecular mesh work
seems to be open and unobstructed by the iris), primary closed angle (PCAG; partial or com‐
plete anterior chamber angle closure) and primary congenital glaucoma (PCG; which mainly
affects children). The disorder is characterized by the progressive degeneration of the retinal
ganglion cells (RGCs) and is frequently associated with elevated intraocular pressure (IOP)
[12]. A host of genetic and environmental factors contribute to the glaucoma phenotypes.
For instance in certain population, older age, history of thyroid diseases, higher IOP and
high myopia have been reported to be significant risk factors for POAG [13-16]. Similarly,
drinking coffee, antioxidant intake and post menopausal hormone use may influence the de‐
velopment of POAG. These environmental risk factors exert their effects on IOP (by decreas‐
ing or increasing) and/or the rate of retinal ganglion cell apoptosis. In advanced glaucoma,
the cone photoreceptors were also affected suggesting that photoreceptors may also be se‐
quentially damaged in the disorder [17].

Epidemiological studies suggest that POAG is the most common type of glaucoma in most
populations and is consistently associated with elevated IOP [18-19]. However, patients
with POAG can also have IOP within the normal range and they are classified as having
normal tension glaucoma (NTG) – most likely an independent entity [20]. In NTG, the optic
nerve head is just susceptible to normal IOP. This may be due to the difference in the ultra
structure of the optic nerve head or due to micro-level of biochemical agents. It is only a lim‐
ited subset of patients with elevated IOP will develop POAG. This is consistent with the
finding that, a significant number of glaucoma patients although respond well to therapies
to lower the eye pressure, continue to lose vision [21-22]. Many individuals have IOP eleva‐
tion without optic nerve damage (they are considered as having ocular hypertension) and
some individuals develop optic nerve degeneration without elevated IOP [10]. Therefore, it
has been proposed that elevation in IOP is neither necessary nor sufficient for the onset of
the progression of the disorder or optic nerve damage [10, 23-24]. Recent research suggests
that transforming growth factor - beta (TGF - beta) and tumor necrosis factor - alpha (TNF -
alpha) signaling pathways may contribute to the optic nerve disease in glaucoma [10].

3. Primary open-angle glaucoma (POAG)

The genetic basis of glaucoma is not fully understood. However, familial aggregation, occur‐
rence of bilateral PCG in monozygotic twins and environmental factors such as advanced
age, race, vascular risk factors, diabetes and hypertension suggest a multifactorial contribu‐
tion to the etiology of the disease [12, 25-26]. Although details about the inheritance of the
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disease remain unclear, candidate gene, genome-wide association and traditional linkage
studies have identified at least 14 chromosomal loci that are influencing POAG [27-29].
However, glaucoma-causing genes have been identified in only three of these loci including
myocilin (MYOC; also called GLC1A), optineurin (OPTN) and WDR 36 (tryptophan and as‐
partic acid repeat domain 36). Subsequent studies have demonstrated that mutations in MY‐
OC and OPTN genes are associated with POAG accounting for less than 5% of all POAG
cases [29-30]. The WDR 36 gene may be a minor disease-causing gene in adult onset POAG
[31] at least in German population. This suggests that more than 90% of the genetic contribu‐
tion of POAG cases is unknown. Additionally, association studies have identified at least
another 27 genes (Table 1) that are reported to be involved in glaucoma. However, these re‐
sults are either not replicated in other populations or contradictory and hence their role in
glaucoma is not still understood. Recently, genome wide association studies have also iden‐
tified Si RNA binding domain 1 (SRBD1) and fatty acid elongase 5 (ELOVL5) genes as new
susceptibility genes for NTG [32] as well as POAG but their significance remains to be estab‐
lished.

4. Biology of mutant genes

Although the exact role of MYOC and OPTN genes in the pathogenesis of glaucoma is un‐
known, it was suggested that myocilin might be involved in the trabecular meshwork (TM)
homeostasis. Interestingly, MYOC mutations Y437H and I477N were shown to sensitize
cells to oxidative stress induced apoptosis. Similarly, invitro transfection experiments sug‐
gested that mutations in MYOC might also cause mitochondrial defects that may lead to TM
cell death. Additionally, biological and cell biological studies demonstrated that mutant
MYOC was misfolded and accumulated in the endoplasmic reticulum (ER). This leads to ER
stress and activates the unfolded protein response that may cause cellular toxicity and
death. However, MYOC gene overexpression is not a cause or effect of elevated IOP. Simi‐
larly, OPTN may have a role in reducing the susceptibility of RGCs to hydrogen peroxide-
induced cell death. Mutations in OPTN gene may also cause oxytosis and apoptosis. For
instance, OPTN gene regulates endocytic trafficking of transferin receptor that is important
for maintaining homeostasis. The E50K mutation of OPTN was shown to impair with traf‐
ficking and this may have implications for the pathogenesis. The TM is the target tissue in
the anterior chamber. The development and progression of glaucoma was reported to cause
the oxidative damage to the tissue. These changes can be minimized by the use of anti-oxi‐
dants and IOP lowering substances. Therefore, it is possible to reduce the progression of
POAG by preventing the oxidative stress exposure to the TM tissue. The WDR gene on the
other hand, encodes a member of the WD (tryptophan and aspartic acid) repeat protein fam‐
ily and the members of this family are involved in a variety of cellular processes such as
apoptosis and signal transduction. Mutations in the gene may interfere in its normal func‐
tions. Despite strong genetic influence in POAG pathogenesis, only a small part of the dis‐
ease can be explained in terms of genetic mutations.
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Gene Chromosomal

location

Gene Chromosomal

location

ANP

MTHFR

GSTM1

IL-1beta

NCK2

OPA1

PARL

EDNRA

CDKN1A

HSPA1A

1p36.2

1p36.3

1p13.3

2q14

2q12

3q28-q29

3q27

4q31.2

6p21.2

6p21.3

TNF

NOS-3

PON1

TLR4

IGF2

CDH1

TP53

APOE

NTF4

AGTR2

6p21.3

7q36

7q21.3

9q32-q33

11p15.5

16q21.1

17p13.1

19q13.2

19q13.3

Xq22-q23

ANP = Atrial natriuretic peptide; MTHFR = methylenetetrahydrofolate reductase; IL-1beta = interleukin 1-beta; NCK =
adapter protein 2; OPA1 = optic atrophy-1; PARL = presenilin associated rhomboid-like; EDNRA = endothelin receptor
type A; CDKN1A = cyclin dependent kinase inhibitor 1A; HSPA1A = heat-shock 70 kD protein 1A; TNF = Tumor necrosis
factor; NOS-3 = nitric oxide synthetase –3; PON1 = paraoxonase –1; TLR4 = toll-like receptor 4; IGF2 = insulin-like
growth factor 2;CDH-1 = E-cadherin; TP53 = tumor protein p53; APOE = apolipoprotein E; NTF-4 = neurotrophin 4;
AGTR2 = angiotensin II receptor type 2; GSTM1 = glutathione S-transferase mu 1; Asterisk (*) = detailed references can
be found in ref. # 18.

Table 1. A partial list of genes that are reported to be associated with POAG and NTG *

5. Primary angle-closure glaucoma (PACG)

PACG also involves progressive and irreversible degeneration of the optic nerve with grad‐
ual visual field loss. It is estimated that in Saudi Arabia 40% of glaucoma patients belong to
PACG. Although hereditary component for PACG exists, causative genes have not been
identified except occasional differences in the frequency of polymorphisms in some genes.
For instance, variations in Best disease (BEST1), hepatocyte growth factor (HGF), matrix
metalloproteinase - 9 (MMP-9) and methylenetetrahydrofolate reductase (MTHFR) genes
have been reported [28]. However, some of these results were not extended to other popula‐
tions.

6. Primary congenital glaucoma (PCG)

In children, PCG is an important cause of visual loss and diagnosed during the neonatal peri‐
od. It is a heterogeneous group of disorder and is characterized by an elevated IOP due to an
abnormal development of the aqueous outflow system. The majority of PCG cases are spora‐
dic but there are some familial cases. The familial condition is inherited as an autosomal reces‐
sive trait with variable expression and penetrance. Recently three PCG loci (2p21, 1p36 and
14q24.3-q31.3) corresponding to GLC3A, GLC3B and GLC 3C genes respectively, have been
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mapped. More than 60 different mutations in CYP1B1 (or GLC3A) – a member of the cyto‐
chrome P450 superfamily enzyme-encoding gene - have been reported in several PCG fami‐
lies [33-38]. Mutations in CYP1B1 were associated with wide range of phenotypes and the
alterations of this gene could impair the morphogenesis of the outflow angle because it has
been suggested that CYP1B1 gene participates in iridocorneal angle development [39]. In
short, the current concept of glaucoma pathogenesis (Fig. 1) suggests that it is a group of het‐
erogeneous optic neuropathies caused by genetic, epigenetic and environmental factor [40].

 

Figure 1. A complex glaucoma pathogenesis may include interplay among several factors such as genetic, epigenetic
and environmental factors.

7. Inherited glaucoma in animals

Inherited glaucoma also occurs in several breeds of dogs including beagles. Primary glauco‐
ma in beagles is inherited as an autosomal recessive trait and appears when the animals are
9 to 18 months old. The pathogenesis, clinical signs and pharmacological responses of glau‐
coma in beagles have been investigated and reported previously [41-43]. Glaucoma in bea‐
gles however, does not involve mutations in MYOC and CYP1B1 genes [44-45]. Similarly,
mutations in MYOC gene are unlikely to play a role in the pathogenesis of PCAG in Shiba
Inu dogs [46]. Recently, a candidate gene for the beagle model has been isolated [47] and the
mutant protein is suggested to be altering the processing of the extracellular matrix that may
affect the aqueous humor outflow thereby contributing to the elevated IOP. However, the
mechanism underlying RGCs death is not well understood. Interestingly, it was reported
that impaired neurotrophin signaling or compromised trophic support as well as p53 medi‐
ated apoptosis may not be the underlying mechanism of RGCs death in a beagle model of
glaucoma [48]. Recently, there has been some success in stem cell therapy in animal models
[49]. Transplantation of induced pluripotent stem (iPS) cells restored retinal structure and
function in degenerative animals. Therefore, these animal models are very useful in further
understanding of the pathogenesis as well as drug development in glaucoma.
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8. Pigmentary dispersion syndrome, pigmentary glaucoma and Axenfeld-
Rieger syndrome

A number of ocular conditions such as pigment dispersion syndrome (PDS), Axenfeld-Rieg‐
er syndrome (ARS) can lead to secondary open-angle glaucoma. PDS affects the young peo‐
ple and is characterized by the presence of TM pigmentation, iris-transillumination defects,
Krukenberg spindle and backward bowing of the iris [50]. It is transmitted in a direct linear
manner from parent to sibling [51]. Genetic analysis revealed a homozygous mutation
(C677T) in methylenetetrahydrofolate reductase gene (MTHFR) in a patient [52] and the
higher level of plasma homocysteine was suggested to be associated with pigmentary glau‐
coma. Additionally, a gene responsible for the PDS has been mapped to chromosome 7q35-
q36 [53]. Regarding pigmentary glaucoma, the risk of developing it from PDS is about 10%
at 5 years. Young myopic men are most likely to develop the disorder [54]. Interestingly,
PDS and pigmentary glaucoma are not associated with mutations in lysyl oxidase like-1
(LOXL1) and tyrosinase related protein-1 (TYRP1) genes [55-56]. Another anterior segment
disease with the risk of developing congenital glaucoma is called ARS. It is a rare autosomal
dominant disorder with genetic heterogeneity and exhibits a range of congenital malforma‐
tions of the anterior segment of the eye. In addition, patients with ARS may present system‐
ic malformations such as mild tooth abnormalities, craniofacial dysmorphism, sensory
hearing loss and congenital heart defect. It is caused by mutations in paired-like homeodo‐
main 2 (PITX2) and forkhead box C1 (FOXC1) genes [57-61]. In the United States, it has been
estimated that mutations in PITX2 and FOXC1 genes are associated with 25% - 30% cases of
ARS [62]. In severely affected patients, digenic inheritance of mutations in PITX2 and
FOXC1 has also been reported [63].

9. Epigenetics: Three major types of epigenetic modifications

A vast spectrum of epigenetic changes has been described. The most common epigenetic
variations involve DNA methylation, various modifications of histones, microRNA (miR‐
NA) and small non-coding RNA expression. All these factors can modulate the expression
of genes that in turn may affect phenotypes and response to drugs. DNA methylation may
be tissue specific [64] and disrupts the transcriptional activity of genes by affecting the ac‐
cessibility of transcription factors. A large number of CpG residues are concentrated in a re‐
gion of DNA sequence (CpG island). Methylation of cytosine may reduce or prevent the
binding of sequence specific transcription factors. This results in changes in gene expression.
The CpG region methylation also regulates the expression of a large number of miRNA. On
the other hand, genomic hypomethylation may lead to genome instability. This kind of epi‐
genetic abnormality can be influenced by environmental factors such as tobacco smoking,
dioxin and nutrition [65] and can lead to complex disorders. Studies including monozygotic
twins also suggest that non-Mendelian and complex diseases (including neurological and
psychiatric disorders) are likely to be caused by the combination of genetic and epigenetic
factors [66]. DNA methylation and its maintenance may depend upon chromatin-associated
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factors and histone modifications but it is not clear how DNA demethylation process is ach‐
ieved [67-68].

The other epigenetic marks are posttranslational modifications such as acetylation, methyla‐
tion and phosphorylation of N-terminal tails of histone proteins. They may also regulate
gene activity [66] because they affect the chromatin structure. For instance, acetylation of
histone H3 and H4 leads to the formation of euchromatin and deacetylation leads to hetero‐
chromatin (tightly packed) formation (see below). These can also be influenced by environ‐
mental factors such as diet. Similarly, miRNAs regulate (down regulation) the translation of
mRNAs by binding to their complementary sequence in the 3’untranslated region [69] and
small RNAs are involved in gene silencing at the transcriptional level [70].

10. The potential role of epigenetics in glaucoma

The eye is a model organ for epigenetic studies because external ocular tissues are exposed to
the outside environment and may be sensitive to epigenetic effects. Although the epigenetics
is well known in diseases such as cancer [71], and hereditary and environmental determi‐
nants have been long suspected for eye disorders [72], epigenetic studies on eye disorders are
slowly progressing [9; 73-74]. For instance, retinal and lens differentiation involves specific
changes in DNA methylation, expression of non-coding RNA and nucleolar organization
[73]. In addition, cell-specific DNA methylation may play an important role in modulating
eye specific  genes [64].  Similarly,  histone modifications were involved in the pathologic
course of retinal ganglion cells [75] and site-specific DNA hypomethylation permits the ex‐
pression of interphotoreceptor retinoid binding protein (IRBP) gene [76]. Overexpression of
mutant OPTN (E50K) is also found to induce RGC apoptosis [77-78]. Recently, it was also
shown that histone deacetylase 4 (HDAC4) was involved in the survival of retinal neurons by
preventing apoptosis of rod photoreceptor and bipolar cells [79-80]. Additionally, histone
acetyltransferase p300 was found to promote intrinsic axonal regeneration [81]. Similarly, in
an animal model (rat/mice), it has been observed that there was a regional gene expression
changes including pro-survival, pro-death and acute stress genes [82-84]. Moreover, miRNAs
can act as either oncogenes or tumor suppressor genes and can influence the growth of uveal
melanoma [85]. Similarly, smoking and nutritional factors were involved in the etiology of
age-related macular degeneration (AMD) in addition to genetic susceptibility [65].

Another example to illustrate the epigenetic effect is the pseudoexfoliation syndrome (XFS),
which is one of the most common subtypes of POAG. It is the major risk factor for secon‐
dary POAG. The condition is characterized by a pathological accumulation of the whitish
material in the anterior segment of the eye, predisposing to glaucomatous optic neuropathy
[86]. The disorder is frequent among Icelanders, increases with age and rarely identified in
people below the age of 50. Mutations in the LOXL1 gene were found to be associated with
XFS in the Caucasian Australian population. [87]. However, this does not account for the
large difference in disease prevalence between different populations. This raises the possi‐
bility of unidentified genetic, racial and environmental modulators [88]. In support of this is
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the finding that XFS may be associated with geographic and climatic factors such as sun ex‐
posure and ambient temperature [89]. The mechanisms involved are not known at present.
Retinal cell death, the most common pathophysiology of all forms of glaucoma involves
many factors such as oxidative stress, mitochondrial dysfunction, excitotoxic damage, axo‐
nal transport failure, deprivation of neurotrophic factors and activation of intrinsic and ex‐
trinsic apoptotic signals [90-91]. Some of these could be modulated by epigenetic changes. In
support of this is the finding that heavy smoking, exposure to pesticides and nutrient intake
was significantly associated with POAG [92-94]. This suggests that the interaction between
gene and environmental factors may play a role in the pathogenesis of glaucoma. Intrauter‐
ine exposure (obesity and diabetes), variable DNA methylation and environmental factors
may also have profound influence on adult epigenetic status. Thus in general, epigenetic
may provide an additional layer of important information on inherited as well as age-relat‐
ed eye disorders including glaucoma.

11. Pharmacogenetics and pharmacoepigenetics in glaucoma

Adverse drug reactions (ADRs) and individual variations in drug response were well
known in medicine. There are many systemic and other drugs that produce adverse effects
in eye care [95-96]. For instance, many steroid drugs induce glaucoma in some patients [97].
Therefore, efficacy and safety are important aspects of initiation of any medication. Present‐
ly, there are no biochemical markers (proteins or genes) to predict which group of patients
develops ADR and which group does not. Physicians in all medical branches have to make a
guessing game to find out, which medication will work best for a given patient. This trial-
and error method is often inefficient. Now because of the advancement in genetics, physi‐
cians will have better opportunities to treat individual patients based on their genotype (Fig.
2). In order to understand the relationship between genes and inter-individual variations in
drug response, two related fields namely pharmacogenetics and pharmacogenomics have
been developed. They have taken massive studies on genetic personalization of drug re‐
sponse [98]. Some of the pharmacogenetic studies that are related to eye disorders including
glaucoma have been discussed previously [99-100]. For instance, heterozygosity in N363S
mutation in glucocorticoid receptor gene has been found to be associated with steroid in‐
duced ocular hypertension in Hungarian population although it may not be the major risk
factor in the pathogenesis of elevated IOP. Similarly, a beta-adrenergic antagonist timolol
has been used for the treatment of glaucoma. However, a topically administered eye drop
may cause adverse cardiovascular and respiratory effects. Recent investigation of a single
nucleotide polymorphism (SNP) in beta-adrenergic receptor suggests that this polymor‐
phism may be associated with positive clinical response to topical beta-blockers. In addition,
R296C polymorphism in CYP 2D6 (cytochrome P450) gene may confer susceptibility to tim‐
olol induced bradycardia. Patients with CC genotype were unlikely to suffer from timolol
induced bradycardia and those with TT genotype were found to suffer. Many studies ad‐
dress the pharmacology of several glaucoma medications but it is still not possible to ex‐
plain the variable IOP response to glaucoma drugs between patients [101] using their
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genotype alone. This missing link could be due to several factors including environmental
factors such as chemicals, alcohol, tobacco, diet and other drugs. In addition, age and gender
may contribute to the physiological and biochemical status of the targeted cells (with respect
to gene expression). Therefore, it is not simply genetics or environment but it is the interplay
between them that is important in pharmacology and medicine.

 

Figure 2. A schematic illustration of the relationship between genotype and drug response of an individual. Two hori‐
zontal lines 1 and 2 (panels A to C) denote a pair of homologous genes encoding a drug-metabolizing enzyme. In
panel A, genes are normal and hence the individual is a fast responder and metabolizes the drug more efficiently.
Therefore high doses are needed to treat. In panel B, the individual is heterozygous for the mutation and metabolizes
the drug slowly. Therefore, lower doses are needed to avoid side effect or toxicity. In panel C, the individual is homozy‐
gous for the mutation and metabolizes the drug very poorly. Therefore, it may have fatal effect. The X mark denotes
mutation.

12. Concluding remarks

Epigenetic is an emerging field in ophthalmology. One benefit of understanding epigenetic
changes is at the level of treatment. Epigenetic modifications are reversible. For instance, disease
associated DNA methylation can be reversed by inhibitors such as adenosine or deoxycytidine.
However, these reagents might become cytotoxic and may lead to a wide spread DNA hypome‐
thylation that may be resulting in and causing destabilization of genome. We need to develop less
toxic inhibitors of DNA mythyltransferases. Similarly, inhibitors of histone deacetylase (HDAC)
may have some therapeutic applications. For instance, HDAC inhibitors have been found to have
protective effects in animal model of ischemia and optic nerve damage in the retina [71, 102-103].
At present IOP is the only modifiable risk factor for the prevention or progression of glaucoma
and low IOP is associated with reduced progression of visual field defect [104-105]. Recent devel‐
opment on stem-cell therapy may be interesting. The initial results of clinical trials in patients us‐
ing stem-cell therapy showed some visual benefits with no sign of tumorigenicity [106-111].
Therefore, stem-cell therapy may be a promising approach to treat patients with retinal disease in
the future. However, further research will be needed and an understanding of the role of epige‐
netics is also important to the success of the stem cell-based therapies [8]. In the future, studies
will uncover the epigenetic mechanism contributing to glaucoma. A strong emphasis must be
placed on epigenetics in the analysis of complex phenotypic variation. It may be necessary to de‐
velop a human methylation map to understand the difference in transcript expression. Epigenet‐
ic mechanisms in ophthalmology are truly exciting areas of research.
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Glossary

Apoptosis: genetically programmed cell death

Chromatin : a complex of nucleic acids and proteins

Euchromatin: a less condensed, mostly transcriptionally active chromatin

Heterochromatin: a highly condensed chromatin

Histones: small DNA binding proteins

miRNA: short regulatory non-coding RNAs
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