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1. Introduction

Quantum mechanics has many features which are distinct from classical physics. Perhaps
none more so than tunneling – the ability of a quantum particle to pass through some
potential barrier even when, classically, it would not have enough energy to do so. The
examples of tunneling phenomenon range from the nuclear (e.g. alpha decay of nuclei) to
the molecular(oscillations of the ammonia molecule). Every text book on quantum mechanics
devotes a good fraction of of page space to tunneling (usually introduced via the tunneling
through a one dimensional step potential) and its applications.

In general, tunneling problems can not be solved, easily or at all, in closed, analytic form and
so one must resort to various approximation techniques. One of the first and mostly useful
approximations techniques is the WKB method [1] names after its co-discovers Wentzel,
Krammers and Brillouin. For a particle with an energy E and rest mass m moving in a
one-dimensional potential V(x) (where E < V(x) for some range of x, say a ≤ x ≤ b, which
is the region through which the particle tunnels) the tunneling amplitude is given by

exp

[

−
1

h̄

∫ b

a
[2m(V(x)− E)]1/2dx

]

= exp

[

−
1

h̄

∫ b

a
p(x)dx

]

, (1)

where p(x) is the canonical momentum of the particle. Taking the square of (1) gives the
probability for the particle to tunnel through the barrier.

In this chapter we show how the essentially quantum field theory phenomenon of Unruh
radiation [4] can be seen as a tunneling phenomenon and how one can calculate some details
of Unruh radiation using the WKB method. Unruh radiation is the radiation seen by an
observer who accelerates through Minkowski space-time. Via the equivalence principle (i.e.
the local equivalence between observations in a gravitational field versus in an accelerating
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frame) Unruh radiation is closely related to Hawking radiation [2] – the radiation seen by an
observer in the space-time background of a Schwarzschild black hole.

In the WKB derivation of Unruh radiation presented here we do not recover all the details
of the radiation that the full quantum field theory calculation of the Unurh effect yields.
The most obvious gap is that from the quantum field theory calculations it is known that
Unruh radiation as well as Hawking radiation have a thermal/Planckian spectrum. In the
simple treatment given here we do not obtain the thermal character of the spectrum of Unruh
radiation but rather one must assume the spectrum is thermal (however as shown in [5] one
can use the density matrix formalism to obtain the thermal nature of Unruh radiation as
well as Hawking radiation in the WKB tunneling approach). The advantage of the present
approach (in contrast to the full quantum field theory calculation) is that it easy to apply to a
wide range of observer and space-times. For example, an observer in de Sitter space-time (the
space-time with a positive cosmological constant) will see Hawking–Gibbons radiation [3];
an observer in the Friedmann-Robertson-Walker metric of standard Big Bang cosmology will
see Hawking-like radiation [6]. One can easily calculate the basic thermal features of many
space-times (e.g. Reissner–Nordstrom [9], de Sitter [14], Kerr and Kerr–Newmann [15, 16],
Unruh [17]) using the WKB tunneling method. Additionally, one can easily incorporate
the Hawking radiation of particles with different spins [18] and one can begin to take into
account back reaction effects on the metric [9, 10, 19] i.e. the effect that due to the emission
of Hawking radiation the space-time will change which in turn will modify the nature of
subsequent Hawking radiation.

The WKB tunneling method of calculating the Unruh and Hawking effects also corresponds
the heuristic picture of Hawking radiation given in the original work by Hawking (see pg. 202
of [2]). In this paper Hawking describes the effect as a tunneling outward of positive energy
modes from behind the black hole event horizon and a tunneling inward of negative energy
modes. However only after a span of about twenty five years where mathematical details
given to this heuristic tunneling picture with the works [7–10]. These works showed that the
action for a particle which crosses the horizon of some space-time picked up an imaginary
contribution on crossing the horizon. This imaginary contribution was then interpreted as
the tunneling probability.

One additional advantage of the WKB tunneling method for calculating some of the features
of Hawking and Unruh radiation is that this method does not rely on quantum field theory
techniques. Thus this approach should make some aspects of Unruh radiation accessible to
beginning graduate students or even advanced undergraduate students.

Because of the strong equivalence principle (i.e., locally, a constant acceleration and
a gravitational field are observationally equivalent), the Unruh radiation from Rindler
space-time is the prototype of this type of effect. Also, of all these effects – Hawking
radiation, Hawking–Gibbons radiation – Unruh radiation has the best prospects for being
observed experimentally [20–23]. This WKB approach to Unruh radiation draws together
many different areas of study: (i) classical mechanics via the Hamilton–Jacobi equations;
(ii) relativity via the use of the Rindler metric; (iii) relativistic field theory through the
Klein–Gordon equation in curved backgrounds; (iv) quantum mechanics via the use of the
WKB–like method applied to gravitational backgrounds; (v) thermodynamics via the use
of the Boltzmann distribution to extract the temperature of the radiation; (vi) mathematical
methods in physics via the use of contour integrations to evaluate the imaginary part of
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the action of the particle that crosses the horizon. Thus this single problem serves to show
students how the different areas of physics are interconnected.

Finally, through this discussion of Unruh radiation we will highlight some subtle features of
the Rindler space-time and the WKB method which are usually overlooked. In particular,
we show that the gravitational WKB amplitude has a contribution coming from a change
of the time coordinate from crossing the horizon [14]. This temporal contribution is never
encountered in ordinary quantum mechanics, where time acts as a parameter rather than
a coordinate. Additionally we show that the invariance under canonical transformations of
the tunneling amplitude for Unurh radiation is crucially important to obtaining the correct
results in the case of tunneling in space-time with a horizon.

2. Some details of Rindler space-time

We now introduce and discuss some relevant features of Rindler space-time. This is
the space-time seen by an observer moving with constant proper acceleration through
Minkowski space-time. Thus in some sense this is distinct from the case of a gravitational
field since here we are dealing with flat, Minkowski space-time but now seen by an
accelerating observer. However, because of the equivalence principle this discussion is
connected to situations where one does have gravitational fields such as Hawking radiation
in the vicinity of a black hole.

The Rindler metric can be obtained by starting with the Minkowski metric, i.e., ds2 =
−dt2 + dx2 + dy2 + dz2, where we have set c = 1, and transforming to the coordinates of
the accelerating observer. We take the acceleration to be along the x–direction, thus we only
need to consider a 1+1 dimensional Minkowski space-time

ds2 = −dt2 + dx2 . (2)

Using the Lorentz transformations (LT) of special relativity, the worldlines of an accelerated
observer moving along the x–axis in empty spacetime can be related to Minkowski
coordinates t, x according to the following transformations

t = (a−1 + xR) sinh(atR)

x = (a−1 + xR) cosh(atR) ,
(3)

where a is the constant, proper acceleration of the Rindler observer measured in his
instantaneous rest frame. One can show that the acceleration associated with the trajectory
of (3) is constant since aµaµ = (d2xµ/dt2

R)
2 = a2 with xR = 0. The trajectory of (3) can

be obtained using the definitions of four–velocity and four–acceleration of the accelerated
observer in his instantaneous inertial rest frame [24]. Another derivation of (3) uses a LT to
relate the proper acceleration of the non–inertial observer to the acceleration of the inertial
observer [25]. The text by Taylor and Wheeler [26] also provides a discussion of the Rindler
observer.

The coordinates xR and tR, when parametrized and plotted in a spacetime diagram whose
axes are the Minkowski coordinates x and t, result in the familiar hyperbolic trajectories (i.e.,
x2

− t2 = a−2) that represent the worldlines of the Rindler observer.
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Differentiating each coordinate in (3) and substituting the result into (2) yields the standard
Rindler metric

ds2 = −(1 + axR)
2dt2

R + dx2
R . (4)

When xR = −
1
a , the determinant of the metric given by (4), det(gab) ≡ g = −(1 + axR)

2,

vanishes. This indicates the presence of a coordinate singularity at xR = −
1
a , which can

not be a real singularity since (4) is the result of a global coordinate transformation from
Minkowski spacetime. The horizon of the Rindler space-time is given by xR = −

1
a .

1� 

 

 t 

Future 

x 

Past 

Right wedge Left wedge 

Figure 1. Trajectory of the Rindler observer as seen by the observer at rest.

In the spacetime diagram shown above, the horizon for this metric is represented by the null
asymptotes, x = ±t, that the hyperbola given by (3) approaches as x and t tend to infinity
[27]. Note that this horizon is a particle horizon, since the Rindler observer is not influenced
by the whole space-time, and the horizon’s location is observer dependent [28].

One can also see that the transformations (3) that lead to the Rindler metric in (4) only cover
a quarter of the full Minkowski space-time, given by x − t > 0 and x + t > 0. This portion
of Minkowski is usually labeled Right wedge. To recover the Left wedge, one can modify the
second equation of (3) with a minus sign in front of the transformation of the x coordinate,
thus recovering the trajectory of an observer moving with a negative acceleration. In fact,
we will show below that the coordinates xR and tR double cover the region in front of the
horizon, xR = −

1
a . In this sense, the metric in (4) is similar to the Schwarzschild metric

written in isotropic coordinates. For further details, see reference [28].
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There is an alternative form of the Rindler metric that can be obtained from (4) by the
following transformation:

(1 + a xR) =
√

|1 + 2 a xR′ | . (5)

Using the coordinate transformation given by (5) in (4), we get the following
Schwarzschild–like form of the Rindler metric

ds
2 = −(1 + 2 a xR′ )dt

2
R′ + (1 + 2 a xR′ )−1

dx
2
R′ . (6)

If one makes the substitution a → GM/x2
R′ one can see the similarity to the usual

Schwarzschild metric. The horizon is now at xR′ = −1/2a and the time coordinate, tR′ ,
does change sign as one crosses xR′ = −1/2a. In addition, from (5) one can see explicitly
that as xR′ ranges from +∞ to −∞ the standard Rindler coordinate will go from +∞ down
to xR = −1/a and then back out to +∞.

The Schwarzschild–like form of the Rindler metric given by (6) can also be obtained directly
from the 2–dimensional Minkowski metric (2) via the transformations

t =

√
1 + 2axR′

a
sinh(atR′ )

x =

√
1 + 2axR′

a
cosh(atR′ )

(7)

for xR′ ≥ − 1
2a

, and

t =

√

|1 + 2axR′ |
a

cosh(atR′ )

x =

√

|1 + 2axR′ |
a

sinh(atR′ )

(8)

for xR′ ≤ − 1
2a

. Note that imposing the above conditions on the coordinate xR′ fixes the

signature of the metric, since for xR′ ≤ − 1
2a

or 1 + 2axR′ ≤ 0 the metric signature changes
to (+,−), while for 1 + 2axR′ ≥ 0 the metric has signature (−,+). Thus one sees that
the crossing of the horizon is achieved by the crossing of the coordinate singularity, which
is precisely the tunneling barrier that causes the radiation in this formalism. As a final
comment, we note that the determinant of the metric for (4) is zero at the horizon xR = −1/a,
while the determinant of the metric given by (6) is 1 everywhere.

3. The WKB/Tunneling method applied to Rindler space-time

In this section we study a scalar field placed in a background metric. Physically, these fields
come from the quantum fields, i.e., vacuum fluctuations, that permeate the space-time given
by the metric. By applying the WKB method to this scalar field, we find that the phase of the
scalar field develops imaginary contributions upon crossing the horizon. The exponential of
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these imaginary contributions is interpreted as a tunneling amplitude through the horizon.
By assuming a Boltzmann distribution and associating it with the tunneling amplitude, we
obtain the temperature of the radiation.

To begin we derive the Hamilton–Jacobi equations for a scalar field, φ, in a given background
metric. In using a scalar field, we are following the original works [2, 4]. The derivation with
spinor or vector particles/fields would only add the complication of having to carry around
spinor or Lorentz indices without adding to the basic understanding of the phenomenon.
Using the WKB approach presented here it is straightforward to do the calculation using
spinor[18] or vector particles. The scalar field in some background metic, gµν is taken to
satisfy the Klein-Gordon (KG) equation

(

1√−g
∂µ(

√

−ggµν∂ν)−
m2c2

h̄2

)

φ = 0 , (9)

where c is the speed of light, h̄ is Planck’s constant, m is the mass of the scalar field and gµν is
the background metric. For Minkowski space-time, the (9) reduces to the free Klein–Gordon

equation, i.e., (� − m2c2/h̄2)φ = (−∂2/c2∂t2 + ∇2 − m2c2/h̄2)φ = 0. This equation is
nothing other than the fundamental relativistic equation E2 − p2c2 = m2c4 with E → ih̄∂t

and p → −ih̄∇.

Setting the speed of light c = 1, multiplying (9) by −h̄ and using the product rule, (9)
becomes

−h̄2

√−g

[

(∂µ
√

−g)gµν∂νφ +
√

−g(∂µgµν)∂νφ+

√

−ggµν∂µ∂νφ
]

+ m2φ = 0 .

(10)

The above equation can be simplified using the fact that the covariant derivative of any metric
g vanishes

∇αgµν = ∂αgµν + Γ
µ
αβgβν + Γ

ν
αβgµβ = 0 , (11)

where Γ
µ
αβ is the Christoffel connection. All the metrics that we consider here are diagonal

so Γ
µ
αβ = 0, for µ 6= α 6= β. It can also be shown that

Γ
µ
µγ = ∂γ(ln

√

−g) =
∂γ

√−g√−g
. (12)

Using (11) and (12), the term ∂µgµν in (10) can be rewritten as

∂µgµν = −Γ
µ
µγgγν − Γ

ν
µρgµρ = − ∂γ

√−g√−g
gγν , (13)
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since the harmonic condition is imposed on the metric gµν, i.e., Γ
ν
µρgµρ = 0. Thus (10)

becomes

− h̄2gµν∂µ∂νφ + m2φ = 0 . (14)

We now express the scalar field φ in terms of its action S = S(t,~x)

φ = φ0e
i
h̄ S(t,~x) , (15)

where φ0 is an amplitude [29] not relevant for calculating the tunneling rate. Plugging this
expression for φ into (14), we get

− h̄gµν(∂µ(∂ν(iS))) + gµν∂ν(S)∂µ(S) + m2 = 0 . (16)

Taking the classical limit, i.e., letting h̄ → 0, we obtain the Hamilton–Jacobi equations for the
action S of the field φ in the gravitational background given by the metric gµν,

gµν∂ν(S)∂µ(S) + m2 = 0 . (17)

For stationary space-times (technically space-times for which one can define a time–like
Killing vector that yields a conserved energy, E) the action S can be split into a time and
space part, i.e., S(t,~x) = Et + S0(~x).

If S0 has an imaginary part, this then gives the tunneling rate, ΓQM, via the standard WKB
formula. The WKB approximation tells us how to find the transmission probability in terms
of the incident wave and transmitted wave amplitudes. The transition probability is in
turn given by the exponentially decaying part of the wave function over the non–classical
(tunneling) region [30]

ΓQM ∝ e−Im 1
h̄

∮
pxdx . (18)

The tunneling rate given by (18) is just the lowest order, quasi-classical approximation to the
full non–perturbative Schwinger [31] rate. 1

In most cases (with an important exception of Painlevé–Gulstrand form of the Schwarzschild
metric which we discuss below), pout and pin have the same magnitude but opposite signs.
Thus ΓQM will receive equal contributions from the ingoing and outgoing particles, since

the sign difference between pout and pin will be compensated for by the minus sign that
is picked up in the pin integration due to the fact that the path is being traversed in the

1 The Schwinger rate is found by taking the Trace–Log of the operator (�g − m2c2/h̄2), where �g is the d’Alembertian
in the background metric gµν , i.e., the first term in (9). As a side comment, the Schwinger rate was initially calculated
for the case of a uniform electric field. In this case, the Schwinger rate corresponded to the probability of creating
particle–antiparticle pairs from the vacuum field at the expense of the electric field’s energy. This electric field
must have a critical strength in order for the Schwinger effect to occur. A good discussion of the calculation of the
Schwinger rate for the usual case of a uniform electric field and the connection of the Schwinger effect to Unruh and
Hawking radiation can be found in reference [32].
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backward x-direction. In all quantum mechanical tunneling problems that we are aware of
this is the case: the tunneling rate across a barrier is the same for particles going right to left
or left to right. For this reason, the tunneling rate (18) is usually written as [30]

ΓQM ∝ e∓2Im 1
h̄

∫

pout,in
x dx , (19)

In (19) the − sign goes with pout
x and the + sign with pin

x .

There is a technical reason to prefer (18) over (19). As was remarked in references [33–35],
equation (18) is invariant under canonical transformations, whereas the form given by (19) is
not. Thus the form given by (19) is not a proper observable.

Moreover, we now show that the two formulas, (18) and (19), are not even numerically
equivalent when one applies the WKB method to the Schwarzschild space-time in
Painlevé-Gulstrand coordinates. The Painlevé–Gulstrand form of the Schwarzschild
space-time is obtained by transforming the Schwarzschild time t to the Painlevé–Gulstrand
time t′ using the transformation

dt = dt′ −

√

2M
r dr

1 − 2 M
r

. (20)

Applying the above transformation to the Schwarzshild metric gives us the
Painlevé–Gulstrand form of the Schwarzschild space-time

ds2
= −

(

1 −
2M

r

)

dt′
2
+ 2

√

2M

r
dr dt′ + dr2 . (21)

The time is transformed, but all the other coordinates (r, θ, φ) are the same as the
Schwarzschild coordinates. If we use the metric in (21) to calculate the spatial part of the
action as in (35) and (29), we obtain

S0 = −

∫

∞

−∞

dr

1 − 2M
r

√

2M

r
E (22)

±

∫

∞

−∞

dr

1 − 2M
r

√

E2 − m2

(

1 −
2M

r

)

. (23)

Each of these two integrals has an imaginary contribution of equal magnitude, as can be
seen by performing a contour integration. Thus one finds that for the ingoing particle (the
+ sign in the second integral) one has a zero net imaginary contribution, while from for
the outgoing particle (the − sign in the second integral) there is a non–zero net imaginary
contribution. Also as anticipated above the ingoing momentum (i.e, the integrand in (22) with
the + sign in the second term) is not equal to the outgoing momentum (i.e, the integrand
in (22) with the − sign in the second term) In these coordinates there is a difference by a
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factor of two between using (18) and (19) which comes exactly because the tunneling rates
from the spatial contributions in this case do depend upon the direction in which the barrier
(i.e., the horizon) is crossed. The Schwarzcshild metric has a similar temporal contribution
as for the Rindler metric [36]. The Painlevé–Gulstrand form of the Schwarzschild metric
actually has two temporal contributions: (i) one coming from the jump in the Schwarzschild
time coordinate similar to what occurs with the Rindler metric in (7) and (8); (ii) the
second temporal contribution coming from the transformation between the Schwarzschild
and Painlevé–Gulstrand time coordinates in (20). If one integrates equation (20), one can
see that there is a pole coming from the second term. One needs to take into account both
of these time contributions in addition to the spatial contribution, to recover the Hawking
temperature. Only by adding the temporal contribution to the spatial part from (18), does

one recover the Hawking temperature [36] T = h̄
8πM . Thus for both reasons – canonical

invariance and to recover the temperature – it is (18) which should be used over (19), when
calculating ΓQM. In ordinary quantum mechanics, there is never a case – as far as we know
– where it makes a difference whether one uses (18) or (19). This feature – dependence of
the tunneling rate on the direction in which the barrier is traverse – appears to be a unique
feature of the gravitational WKB problem. So in terms of the WKB method as applied to the
gravitational field, we have found that there are situations (e.g. Schwarzschild space-time in
Painlevé–Gulstrand coordinates) where the tunneling rate depends on the direction in which
barrier is traversed so that (18) over (19) are not equivalent and will thus yield different
tunneling rates, Γ.

For the case of the gravitational WKB problem, equation (19) only gives the imaginary
contribution to the total action coming from the spatial part of the action. In addition,
there is a temporal piece, E∆t, that must be added to the total imaginary part of the action
to obtain the tunneling rate. This temporal piece originates from an imaginary change of
the time coordinate as the horizon is crossed. We will explicitly show how to account for
this temporal piece in the next section, where we apply the WKB method to the Rindler
space-time. This imaginary part of the total action coming from the time piece is a unique
feature of the gravitational WKB problem. Therefore, for the case of the gravitational WKB
problem, the tunneling rate is given by

Γ ∝ e−
1
h̄ [Im(

∮
pxdx)−EIm(∆t)] . (24)

In order to obtain the temperature of the radiation, we assume a Boltzmann distribution for
the emitted particles

Γ ∝ e−
E
T , (25)

where E is the energy of the emitted particle, T is the temperature associated with the
radiation, and we have set Boltzmann’s constant, kB, equal to 1. Equation (25) gives the
probability that a system at temperature T occupies a quantum state with energy E. One
weak point of this derivation is that we had to assume a Boltzmann distribution for the
radiation while the original derivations [2, 4] obtain the thermal spectrum without any
assumptions. Recently, this shortcoming of the tunneling method has been addressed in
reference [5], where the thermal spectrum was obtained within the tunneling method using
density matrix techniques of quantum mechanics.
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By equating (25) and (24), we obtain the following formula for the temperature T

T =
Eh̄

Im
(∮

pxdx
)

− EIm(∆t)
. (26)

4. Unruh radiation via WKB/tunneling

We now apply the above method to the alternative Rindler metric previously introduced. For
the 1 + 1 Rindler space-times, the Hamilton–Jacobi equations (H–J) reduce to

gtt
∂tS∂tS + gxx

∂xS∂xS + m2 = 0 .

For the Schwarzschild–like form of Rindler given in (6) the H–J equations are

− 1

(1 + 2 a xR′ )
(∂tS)

2 + (1 + 2 a xR′ )(∂xS)2 + m2 = 0 . (27)

Now splitting up the action S as S(t,~x) = Et + S0(~x) in (27) gives

− E

(1 + 2 a xR′ )2
+ (∂xS0(xR′ ))2 +

m2

1 + 2 a xR′
= 0 . (28)

From (28), S0 is found to be

S±
0 = ±

∫

∞

−∞

√

E2 − m2(1 + 2 a xR′ )

1 + 2 a xR′
dxR′ . (29)

In (29), the + sign corresponds to the ingoing particles (i.e., particles that move from right to
left) and the − sign to the outgoing particles (i.e., particles that move left to right). Note also
that (29) is of the form S0 =

∫

px dx, where px is the canonical momentum of the field in
the Rindler background. The Minkowski space-time expression for the momentum is easily

recovered by setting a = 0, in which case one sees that px =
√

E2 − m2.

From (29), one can see that this integral has a pole along the path of integration at xR′ = − 1
2a .

Using a contour integration gives an imaginary contribution to the action. We will give
explicit details of the contour integration since this will be important when we try to apply
this method to the standard form of the Rindler metric (4) (see Appendix I for the details of
this calculation). We go around the pole at xR′ = − 1

2a using a semi–circular contour which

we parameterize as xR′ = − 1
2a + ǫeiθ , where ǫ ≪ 1 and θ goes from 0 to π for the ingoing

path and π to 0 for the outgoing path. These contours are illustrated in the figure below.
With this parameterization of the path, and taking the limit ǫ → 0, we find that the imaginary
part of (29) for ingoing (+) particles is
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S+
0 =

∫

π

0

√
E2 − m2ǫeiθ

2aǫeiθ
iǫeiθdθ =

i π E

2a
, (30)

and for outgoing (−) particles, we get

S−
0 = −

∫ 0

π

√
E2 − m2ǫeiθ

2aǫeiθ
iǫeiθdθ =

i π E

2a
. (31)

  

  

  

 

(i) 

(ii) 

Figure 2. Contours of integration for (i) the ingoing and (ii) the outgoing particles.

In order to recover the Unruh temperature, we need to take into account the contribution
from the time piece of the total action S(t,~x) = Et + S0(~x), as indicated by the formula
of the temperature, (26), found in the previous section. The transformation of (7) into (8)
indicates that the time coordinate has a discrete imaginary jump as one crosses the horizon
at xR′ = − 1

2a , since the two time coordinate transformations are connected across the horizon

by the change tR′ → tR′ − iπ
2a , that is,

sinh(atR′ ) → sinh

(

atR′ − iπ

2

)

= −i cosh(atR′ ) .

Note that as the horizon is crossed, a factor of i comes from the term in front of the hyperbolic
function in (7), i.e.,

√

1 + 2axR′ → i
√

|1 + 2axR′ | ,

so that (8) is recovered.

Therefore every time the horizon is crossed, the total action S(t,~x) = S0(~x) + Et picks

up a factor of E∆t = − iπE
2a . For the temporal contribution, the direction in which the

horizon is crossed does not affect the sign. This is different from the situation for the spatial
contribution. When the horizon is crossed once, the total action S(t,~x) gets a contribution

of E∆t = − iEπ

2a , and for a round trip, as implied by the spatial part
∮

pxdx, the total

contribution is E∆ttotal = − iEπ

a . So using the equation for the temperature (26) developed in
the previous section, we obtain
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TUnruh =
Eh̄

πE

a
+ πE

a

=
h̄a

2π
, (32)

which is the Unruh temperature. The interesting feature of this result is that the gravitational
WKB problem has contributions from both spatial and temporal parts of the wave function,
whereas the ordinary quantum mechanical WKB problem has only a spatial contribution.
This is natural since time in quantum mechanics is treated as a distinct parameter, separate
in character from the spatial coordinates. However, in relativity time is on equal footing with
the spatial coordinates.

5. Conclusions and summary

We have given a derivation of Unruh radiation in terms of the original heuristic explanation
as tunneling of virtual particles tunneling through the horizon [2]. This tunneling method
can easily be applied to different space-times and to different types of virtual particles. We
chose the Rindler metric and Unruh radiation since, because of the local equivalence of
acceleration and gravitational fields, it represents the prototype of all similar effects (e.g.
Hawking radiation, Hawking–Gibbons radiation).

Since this derivation touches on many different areas – classical mechanics (through the
H–J equations), relativity (via the Rindler metric), relativistic field theory (through the
Klein–Gordon equation in curved backgrounds), quantum mechanics (via the WKB method
for gravitational fields), thermodynamics (via the Boltzmann distribution to extract the
temperature), and mathematical methods (via the contour integration to obtain the imaginary
part of the action) – this single problem serves as a reminder of the connections between the
different areas of physics.

This derivation also highlights several subtle points regarding the Rindler metric and the
WKB tunneling method. In terms of the Rindler metric, we found that the different forms of
the metric (4) and (6) do not cover the same parts of the full spacetime diagram. Also, as one
crosses the horizon, there is an imaginary jump of the Rindler time coordinate as given by
comparing (7) and (8).

In addition, for the gravitational WKB problem, Γ has contributions from both the spatial
and temporal parts of the action. Both these features are not found in the ordinary quantum
mechanical WKB problem.

As a final comment, note that one can define an absorption probability (i.e., Pabs ∝ |φin|
2) and

an emission probability (i.e., Pemit ∝ |φout|
2). These probabilities can also be used to obtain

the temperature of the radiation via the “detailed balance method" [8]

Pemit

Pabs

= e
−E/T .

Using the expression of the field φ = φ0e
i

h̄
S(t,~x), the Schwarzschild–like form of the Rindler

metric given in (6), and taking into account the spatial and temporal contributions gives an
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an absorption probability of

Pabs ∝ e
πE

a
− πE

a = 1

and an emission probability of

Pemit ∝ e
− πE

a
− πE

a = e
− 2πE

a .

The first term in the exponents of the above probabilities corresponds to the spatial
contribution of the action S, while the second term is the time piece. When using this
method, we are not dealing with a directed line integral as in (18), so the spatial parts of
the absorption and emission probability have opposite signs. In addition, the absorption
probability is 1, which physically makes sense – particles should be able to fall into the
horizon with unit probability. If the time part were not included in Pabs, then for some given

E and a one would have Pabs ∝ e
πE

a > 1, i.e., the probability of absorption would exceed 1 for
some energy. Thus for the detailed balance method the temporal piece is crucial to ensure
that one has a physically reasonable absorption probability.

Appendix I: Unruh radiation from the standard Rindler metric

For the standard form of the Rindler metric given by (4), the Hamilton–Jacobi equations
become

− 1

(1 + a xR)2
(∂tS)

2 + (∂xS)2 + m
2 = 0 . (33)

After splitting up the action as S(t,~x) = Et + S0(~x), we get

− E

(1 + a xR)2
+ (∂xS0(xR))

2 + m
2 = 0 . (34)

The above yields the following solution for S0

S
±
0 = ±

∫

∞

−∞

√

E2 − m2 (1 + a xR)2

1 + a xR

dxR , (35)

where the +(−) sign corresponds to the ingoing (outgoing) particles.

Looking at (35), we see that the pole is now at xR = −1/a and a naive application of contour

integration appears to give the results ± i π E

a
. However, this cannot be justified since the two

forms of the Rindler metric – (4) and (6) – are related by the simple coordinate transformation
(5), and one should not change the value of an integral by a change of variables. The
resolution to this puzzle is that one needs to transform not only the integrand but the path of
integration, so applying the transformation (5) to the semi–circular contour xR′ = − 1

2a
+ ǫeiθ

gives xR = − 1
a
+

√
ǫ

a
eiθ/2. Because eiθ is replaced by eiθ/2 due to the square root in the

transformation (5), the semi–circular contour of (30) is replaced by a quarter–circle, which
then leads to a contour integral of i

π

2 × Residue instead of iπ × Residue. Thus both forms of
Rindler yield the same spatial contribution to the total imaginary part of the action.
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