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1. Introduction 

Power quality describes the quality of voltage and current. It is an important consideration 

in industries and commercial applications. Power quality problems commonly faced are 

transients, sags, swells, surges, outages, harmonics and impulses [1]. Among these voltage 

sags and extended under voltages have large negative impact on industrial productivity, 

and could be the most important type of power quality variation for many industrial and 

commercial customers [1-5].  

Voltage sags is mainly due to the fault occurring in the transmission and distribution 

system, loads like welding and operation of building construction equipment, switching of 

the loaded feeders or equipments. Both momentary and continuous voltage sags are 

undesirable in complex process controls and household appliances as they use precision 

electronic and computerized control.  

Major problems associated with the unregulated long term voltage sags include equipment 

failure, overheating and complete shutdown. Tap changing transformers with silicon-

controlled rectifiers (SCR) are usually used as a solution of continuous voltage sags [6]. They 

require large transformer with many SCRs to control the voltage at the load which lacks the 

facility of adjusting to momentary changes. Some solutions have been suggested in the past 

to encounter the problems of voltage sag [7-11]. But these proposals have not been realized 

practically to replace conventional tap changing transformers. 

Now a day’s various power semiconductor devices are used to raise power quality levels to 

meet the requirements [12]. Several AC voltage regulators have been studied as a solution of 

voltage sags [13-18]. In [13] the input current was not sinusoidal, in [14-16] the efficiency of 

the regulator was not analyzed and in [17-18] the input power factor was very low and the 

efficiency is also found poor. Compact and fully electronic voltage regulators are still 

unavailable practically.  
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Dynamic Voltage Restorer (DVR) is sometimes used to regulate the load side voltage [19-

21]. The DVR requires energy storage device to compensate the voltage sags. Flywheels, 

batteries, superconducting magnetic energy storage (SMES) and super capacitors are 

generally used as energy storage devices. The rated power operation of DVR depends on the 

size and capacity of energy storage device which limits its use in high power applications. 

Whereas, switching regulator needs no energy storage devices, therefore, can be used both 

in low power and high power applications.  

The objective of this chapter is to describe the operation and design procedure of a switch 

mode AC voltage regulator. Firstly, some reviews of the regulators are presented then the 

procedure of design and analysis of a switch mode regulator is described step by step. 

Simulation software OrCAD version 9.1 [22] is used to analyze the regulator. The proposed 

regulator consists mainly two parts, power circuit and control circuit. The power circuit 

consist two bi-directional switches which serve as the freewheeling path for each other. A 

signal generating control circuit is to be associated with the power circuit for getting pulses 

of the switches. In the control circuit, a commercially available pulse width modulator IC 

chip SG1524B is used, thus circuit is compact and more viable.  

2. Review of voltage regulators 

2.1. Switching-mode power supply (SMPS) 

A switching-mode power supply (SMPS) is switched at very high frequency. Conversion of 

both step down and step up of voltage is possible using SMPS. Uses of SMPSs are now 

universal in space power applications, computers, TV and industrial units. SMPSs are used 

in DC-DC, AC-AC, AC-DC, DC-AC conversion for their light weight, high efficiency and 

isolated multiple outputs with voltage regulation. Main parts of a Switching-mode power 

supply are:                

(a) Power circuit, (b) Control circuit.   

Figure 1 shows the block diagram of a SMPS. The power circuit is mainly the input, output 

side with the switching device. The switching device is continuously switched at high 

frequency by the gate signal from the control circuit to transfer power from input to the 

output. The control circuit of a SMPS basically generates high frequency gating pulses for 

the switching devices to control the output voltage. Switching is performed in multiple 

pulse width modulation (PWM) fashion according to feedback error signal from the load. 

High frequency switching reduces filter requirements at the input and output sides of the 

converter. Simplest PWM control uses multiple pulse modulations generated by comparing 

a DC with a high frequency carrier triangular wave.  

The PWM control circuit is commonly available as integrated form. The designer can select 

the switching frequency by choosing the value of RC to set oscillator frequency. As a rule of 

thumb to maximize the efficiency, the oscillation period should be about 100 times longer 

than the switching time of the switching device such as Transistor, Metal oxide 

semiconductor field-effect transistor (MOSFET), Insulated gate bipolar transistor (IGBT). For 
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example, if a switch has a switching time of 0.5 us, the oscillator period would be 50 us, 

which gives the maximum oscillation frequency of 20 KHz. This limitation is due to the 

switching loss in the switching devices. The switching loss of switching devices increases 

with the switching frequency. In addition, the core loss of inductor limits the high frequency 

operation. 

 

Figure 1. Block diagram of Switching-mode power supply (SMPS). 

2.2. DC-DC converter 

Figure 2 illustrates the circuit of a classical linear power converter. Here power is controlled 

by a series linear element; either a resister or a transistor is used in the linear mode. The total 

load current passes through the series linear element. In this circuit greater the difference 

between the input and the output voltage, more is the power loss in the controlling device 

(linear element). Linear power conversion is dissipative and hence is inefficient.  

The circuit of Fig. 3 illustrates basic principle of a DC-DC switching-mode power converter. 

The controlling device is a switch. By controlling the duty cycle, (the ratio of the time in on 

positions to the total time of on and off position of a switch) the power flow to the load can 

be controlled in a very efficient way. Ideally this method is 100% efficient. In practice, the 

efficiency is reduced as the switch is non-ideal and losses occur in power circuits. Hence, 

one of the prime objectives in switch mode power conversion is to realize conversion with 

the least number of components having better efficiency and reliability. The DC output 

voltage to the load can be controlled by controlling the duty cycle of the rectangular wave 

supplied to the base or gate of the switching device. When the switch is on, it has only a 

small saturation voltage drop across it. In the off condition the current through the switch 

is zero. 

The output of the switch mode power conversion circuit (Fig. 3) is not pure DC. This type 

of output is applicable in some cases such as oven heating without proper filtration. If 

constant DC is required, then output of converter has to be smoothed out by the addition 

of low-pass filter.  
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Figure 2. Linear (dissipative) DC-DC power conversion circuit. 

 

Figure 3. Switching-mode (non dissipative) DC-DC power conversion circuit. 

2.2.1. Types of DC-DC converter 

There are four basic topologies of switching DC-DC regulators: 

a. Buck regulator 

b. Boost regulator  

c. Buck-Boost regulator and  

d. Cûk regulator. 

The Circuit diagram of four basic DC-DC switching regulators is shown in Fig. 4. The 

expression of output voltage for the four types of DC-DC regulators are as follows: 
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as input voltage. In Buck-Boost and Cûk regulator, the polarity of output voltage is opposite 

to that of the input voltage, therefore theses regulators are also called inverting regulators. 

 

Figure 4. Circuit diagram of DC-DC regulator, (a) Buck regulator, (b) Boost regulator, (c) Buck-Boost 

regulator, (d) Cûk regulator. 

2.3. AC-AC converter 

The AC voltage regulator is an appliance by which the AC output voltage can be set to a 

desired value and can be maintained constant all the time irrespective of the variations of 

input voltage and load. This subject is vast and the field of application extends from very 

large power systems to small electronic apparatus. Naturally, the types of regulators are also 

numerous. The design of the regulators depends mainly on the power requirements and 

degree of stability. 

The AC voltage can be regulated by the following ways. 

a. Solid-state tap changer and steeples control by variac 

b. Solid-tap changer using anti-parallel SCRs  

c. Voltage regulation using servo system 

d. Phase controlled AC regulator 

e. Ferro-resonant AC regulator 

f. Switch mode AC regulator 

2.3.1. Solid-state tap changer and stepless control by variac  

The voltage regulations by tap-changing switches are used in many industrial applications 

where the maintenance of output voltage at a constant value is not very stringent, such as 

ordinary battery chargers, electroplating rectifiers etc. For smaller installation, off-load tap 
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changing switches are used and for large installation on-load tap changing switches are 

used. The switches are generally incorporated at the secondary of the transformer. For a low 

voltage high current load, the switches are provided on the primary side of the transformer 

due to economical reason. For line voltage correction, taps are provided on the primary of 

the transformer. For three-phase transformers three pole tap changing switches are used.  

In off-load tap changer, the output is momentarily cut-off from the supply. It is therefore 

used for low capacity equipment and where the momentary cut-off of the supply is not 

objectionable for the load. The major limitation of the off-load tap changing switches is the 

occurrences of arcs at the contact points during the change-over operation. This shortens the 

life of off-load rotary switches, particularly of high current ratings. In Fig. 5 (a), three four-

position switches of an off load tap changer are shown, such that the minimum of X volts 

per step are available at the output.  

The voltage is corrected by tap-charging switches in steps. Where stepless control is required, 

variable autotransformers or variacs are used. The normal variac consists of a toroidal coil 

wound on a laminated iron ring. The insulation of the wire is removed from one of the end 

faces and the wire is grounded to ensure a smooth path for the carbon brush. Carbon brush is 

used to limit the circulating current, which flows between the short-circuited turns.  

A Buck-Boost transformer is sometimes used for AC voltage regulation when the output 

voltage is approximately the same as the mean input voltage as shown in Fig. 5(b). In this 

case if the output voltage is less than or greater than the desired value, it can be increased or 

decreased to the desired value by adding a suitable forward or reverse voltage with the 

input through the Buck-Boost transformer.  

 

Figure 5. Circuit diagram of AC voltage controller using (a) Off load tap changer and (b) Buck-Boost 

transformer and variac. 

2.3.2. Solid tap changer using anti-parallel SCRs 

Anti-parallel SCRs combinations can replace the voltage sensitive relay in the tap-changing 

regulator. Figure 6 shows a tap changer with three taps which can be connected to the load 

(a) Off load tap changing switch 

arrangement. 

(b) Voltage control by combination of a 

Buck–Boost transformer and a variac. 
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through three anti-parallel switches. When the SCR1-SCR2 switch is fired, tap 1 is connected 

to the load. Similarly taps 2 and 3 can be connected to the load through the SCR3-SCR4 and 

CSR5-SCR6 switches respectively. Thus, any number of taps can be connected to the load 

with similar SCR switches. When one group of SCRs operates for the whole cycle and other 

groups are off, the voltage corresponding to the tap of that group appears at the load. 

Changeover from one loop to the other is done simply by shifting the firing pulses from one 

group of SCRs to the other. 

With resistive load, the load current becomes zero and the SCRs stop conduction as soon as 

the voltage reverses its polarity. Therefore, when one group is fired, the other groups are 

commutated automatically. With reactive loads, the situation is complicated by the fact that 

the zero current angle depends on the load power factor. This means that the SCR conducts 

a finite value of current at the time of reversal of line voltage. This results in either 

preventing a tap change due to reverse bias on the SCR to be triggered or causing a short 

circuit between the taps through two SCRs. 

2.3.3. Voltage regulation using servo system 

Voltage regulators using servo systems are quite common. Both single and three-phase 

types are available. The rating of this type of regulator is quite high and is more economical 

for high power rating. This regulator normally consist a variac driven by a servomotor, a 

sensing unit and a voltage and power amplifier to drive the motor in a reversible way. 

Various types of driving motor may be used for regulating the unit, such as direct current, 

induction and synchronous motors. However, in all cases, the motor must come to rest 

rapidly to avoid overrun and hunting. The amount of overrun may be reduced by dynamic 

braking in the case of a DC motor or by disconnecting the motor from the variac by a clutch 

as soon as the signal from the measuring unit ceases. The main disadvantage of this type of 

regulator is the low life of the contact points of the relays. 

2.3.4. Phase controlled AC voltage regulator 

Voltage regulators using SCRs are quit common. The load voltage is regulated by 

controlling the firing instants of the SCRs. There are various circuits for single phase and 

three phase regulators using SCRs. Though the output voltage can be precisely controlled by 

this method, the harmonic introduced in the load voltage are quit large and this circuit is 

used for applications where the output voltage waveform need not be strictly sinusoidal. 

The circuit arrangement for a single phase SCR regulator is shown in Fig. 6 and Fig. 7. 

2.3.5. Ferro-resonant AC voltage regulator 

The concept of the stabilization of AC voltage using a saturated transformer is rather old. 

The basic circuit arrangement consists of a linear reactor or transformer T1 and a nonlinear 

saturated reactor or transformer T2 connected in series as shown in Fig. 8. Since the two 

elements T1 and T2 are in series, the current through them is the same. Transformer T2 is 

operated under saturated. The voltage division between the two is according to their 
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impedances. Due to nonlinear characteristics of T2 the percentage change of voltage across it 

is much smaller compared to the percentage change of input voltage. If a suitable voltage 

proportional to the current is subtracted from the voltage across T2 a practically constant 

output voltage can be obtained. The circuit arrangement shown is Fig. 8(a) has some 

drawbacks such as, no load input current is high, and good output voltage stability cab be 

achieved only at a particular load. Hence some modifications are necessary to improve its 

performance. The major modification is to place a capacitor across the saturated 

transformerT2 that is shown in Fig. 8(b). 

 

Figure 6. Circuit diagram of solid tap changer using anti-parallel SCRs. 

 

Figure 7. Phase controlled AC voltage regulator, (a) Using back to back SCR and diode and (b) using 

inverse parallel SCR (c) Using diode-bridge and single SCR  

 

Figure 8. Fero-resonant AC voltage regulator.  
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causes the circuit to go out of resonance consequently a large change in input current and 

power factor. For a change in the input voltage, the change in voltage across the resonant 

circuit is small but the change in voltage at T1 is large, and by suitable proportioning of the 

voltage, a good degree of stabilization is achieved for the variation of input voltage as well 

as load current. The simple Ferro-resonant regulator has the following disadvantages: 

a. The output voltage changes with frequency. 

b. Since the core operates in saturation and output is derived from the tank circuit, the 

core volume is large, the core losses are high and external magnetic field is also high. 

2.3.6. Switch mode AC voltage regulator 

In switch mode AC voltage regulator, the switching devices are continuously switching on 

and off with high frequency in order to transfer energy from input to output. The high 

operating frequency results in the smaller size of the switch mode power supplies since the 

size of power transformer inductors and filter capacitors is inversely proportional to the 

frequency. The SMPS are more complicated and more expensive, their switching current can 

cause noise problems, and simple designs can have a poor power factor. 

Four common types of switch mode converters are used in DC-DC conversion. They are 

Buck, Boost, Buck-Boost and C^UK converters. Researches are trying to modify these DC 

regulators to regulate AC voltages. Buck- Boost and Cûk converter configuration has been 

investigated for voltage regulation [17-18]. But in every case it is found that the input power 

factor is very low and the efficiency is poor. 

3. Design and analysis of switching-mode AC voltage regulator  

3.1. Operation principle of switching-mode AC voltage regulator 

3.1.1. Operation of power circuit 

Voltage sag is an important power quality problem, which may affect domestic, industrial 

and commercial customers. Voltage sags may either decrease or increase in the magnitude 

of system voltage due to faults or change in loads. Momentary and sustained over voltage 

and under voltage may cause the equipment to trip out, which is highly undesirable in 

certain application. In order to maintain the load voltage constant in case of any fluctuation 

of input voltage or variation of load some regulating device is necessary.  

In this chapter the principle of operation of high frequency switching AC voltage regulator, 

design of its filter circuit and snubber circuit are described. Performance of the regulator is 

also analyzed using simulation software OrCAD version 9.1. Switch-mode power supplies 

(SMPS) incorporate power handling electronic components which are continuously 

switching on and off with high frequency in order to provide the transfer of electric energy 

from input to output. The design of AC voltage regulator depends on power requirement, 

degree of stability and efficiency. Solid state AC regulator using phase control technique are 

not new and are widely used in many application such as heating and lighting control etc. 



 
An Update on Power Quality 130 

These regulators are not suited for critical loads because the output waveforms are 

truncated sine waves, which contain large percentage of distortion. The input power factor 

is low. These drawbacks are largely overcome and the voltage can be efficiently controlled 

by means of a solid-state AC regulator using PWM technique. 

The power circuit of the proposed AC voltage regulator is shown in Fig. 9. The circuit 

operation can be explained with the help of Fig. 10. During positive half cycle of the input 

voltage, at mode 1, when switch-1 is on and switch-2 is off, the current passes through diode 

D1, switch-1, diode D4 and through the inductor and the energy is stored in the inductor. At 

mode 2, when switch-1 is off and switch-2 is on, the energy stored in the inductor is 

transferred through diode D8, switch-2 and diode D5. At mode 1, power is transferred from 

source and at mode 2, power is not transferred from the source, so by controlling the on and 

off duration of switch-1 output power can be controlled. 

During negative half cycle of the input voltage, at mode 1, when switch-1 is on and switch-2 

is off the current passes through the inductor, diode D3, switch-1, and diode D2 and the 

energy is stored in the inductor. At mode 2, when switch-1 is off and switch-2 is on the 

energy stored in the inductor is transferred through diode D6, switch-2 and diode D7. 

 

Figure 9. Power circuit of the proposed AC voltage regulator.  

 

Figure 10. Operation of the power circuit of AC voltage regulator (a) Operation during positive half 

cycle (b) Operation during negative half cycle 
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3.1.2. Operation of control circuit 

The gate signal generating circuit for a manually controlled AC voltage regulator is shown 

in Fig. 11. The control circuit incorporates an Operational Amplifier (OPAMP) whose 

positive input is a variable DC voltage V1, and negative input is a fixed saw-tooth signal V2. 

In this circuit the OPAMP acts as a comparator, output of the OPAMP depends on the 

difference of the two inputs. The negative input (saw-tooth wave) is kept constant and 

positive input (DC voltage) is varied. So output pulse width depends on DC input voltage 

of OPAMP i.e. when DC input is higher the output of comparator will be wider and when 

DC input is lower the output of comparator will be narrower.  

The outputs of OPAMP are used to turn on/off the switches of the power circuit of the 

regulator to regulate the output voltage. The output of OPAMP is directly passed through 

limiter-1 which is the gate signal for switch-1 and after inverting the output of the 

comparator is passed through the limiter-2 which is the gate signal for switch-2. The 

function of the limiter is to limit the output of comparator from 0 to 5 V. When switch-1 of 

the power circuit is on then switch-2 should be off. So the gate signal generating circuit is 

arranged in such a way that when gate signal of switch-1 is on then gate signal for switch-2 

is off and vice versa.  

 

Figure 11. Gate signal generation circuit of manually controlled AC voltage regulator. 
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The basic circuit of a manually controlled AC voltage regulator is shown in Fig. 12. When 
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voltage can be regulated to the desirable value by changing the DC voltage of the gate signal 
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voltage to 300V (peak) for variations of input voltage from 200V (peak) to 400V (peak), also 

for variation of load from 100 ohm to 200 ohm. However, the output voltage can be set to 

any desirable value according to requirement. The values of all voltages and currents 

indicated in this chapter are in peak values. 

The input current and output voltage waveforms of the manually controlled AC voltage 

regulator as shown in Fig. 12, is shown in Fig. 13,  when the input voltage is 300V and 

output voltage is also 300V. The spectrum of the input current and output voltage as shown 

in Fig. 13 is shown in Fig. From the waveforms it is seen that the waveforms are not smooth, 

sinusoidal and from the spectrum it is seen that due to high frequency switching the 

significant number and amount of harmonics occur. The switching frequency is selected to 4 

KHz. Harmonics occurs at switching frequency and its odd multiple frequencies. So, filters 

are required at input and output side to filter out these harmonics to get desired sinusoidal 

waveforms. 

 
 

 
 

Figure 12. Fundamental circuit of manually controlled AC voltage regulator (ideal switch 

implementation). 
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Figure 13. Input current and output voltage waveforms of the regulator shown in Fig. 12. 

 -I(V5): Input current, V(R3:2): Output voltage. 

 

Figure 14. Spectrum of input current and output voltage waveforms. -I(V5):Input current V(R3:2): 

Output voltage. 
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The input to the filter is high frequency modulated 50 Hz AC input. The switching signal 

that modulates the 50 Hz signal is taken to be 4 KHz in this case. So, we will have to make a 

filter that would pass signal up to 1 KHz (say) and attenuate all other frequencies. This 

would result a nearly sinusoidal output voltage. In the LC filter section we choose a 

capacitor of 5µF and determine the value of inductor for a cutoff from AC sweep analysis 

through OrCAD simulation. We found the value of the inductor to be 30 mH. 

 

Figure 15. Output voltage filter and AC sweep analysis (a) Output voltage filter (b) AC sweep analysis. 

3.3.2. Input filter design 

A low pass LC filter of proper L and C value is needed at the input of the regulator to filter out 

some of the harmonics from the supply system. The input filter circuit and the corresponding 
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KHz and its odd multiple. In order to remove harmonics above 1 KHz, we choose a capacitor 

of 5µF and determine the value of inductor for a cutoff from AC sweep analysis through 

OrCAD simulation. We found the value of the inductor to be 30 mH.  

 

Figure 16. Input current filter and corresponding AC sweep analysis (a) Input current filter (b) AC 

sweep analysis. 
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3.4. Free wheeling path and surge voltage across switching devices  

The power circuit of the proposed regulator with input and output filter is shown in Fig. 17. 

In an inductor, current does not change instantaneously. When the switches of power circuit 

switched on and off the current into the inductor of input and output filter are changed 

abruptly. Abrupt change of current causes a high di/dt resulting high voltage which is equal 

to Ldi/dt. These voltages appear across the switches as surge. Usually providing 

freewheeling path in restricts such occurrence. 

3.4.1. Surge voltage across switches 

In the proposed circuit, two switches serve as the freewheeling path for each other. 

However, for very short period when one switch is turned off and other is turned on, an 

interval elapses due to delay in the switching time. As a result, freewheeling during this 

interval is disrupted in the proposed circuit. If the current in any inductive circuit is 

abruptly disrupted, a high Ldi/dt across the switch appears due to the absence of 

freewheeling path. High spiky surge voltage appears across the switches during these short 

intervals as shown in Fig. 18. 

 

Figure 17. The power circuit of the proposed AC voltage regulator with input and output filters.  

 

Figure 18. Voltage across switches with filters and without snubbers. V(S1:3)-V(S1:4): Voltage across 

switch-1, V(S2:3)-V(S2:4): Voltage across switch-2. 
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These spiky voltages across the switches may be excessively high, about thousand of 

kilovolt and which may destroy the switches during the operation of the circuit. Remedial 

measures should be taken to prevent this phenomenon to make the circuit commercially 

viable. In the proposed circuit RC snubbers are used for suppressing surge voltage across 

the switches. The power circuit of the proposed regulator with input output filter and 

snubbers is shown in Fig. 19.  

Snubber enhances the performance of the switching circuits and results in higher reliability, 

higher efficiency, higher switching frequency, smaller size and lower EMI. The basic intent 

of a snubber is to absorb energy from the reactive elements in the circuit. The benefits of this 

may include circuit damping, controlling the rate of change of voltage or current or 

clamping voltage overshoot. The waveforms of voltages across switches with input output 

filters and snubbers are shown in Fig. 20.  

Use of snubbers reduces the spiky voltage across the switches to a tolerate limit for practical 

application of the AC voltage regulator. 

 

Figure 19. The power circuit of the proposed AC voltage regulator with input output filters and 

snubbers. 

 

Figure 20. Voltage across switches with filters and snubbers. V(S1:3)-V(S1:4): Voltage across switch-1, 

V(S2:3)-V(S2:4): Voltage across switch-2. 

C5

0.1u

C1
5u

L2

30mH
+

-

+

-

S1

Input

FREQ = 50
VAMPL = 300 C2

5u

R3

100

SW2

SW1

C3 0.1u

0

L1

30mH

+-

+-

S2

0

R5
1

TX1

0

R6
1

0

           Time

0s 5ms 10ms 15ms 20ms

V(S2:3)- V(S2:4)

0V

200V

400V

SEL>>

V(S1:3)- V(S1:4)

0V

200V

400V



 
Power Quality Improvement Using Switch Mode Regulator 137 

3.5. Proposed AC voltage regulator with practical switches  

In the previous section, we have studied the regulator using ideal S-break switches which 

have been operated by the pulses from the limiter. But for practical application, real 

switches are essential which are to be controlled by the pulses having ground isolation. The 

proposed AC voltage regulator circuit with practical switches is shown in Fig. 21. The ideal 

S-break switch is replaced by IGBT.  

In the proposed regulator chip SG1524B is used to control the gate signal. Signal from the 

chip is fed to the Limiter and finally to the optocoupler. The output of the optocoupler is 

used to control the on off time of the IGBTs. The function of the Limiter is to limit the output 

voltage of the gate signal generating IC from 0 to 6 volts. Optocoupler is used to generate 

signaling voltage with ground isolation.  

 

Figure 21. Manually controlled AC voltage regulator circuit with practical switches. 
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regulator can be controlled. Thus it is a very suitable device for using in the regulator 

circuits. 

3.5.2. Results of proposed AC voltage regulator (practical switch implementation) 

The waveforms of the input and output voltages of the proposed regulator are shown in Fig. 

23 and Fig. 24. Fig. 23 shows the input and output voltages waveform when the input 

voltage is 200V and output voltage is 300V. Fig. 24 shows the input and output voltages 

waveform when the input voltage is 400V and output voltage is 300V. Fig. 25 and Fig. 26 

show the input and output current waveforms corresponding to Fig. 23 and Fig. 24.  

 

Figure 22. Block diagrm of IC chip SG1524B  

 

Figure 23. Input and output voltage waveforms, Input 200V output 300V. V1(V5): Input voltage – 

dotted line, V(R14:2): Output voltage – solid line. 
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Figure 24. Input and output voltage waveforms, Input 400V output 300V. V1(V5): Input voltage – 

dotted line, V(R14:2): Output voltage – solid line. 

 

Figure 25. Input and output current waveforms for input 200V output 300V. -I(V5): Input current - 

dotted line, -I(R14): Output current – solid line. 

 

Figure 26. Input and output current waveforms for input 400V output 300V. -I(V5): Input current – 

dotted line, -I(R14): Output current – solid line. 
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From the waveforms shown in Fig. 23 to Fig. 26, it is seen that the waveforms of output 

voltage and input current is perfectly sinusoidal. The variation of output voltage of the 

proposed regulator with the duty cycle is shown in Fig. 27. The value of input voltage is 

kept constant to 300V. From Fig. 23 it is seen that the variation of output voltage with duty 

cycle is almost linear. The variation of duty cycle with the variation of input voltage from 

200V to 400V to maintain the output voltage constant to 300V is shown in Fig. 28.  

 

Figure 27. Variation of output voltage with duty cycle. Input voltage is 300V. 

 

Figure 28. Variation of duty cycle with input voltage to maintain output voltage constant to 300V. 
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There are two types of automatic control voltage regulator, discontinuous control and 

continuous control. The automatic control system consists of a sensing or measuring unit 

and a power control or regulating unit. The sensing unit compares the output voltage or the 

controlled variable with a steady reference and gives an output proportional to their 

difference called the error signal. The error voltage is amplified, integrated or differentiated 

or modified whenever necessary. The processed error voltage is fed to the main control unit 

to have required corrective action.  

In the discontinuous type of control, the measuring unit is such as to produce no signal as 

long as the voltage is within certain limits. When the voltage goes outside this limit, a signal 

is produced by the measuring unit until the voltage is again brought within this limit. In this 

type of measuring or sensing unit, the correcting voltage is independent of percentage of 

error. When the voltage is brought back to this limit, the signal from the measuring unit is 

zero and the regulating unit remains at its new position until another signal is received from 

the measuring unit.  

In continuous control, the measuring unit produces a signal with amplitude proportional to 

the difference between the fixed reference and the controlled voltage. The output of the 

measuring unit is zero when the controlled voltage or a fraction of it is equal to the reference 

voltage. The regulating or the controlling unit, which is associated with the continuous 

measuring unit, gives a correcting voltage proportional to the output of the measuring unit. 

The principle of operation of a continuous control AC voltage regulator is described in this 

section.  

4.1. Control and gate signal generating circuit for controlled AC voltage 

regulator 

Figure 29 shows the circuit of the proposed automatic controlled AC voltage regulator 

including the control and gate signal generating circuit. A fraction of the output voltage 

after capacitor voltage dividing and rectifying is passed through an OPAMP buffer. Buffer is 

used to remove the loading effect. Output voltage of the buffer is same as its input voltage. 

The output voltage of the buffer is further reduces using resistive voltage divider and taken 

as the negative input of the error amplifier of the PWM voltage regulating IC SG1524B.  

The positive input of the error amplifier is taken from the reference voltage of the chip, after 

voltage dividing using 50K and 1 ohm resistance. The positive input of the error amplifier is 

fixed and the negative input is error signal which will vary according to the output voltage. 

Since the error signal is applied to the negative input of the error amplifier, the duty cycle 

will be increased if the error signal is decreased and vice versa. 

When the output voltage increases above the set value which is 300V either due to change in 

input voltage or load, the error signal will be increased, therefore the duty cycle will 

decrease. As a result less power will be transferred from the input to output, and output 

voltage start to decrease until it reaches to the set value.  

When the output voltage decreases below the set value either due to change in input voltage 

or load then error signal will be decreased which will increase the duty cycle. As a result, 
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more power will be transferred from the input to output, and output voltage start to 

increase until it reaches to the set value.  

When the output voltage is same as the set value than the negative and positive input of the 

error amplifier will be same as a result the duty cycle will remain same and output voltage 

will remain unchanged. In this way the proposed regulator will maintain output voltage 

constant, irrespective of the variation of input voltage and load. 

 

Figure 29. Automatic controlled AC voltage regulator circuit with practical switches. 

4.2. Results of automatic controlled AC voltage regulator 
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waveforms of the input current and output currents corresponding to the waveforms of Fig. 

30 and Fig. 31 for a load of 100 Ω.  

 

Figure 30. Input and output voltage waveforms for input 250V and output 300V. V1(V5): Input voltage- 
bottom figure, V(R14:2): Output voltage – top figure. 

 

Figure 31. Input and output voltage waveforms for input 350V and output 300V. V1(V5): Input voltage-

bottom figure, V(R14:2): Output voltage – top figure. 
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table input current, output current, input power factor, and efficiency of the regulator are 

also provided. The proposed regulator can regulate the output voltage effectively, for a 

wide variation of input voltage and load with efficiency of more than 90% and input power 

factor more than 0.9. 

 

Figure 32. Input and output current waveforms for input 250V output 300V. -I(V5): Input current – 

bottom figure, -I(R14): Output current – top figure. 

 

Figure 33. Input and output current waveforms for input 350V output 300V. -I(V5): Input current – 

bottom figure, -I(R14): Output current – top figure. 
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Vin 

(V) 

I in 

(A) 

Input pf Pin 

(W) 

Vout (V) Load 

(Ω) 

Iout 

(A) 

Pout 

(W) 

Efficiency 

(%) 

200 4.81 1.00 481 295 100 2.95 435.13 90.46 

225 4.30 1.00 483.09 298 100 2.98 444.02 91.91 

250 3.92 1.00 489.70 300 100 3.00 450.00 91.89 

275 3.60 1.00 495.00 300 100 3.00 450.00 90.91 

300 3.30 1.00 493.79 300 100 3.00 450.00 91.13 

325 3.10 0.99 498.85 302 100 3.02 456.02 91.41 

350 2.95 0.98 508.41 305 100 3.05 465.13 91.49 

250 2.07 0.96 248.73 300 200 1.50 225.00 90.46 

275 1.90 0.95 248.46 300 200 1.50 225.00 90.56 

300 1.75 0.95 248.20 300 200 1.50 225.00 90.65 

325 1.68 0.93 253.12 302 200 1.51 228.01 90.08 

350 1.60 0.91 253.77 305 200 1.53 232.56 91.64 

*All voltages and currents values in this table are in peak values. 

Table 1. Results of proposed automatic controlled AC voltage regulator for maintaining output 300 V. 

5. Conclusion 

An essential feature of efficient electronic power processing is the use of semiconductors 

devices in switch mode to control the transfer of energy from source to load through the use 

of pulse width modulation techniques. Inductive and capacitive energy storage elements are 

used to smooth the flow of energy while keeping losses at a lower level. As the frequency of 

the switching increases, the size of the capacitive and inductive elements decreases in a 

direct proportion. Because of the superior performance, the SMPS are replacing 

conventional linear power supplies.  

In this chapter the design and analysis of an AC voltage regulator operated in switch mode 

is described in details. AC voltage regulator is used to maintain output voltage constant 

either for an input voltage variation or load variation to improve the power quality. If the 

output voltage remains constant, equipment life time increases and outages and 

maintenance are reduced.  

At first the regulator is analyzed using ideal switches, then the ideal switches is replaced by 

practical switches which required isolated gate signal. The procedure of smoothing the 

input current and output voltage, and suppressing the surge voltage across the switches is 

described. A manually controlled AC voltage regulator is analyzed then the concept of 

operation of an automatic controlled AC voltage regulator is described. Finally an automatic 

controlled AC voltage regulator is designed and its performance is analyzed.  

The proposed regulator can maintain the output voltage constant to 300V, when input 

voltage is vary from 200V to 350V also for variation of load. To maintain constant output 

voltage PWM control is used. By varying the duty cycle of the control circuit have achieved 

the goal of maintaining the constant output voltage across load. For generation of gate 
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signal of the switches an IC chip SG1524B is used which is compact and commercially 

available at a very low cost. The input current of the proposed regulator is sinusoidal and 

the input power factor is above 0.9. From simulation results it is seen that the efficiency of 

the proposed regulator is more than 90%.  
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