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1. Introduction 

Understanding the origin of biodiversity has been a major focus in evolutionary and 
ecological biology for well over a century and several patterns and mechanisms have been 
proposed to explain this diversity. Particularly intriguing is the pattern of sexual 
dimorphism, in which males and females of the same species differ in some trait. Sexual 
dimorphism (SD) is a pattern that is seen throughout the animal kingdom and is exhibited 
in a myriad of ways. For example, differences between the sexes in coloration are common 
in many organisms [1] ranging from poeciliid fishes [2] to dragon flies [3] to eclectus parrots 
(see Figure 1). 

 
Figure 1.  A) Male Eclectus (© Stijn De Win/Birding2asia) 
B) Female Eclectus  (© James Eaton/Birdtour Asia) 
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Sexual dimorphism is also exhibited in ornamentation, such as the horns of dung beetles [4], 
the antlers of cervids [5], and the tail of peacocks [6]. Many species also exhibit sexual 
differences in foraging behavior such as the Russian agamid lizard [7], and parental 
behavior and territoriality can be dimorphic in species such as hummingbirds [8, 9]. 
Another common pattern is that of sexual size dimorphism, such as is observed in snakes 
[10] and monk seals [11]. 

There are many mechanisms that drive the evolution of SD, the most accepted mechanism 
being sexual selection [12-14], which enhances fitness of each sex exclusively in relation to 
reproduction [15, 16]. This states that SD evolves in a direction such that each sex (especially 
males, see 17) maximizes reproductive success in two ways: by becoming more attractive to 
the other sex (inter-sexual dimorphism) or by enhancing the ability to defeat same-sex rivals 
(intra-sexual dimorphism), in both cases such that each sex increases the chances to mate 
and pass genes on to the next generation. Many researchers have argued that competition 
for mates is at the very heart of sexual selection because these rivalries greatly influence 
mating and fertilization success. Indeed, competition for mates has been shown to be the 
major factor impacting SD in several taxa [18]. However the complexity of SD cannot be 
explained by a single mechanism. 

Mate choice is an important proximate mechanism of sexual selection. Often the sex with the 
higher reproductive investment is the ‘choosy’ sex. Patterns then emerge, such as those 
consistent with the ‘sexy son’ hypothesis [19], where females prefer mates with phenotypes 
signifying fitness. The females prefer males that are phenotypically ‘sexy’ to ensure that the 
genes of their offspring will produce males that will have the most breeding success, 
propagating her genes successfully [16, 20]. Taken further, sometimes females prefer males 
that exhibit very extreme phenotypes within a population. Over evolutionary time these 
traits become increasingly exaggerated despite the potential fitness costs to the males 
themselves, termed Fisherian runaway sexual selection [19]. Examples include the tails of 
male peacocks, plumage in birds of paradise and male insect genitalia [14, 21, 22].  

Alternatively, ecological mechanisms, such as competition for resources, may exert distinct 
selective forces on the sexes resulting in the evolution of SD [23]. Here, intraspecific 
competition in species-poor communities may allow divergent selection between the sexes 
(rather than between species), resulting in sexual niche segregatation [12, 24-26]. In this case 
morphological traits often change to minimize this intersexual competition. Other ecological 
hypotheses have been proposed to explain patterns of SD, such as the influence of sex-
specific divergence in response to environmental gradients (i.e., intersexual niche packing: 
sensu 27]. For example, both sexes of fruit flies Drosophila subobscura increase in body size 
with latitude, however in South America these size increases are less steep and weaker in 
males as compared to females [28]. Another study found weaker latitudinal clines in males 
as compared to females in houseflies Musca domestica [29], and yet another study found 
geographical variation in climate that corresponded to a change in the magnitude of sexual 
size dimorphism between males and females [30]. Hypotheses continue to be proposed and 
the explanations for the evolution of SD may not be mutually exclusive but instead, may 
operate in a synergistic or antagonist fashion to shape these patterns. 
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2. Processes and patterns of sexual size dimorphism 

Sexual size dimorphism is a frequent phenomenon where the size of males and females of 
the same species differ (see Figure 2), driven by one or more of the mechanisms mentioned 
above. When these processes occur in closely related species, distinct patterns of among-
species size dimorphism can result, one of which is termed ‘Rensch’s Rule’ [31]. Rensch’s 
rule is a pattern wherein the degree of sexual size dimorphism increases with body size in 
species where males are the larger sex, and conversely decreases in those species where 
females are the larger sex (see Figure 3). 

 
Photograph by: http://www.joshsfrogs.com/catalog/blog/category/poison-dart-frog-care 

Figure 2. Sexual size dimorphism in poison dart frog. 

 
Figure 3. Rensch’s Rule, where in species above the broken line (broken line denoting where female 
and male sizes are equal) females are larger than males and below, males are larger than females. From 
R. Colwell, Am. Nat., 2000.  
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Several hypotheses have been proposed to explain Rensch’s rule. One proposes that the 
combination of genetic correlations between male and female size with directional sexual 
selection for larger male size will cause the evolution of larger males relative to female body 
size [13, 32, 33]. Another argues that sexual size dimorphism evolves through intraspecific 
competition between the sexes when foraging is related to size [15, 26]. Finally, many 
researchers have hypothesized that this pattern is due to female fecundity, where the larger 
female will have bigger eggs and a greater capacity to reproduce successfully [15, 34, 35]. 
Examples of Rensch’s rule and support for all three hypotheses abound in nature in 
organisms as diverse as hummingbirds [36], hummingbird flower mites [36], water striders 
[32], turtles [37], salmon [38] and shorebirds [39]. 

Another such pattern is that of ‘adaptive canalization’, where the larger sex has less 
plasticity compared to the smaller sex. This is due to directional selection for a large body 
size and individuals with sub-optimal body sizes will have lower fitness [40, 41]. 
Alternatively, there may be condition-dependence, where the larger sex is under stronger 
directional selection for a large size and will be more affected by different environmental 
factors as compared to the smaller sex. This indicates that sexual size dimorphism should 
change with changing environments. These hypotheses and studies have led to much 
understanding of the patterns and processes underlying sexual size dimorphism. 

3. Sexual shape dimorphism 

In addition to sexual size dimorphism, males and females often differ widely in shape [42, 
43]. Curiously, although shape can contribute meaningfully to various functions such as 
feeding, mating, parental care and other life history characteristics, patterns of sexual shape 
dimorphism have historically received considerably less attention than sexual size 
differences [12, 44, 45, 46]. Examining the size and shape of traits together provides a much 
more complete quantification of sexual dimorphism, as the two components are necessarily 
related to one another. As such, shape analysis allows a deeper understanding of 
mechanisms underlying SD, because different parts of the body can serve multiple functions 
and be under distinct selective regimes. 

Shape is defined as the specific form of a distinct object that is invariant to changes in 
position, rotation and scale [46, 47], and many methods have been proposed to study shape. 
For instance, sets of linear distances may be measured on each individual (e.g., length, 
width and height) to represent shape (Figure 4A), as well as angles (Figure 4B) and ratios of 
these measurements. 

Sets of linear distances do not always accurately capture shape because of shortcomings that 
limit their general utility. For instance, it is possible that for some objects the same set of 
distance measurements may be obtained from two different shapes, because the location of 
the measurements is not recorded in the distance measures themselves. For example, if the 
maximum length and width were taken on an oval and teardrop, the linear values might be 
the same even though the shapes are clearly different (see Figure 5). Additionally, it is not 
possible to generate graphical representations of shape using these measurements alone 
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because the geometric distances among variables is not preserved and aspects of shape are 
lost [48]. As a result of these shortcomings, other analytical approaches for quantifying 
shape have been developed.  

 
Figure 4. A) Sets of linear distances: Head length (HL), head width (HW), head height (HH), and 
mouth opening (MO) and B) Measurement of angle. A): adapted from Kaliontzopoulou et al. 2012. B): 
adapted from Berns and Adams, 2010 

 
Figure 5. Maximum height and width taken on two different shapes results in the same linear 
measurement on both 

A major advance in the study of shape is landmark-based geometric morphometric 
methods, which do not have these difficulties. These methods quantify the shape of 
anatomical objects using the Cartesian coordinates of biologically homologous landmarks 
whose location is identified on each specimen (Figure 6). These landmarks can be digitized 
in either two- or three-dimensions, and provide a means of shape quantification that enables 
graphical representations of shape (see below).  

Geometric morphometric analyses of shape are accomplished in several sequential steps. 
First, the landmark coordinates are digitized from each specimen. Next, differences in 
specimen position, orientation and size are eliminated through a generalized Procrustes 
analysis. This procedure translates all specimens to the origin, scales them to unit centroid 
size, and optimally rotates them to minimize the total sums-of-squares deviations of the 
landmark coordinates from all specimens to the average configuration. The resulting 

 A) B) 

Angle 
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aligned Procrustes shape coordinates describe the location of each specimen in a curved 
space related to Kendall’s shape space [49, 50]. These are then projected orthogonally onto a 
linear tangent space yielding Kendall’s tangent space coordinates [47, 51, 52], which can 
then be treated as a set of shape variables for further analyses of shape variation and 
covariation with other variables [e.g., 53, 54, 55].  

 
Figure 6. Example of biologically homologous landmarks From Kassam et al. 2003 

In terms of sexual shape dimorphism, dimorphism, sets of both linear measurements and 
geometric morphometric methods have been utilized to identify patterns of shape 
dimorphism in numerous taxa, including fish [56], turtles [57], birds [58-61] and lizards [62, 
63]. In addition to quantifying sexual shape dimorphism, identifying the potential 
mechanisms that generate these patterns is a current focus of many evolutionary biologists. 
For instance, one central hypothesis for the evolution of sexual shape dimorphism is that 
males and females diverge phenotypically due to intersexual competition for similar 
resources. Here, functional morphological traits diverge between the sexes such that the 
sexes partition resources. Under this scenario, SD is more strongly influenced by natural 
selection than sexual selection. For example, in the cottonmouth Agikistrodon piscivorous, sex-
specific prey consumption as a function of prey size is directly correlated with differences in 
head morphology between males and females [64]. Thus natural selection, and not sexual 
selection, maintains both foraging and morphological differences between the sexes in this 
species.  

By contrast, sexual shape dimorphism can be the result of sexual selection. For example, in 
the tuatara Sphenodon punctatus, Herrel et al. [65] tested the hypothesis that sexual shape 
dimorphism is due to niche differentiation between the sexes, rather than driven by the 
territoriality of males. Head shape is much larger in males as compared to females and this 
may be functionally tied to the larger prey of males. The authors suggested that sexual 
selection for male-male combat may play a role, but that bite force differences between 
males and females may be impacting the maintenance of these sexual differences. 
Interestingly, it was found that males do have a greater bite force relative to females, but 
that these differences and their maintenance are the result of sexual selection, as bite force is 
correlated with good male condition but not with female condition [66]. 
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Another study also rejects the hypothesis that differential niches maintain sexual shape 
dimorphism. Feeding, territory, and mate acquisition have been proposed as functions for 
the bill of the Cory shearwater Calonectris diomedea [61]. The bill morphology is such that 
sexual differences are related not to feeding ecology, but to sexual selection and antagonistic 
interactions. On the other hand, the Purple-throated Carib Eulampis jugularis hummingbird 
exhibits the clear link between function and the different food preference of males and 
females, suggesting that the longer and more curved bill of the female as compared to the 
male is due to the division of resources [67-69]. In other species of hummingbirds that 
exhibit sexual size and shape dimorphism in their bills however, it is unclear whether 
interspecific competition and niche differentiation, sexual selection, or some other force 
drives this sex-specific morphology [58, 60]. 

One study investigated the relative contributions of intersexual resource partitioning and 
sexual selection in the amagid lizard Japalura swinhonis [63]. Here, sexual shape dimorphism 
was not correlated with diet, however limb size and shape were associated with perch 
habitats. These findings are inconsistent with the hypothesis of intraspecific competition for 
resources, but provide evidence for the ‘fecundity advantage’ hypothesis. Under this 
hypothesis, a large mother can produce more offspring than a small mother, and can give 
her offspring better conditions through directional selection [14]. For instance, an increase in 
abdominal volume can arise with an increase in overall body size, seen in some mammals 
and amphibians [70, 71], or in the abdomen’s relative proportion to overall body size, like 
that of some reptiles [72]. Olsson et al. [73] examined SD in the heads and trunk length of an 
Australian lizard Niveoscincus microlepidotus to address the hypothesis that head 
morphology dimorphism had evolved via sexual selection for male-male combat and that 
trunk length evolved due to fecundity selection. Results did not uphold one part of this 
prediction however, as sex divergence in head morphology was genetic and not specifically 
due to sexual selection. Evidence was presented in favor of the prediction that difference in 
trunk length is driven by fecundity advantage, and that sexual selection favored males with 
smaller trunk size. Studies such as these suggest that sexually dimorphic shape traits may be 
driven by the combination of natural selection for fecundity advantage and by sexual 
selection. 

Evidence supporting fecundity advantage is weak or not existent in many systems however. 
For instance, investigators examining the tortoise Testudo horsfieldii hypothesized that the 
wider shells of the females provided more room for eggs, but were unable to provide 
conclusive evidence for fecundity advantage. Instead, the patterns of sexual shape 
dimorphism seemed to be due primarily to locomotive constraints of mate seeking and 
male-male combat [74]. In two species of crested newt Triturus cristatus and T. vulgaris, 
results somewhat support fecundity advantage, however researchers suggest there are more 
underlying processes driving the evolution of sexual shape dimorphism than simply 
fecundity selection [75]. Evidence presented by Willemsen and Haile [76] outright reject the 
fecundity advantage hypothesis. Three tortoise species Testudo graeca, T. hermanni, and T. 

marginata have differing courtship behaviors and display differing magnitudes of sexual 
shape dimorphism dependent on their specific courtship display. In contrast to previous 
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studies, the authors suggest that these results indicate that sexual shape dimorphism is 
driven not by fecundity advantage and natural selection, but rather by sexual selection. 
From the inconcordant results of studies such as these, it remains unknown whether 
patterns of the evolution of sexual shape dimorphism are primarily driven by natural 
selection for fecundity advantage or by some other mechanism. 

Environmental conditions are also hypothesized to drive the evolution of different shapes 
between the sexes. Evidence for one environmentally-driven hypothesis is presented in a 
study looking at environmental gradients underlying SD and parallel evolution of a species 
of guppy Poecilia reticulata [28]. Results indicate that populations experiencing high 
predation were made up of males with smaller heads and deeper caudal peduncles. Open 
canopy sites resulted in selection for females with smaller heads and distended abdomens, 
whereas both sexes in high flow sites had small heads and deeper caudal peduncles. Males 
and females showed some shared responses to the environmental gradients, thus indicating 
that environmental variables may be responsible for sexual shape dimorphism more than 
sexual selection pressures might be. More support for the hypothesis that environmental 
processes drive variation in sexual shape dimorphism is found in the Greater Antillean 
Anolis lizards that exhibit sexual size and shape dimorphism. Males and females use 
habitats differently and although sexual size dimorphism is not highly related to habitat use, 
sexual shape dimorphism is [77]. Further study on West Indian Anolis lizards also suggests 
environment as a major factor driving the patterns of sexual shape dimorphism. Concordant 
with the Greater Antillean Anolis lizards, the shape dimorphism clearly reflects the different 
niches occupied by males and females [43].  

Although these and numerous other examples demonstrate the influence of environment on 
the evolution of sexual shape dimorphism, a recent study examined sexual shape 
dimorphism in the snapping turtle Chelydra serpentina, and found no evidence that 
environmental condition was correlated with shape dimorphism. Unlike sexual size 
dimorphism, shape dimorphism was evident at hatching and at 15.5 months, where both 
males and females exhibited this pattern under optimal and suboptimal conditions. When 
adults however, sexual size dimorphism was present and differed under conditions such 
that there is increased plasticity of the larger sex as compared to the smaller. Interestingly 
however, sexual shape dimorphism still did not vary with differing conditions [57]. It has 
been suggested for over a century that environment is a major driver of morphological 
differences [78, 79], and new evidence such as this presents an opportunity to further 
understand the variables at play in the evolution of shape dimorphism. 

Broadly, allometry (defined as a change in shape related to a change in size: 45) has also 
been suggested as having an influential impact on sexual shape dimorphism [80, 81]. In an 
example of evolutionary allometry, Gidaszewski et al. [45] examined sexual shape 
dimorphism in the wings of nine species of Drosophila melanogaster in a phylogenetic 
framework. Sexual shape dimorphism diverged among the nine species, however the 
evolution of sexual shape dimorphism was constrained by evolutionary history. This 
provides evidence that, while allometry is a large part of the evolution of sexual shape 
dimorphism in this system, it is not the main factor driving shape dimorphism. 
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Kaliontzopoulou et al. [82] studied heterochronic patterns of allometry in two species of 
lizard, Podarcis bocagei and P. carbonelli. Here, allometry did influence sexual shape 
dimorphism such that males and females actually differed in allometry with respect to head 
shape and body size, where change in male size increased disproportionately relative to 
head size and dimensions. Yet another recent study on sexual shape dimorphism in the 
stalk-eyed fly Teleopsis dalmanni found conclusive evidence for the impact of allometry on 
sexual shape dimorphism, where the size of the eye bulbs decreased with an increasing eye 
span and eyestalks became more elongated as they became thinner (Figure 7; 83). 

 
Figure 7. Sexual shape dimorphism in eye stalks of Teleopsis dalmanni (Photo credit: Jerry Husak) 

Exceptions continue to be found however. For instance, in a recent study examining sexual 
size and shape dimorphism in the bill morphology of two hummingbirds Archilochus 

colubris and A. alexandri, Berns and Adams [58] examined a model that included an 
allometric component. This model was found to be inferior to those that included size, 
shape, and sex. When graphically depicted, it was clear that allometry is a less influential 
factor in the evolution of sexual shape dimorphism. However, as shown by the studies 
above it seems that allometry is generally an important process driving the patterns of 
evolution in sexual shape dimorphism.  

Conserved genetics may be yet another factor driving patterns of sexual shape dimorphism. 
Sexual shape dimorphism has been studied in the piophilid fly Prochyliza xanthostoma 
(Piophilidae) and the neriid fly Telostylinus angusticollis (Neriidae) to address the impact of 
conserved genetic factors on patterns of sexual shape dimorphism [84]. These related species 
share similar patterns of sexual shape dimorphism, but have drastically different ecological 
and functional requirements as well as male-female interactions. Given that shape 
dimorphism is the similar trait in these three species, these flies may have congruent 
patterns of shape variation interspecifically, not due to common life-history requirements 
[84]. Bonduriansky suggests that this may be due to conserved genetics common to both 
species, or a reflection of interspecific variation in selection. In 2007, Bonduriansky [85] 
performed another study on Telostylinus angusticollis to examine condition-dependence and 
genetic variation. Sexual dimorphism is significantly correlated with the condition such that 
these two traits share a common genetic (and developmental) base. Therefore, it is possible 
that in this, as well as other systems, sexual shape dimorphism is a pleiotropic effect where 
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sex-linked genes determine the allocation of traits differently in males and females. Any 
variation of these genes due to plasticity may then determine the genetic relationship of 
sexual shape dimorphism and differing conditions. Many genetic hypotheses continue to 
examine sexual size dimorphism and just recently is sexual shape dimorphism receiving 
attention.  

4. Conclusion 

Although studies are currently underway, many questions about sexual shape dimorphism 
still remain. For instance, how frequently is sexual shape dimorphism exhibited and how is 
this related to ontogenetic and biomechanical influences?  Worthington et al. [83] propose 
that the sexually dimorphic patterns seen in the stalk-eyed fly are due to sexual selection, 
but also to biomechanical and possibly ontogenetic constraints. However, more information 
is necessary before a conclusion can be made about the actual process underlying the 
pattern of sexual shape dimorphism. Kaliontzopoulou et al. [82] suggest that a lack of sexual 
differences in cranial development of Podarcis species may indicate an ontogenetic limitation 
on both sexes, but also note that the habitat appears free of head constraint. The examination 
of ontogenetic development as well as biomechanical constraints on sexual shape 
dimorphism may reveal much about the causes and selective forces of these patterns, many 
of which are still unknown. 

Does sexual shape dimorphism follow well-known patterns of sexual size dimorphism, such 
as Rensch’s Rule? How much impact does allometry have in driving the evolution of sexual 
shape dimorphism? Although patterns such as these have been suggested as a component of 
sexual shape dimorphism, only recently have researchers begun to investigate these 
patterns. Is allometry in sexual shape dimorphism common? Berns and Adams [58] did not 
find a significant effect of allometry, whereas Worthington et al. did [83]. In species of 
Drosophila melanogaster, allometry did not explain the majority of evolutionary divergence of 
sexual shape dimorphism [45], while in Podarcis bocagei and P. carbonelli, Kaliontzopoulou et 

al. [82] showed that allometry was present and even differed in males and females. These 
inconcordant results suggest that there is a multifaceted interaction between sexual size 
dimorphism, sexual shape dimorphism and allometry. Examining size alone shows only a 
piece of the mechanisms contributing to allometry, thus attention needs to also focus on 
allometry and it’s relationship with sexual shape dimorphism. 

As seen in the examples in this chapter, much of the evidence on processes underlying 
sexual shape dimorphism is incongruent. One area needing attention is that of the 
correlation between sexual shape dimorphism and fecundity advantage, as shape may 
impact egg carrying capacity as size does. More work is needed to assess genetics and 
sexual shape dimorphism, and studies continue to argue that sexual selection causes sexual 
shape dimorphism due to male-male combat and mate choice, while others argue for natural 
selection via environmental factors and interspecific competition. No doubt that all of these 
factors play a role in influencing the evolution of sexual shape dimorphism, but what are the 
patterns? Do vertebrates tend to follow one trend while invertebrates follow another? In 
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closely related species, does body size impact the effect of condition dependent sexual shape 
dimorphism? Just how much can natural selection and sexual selection be teased apart? 

We are just beginning to test the questions about the role evolutionary history plays in 
patterns of sexual shape dimorphism. How do phylogenetic relationships effect sexual 
shape dimorphism? What role does sexual shape dimorphism play in microevolutionary 
patterns and what are the mechanisms underlying these patterns? What might result when 
these patterns are scaled from micro- to macroevolution? One way to address these 
questions is to take a sequential comparative approach: first examining patterns of 
dimorphism in two closely related species, then scaling up to family, genera, and so forth. It 
is now also possible to ask if rates of evolution differ between species and if these rates 
differ more broadly between different sexually dimorphic traits. What effect do habitat and 
environmental gradients play in assessing rates and patterns of sexual shape dimorphism 
evolution? By examining the possible correlation between sexual shape dimorphism and 
habitat variables in a phylogenetic manner, it is possible to quantify hypotheses such as 
these. With the advent of new phylogenetic techniques, morphometric methods, and 
statistical testing, we can further examine the details of the evolution of sexual shape 
dimorphism. 
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