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1. Introduction

Supersymmetric quantum mechanics (SUSY-QM) has been developed as an elegant analytical
approach to one-dimensional problems. The SUSY-QM formalism generalizes the ladder
operator approach used in the treatment of the harmonic oscillator. In analogy with
the harmonic oscillator Hamiltonian, the factorization of a one-dimensional Hamiltonian
can be achieved by introducing “charge operators”. For the one-dimensional harmonic
oscillator, the charge operators are the usual raising and lowering operators. The SUSY
charge operators not only allow the factorization of a one-dimensional Hamiltonian but also
form a Lie algebra structure. This structure leads to the generation of isospectral SUSY
partner Hamiltonians. The eigenstates of the various partner Hamiltonians are connected
by application of the charge operators. As an analytical approach, the SUSY-QM approach
has been utilized to study a number of quantum mechanics problems including the Morse
oscillator ([16]) and the radial hydrogen atom equation ([24]). In addition, SUSY-QM has
been applied to the discovery of new exactly solvable potentials, the development of a more
accurate WKB approximation, and the improvement of large N expansions and variational
methods ([7, 11]). Developments and applications of one-dimensional SUSY-QM can be
found in relevant reviews and books ([7, 9, 11, 15, 26, 32, 33]). Recently, SUSY-QM has
been developed as a computational tool to provide much more accurate excitation energies
using the standard Rayleigh-Ritz variational method ([5, 19, 20]).

The harmonic oscillator is fundamental to a wide range of physics, including the

electromagnetic field, spectroscopy, solid state physics, coherent state theory, and SUSY-QM.
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The broad application of the harmonic oscillator stems from the raising and lowering ladder

operators which are used to factor the system Hamiltonian. For example, canonical coherent

states are defined as the eigenstates of the lowering operator of the harmonic oscillator,

and they are also minimum uncertainty states which minimize the Heisenberg uncertainty

product for position and momentum. In addition, several different approaches have been

employed to study generalized and approximate coherent states for systems other than the

harmonic oscillator ([3, 12, 17, 18, 27–31, 34, 37]). Furthermore, algebraic treatments have

been applied to the extension of coherent states for shape-invariant systems ([1, 4, 8, 10]).

The lowering operator of the harmonic oscillator annihilates the ground state, and the

ground state minimizes the Heisenberg uncertainty product. Conventional harmonic

oscillator coherent states correspond to those states which minimize the position-momentum

uncertainty relation. However, these harmonic oscillator coherent states are also constructed

by applying shift operators labeled with points of the discrete phase space to the ground

state of the harmonic oscillator, termed the “fiducial state” ([18]). Indeed, Klauder and

Skagerstam choose to define coherent states in the broadest sense in precisely this manner

([21]). Analogously, the charge operator in SUSY-QM annihilates the ground state of the

corresponding system. We therefore expect that the ground state wave function should

provide the ideal fiducial function for constructing efficient, overcomplete coherent states

for computations of excited states of the system.

In our recent study ([6]), we construct system-specific coherent states for any bound quantum

system by making use of the similarity between the treatment of the harmonic oscillator and

SUSY-QM. First, since the charge operator annihilates the ground state, the superpotential

that arises in SUSY-QM can be regarded as a SUSY-displacement operator or a generalized

displacement variable. We show that the ground state for any bound quantum system

minimizes the SUSY-displacement-standard momentum uncertainty product. Then, we

use the ground state of the system as a fiducial function to generate new system-specific

dynamically-adapted coherent states. Moreover, the discretized system-specific coherent

states can be utilized as a dynamically-adapted basis for calculations of excited state energies

and wave functions for bound quantum systems. Computational results demonstrate

that these discretized system-specific coherent states provide more rapidly-converging

expansions for excited state energies and wave functions than the conventional coherent

states and the standard harmonic oscillator basis.

The organization of the remainder of this chapter is as follows. In Sec. 2, we briefly review

the harmonic oscillator, conventional coherent states, and SUSY-QM. We also show that the

ground state of a quantum system minimizes the SUSY-displacement-standard momentum

uncertainty product. We then construct system-specific coherent states by applying shift

operators to the ground state of the system. In Sec. 3, the discretized system-specific coherent

state basis is developed for and applied to the Morse oscillator, the double well potential,

and the two-dimensional anharmonic oscillator system for calculations of the excited state

energies and wave functions. In Sec. 4, we summarize our results and conclude with some

comments.
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2. Theoretical formulation

2.1. Harmonic oscillator and conventional coherent states

The Hamiltonian of the harmonic oscillator is expressed by

H = − h̄2

2m

d2

dx2
+

1

2
mω2x2, (1)

where m is the particle’s mass, ω is the angular frequency of the oscillator. The Hamiltonian
can be written in terms of the raising and lowering operators as

H = h̄ω

(

â† â +
1

2

)

, (2)

where â† is the raising operator and â is the lowering operator. These two operators can
be expressed in terms of the position operator x̂ and its canonically conjugate momentum
operator p̂x by

â =

√

mω

2h̄
x̂ +

i p̂x√
2mh̄ω

, (3)

â† =

√

mω

2h̄
x̂ − i p̂x√

2mh̄ω
. (4)

Without loss of generality, we set h̄ = 2m = 1 throughout this study and ω = 2 for this
case. In particular, the ground state of the harmonic oscillator is annihilated by the lowering
operator

âψ0 =
1√
2
(x̂ + i p̂x)ψ0 = 0. (5)

By solving this differential equation in the position representation, we obtain the ground
state wave function

ψ0(x) = 〈x|0〉 = Ne−x2/2, (6)

where N is the normalization constant.

One of the important properties for the ground state of the harmonic oscillator is that the
ground state is a minimum uncertainty state, which minimizes the Heisenberg uncertainty
product ∆x̂∆ p̂x. The usual derivation of the Heisenberg uncertainty principle makes use of
Schwarz’s inequality ([25])

〈ψ|x̂2|ψ〉〈ψ| p̂2
x|ψ〉 ≥ |〈ψ|x̂ p̂x|ψ〉|2, (7)
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where zero expectation values of the position and momentum operators are assumed for
convenience. The equality holds for the state |ψ〉, which satisfies the condition

x̂|ψ〉 = −iσ2 p̂x|ψ〉, (8)

where σ2 is real and greater than zero. As noted in Eq. (5), the ground state of the harmonic
oscillator satisfies the relation with σ2 = 1, and hence it is a minimum uncertainty state . In
fact, the ground state corresponds to a state centered in the phase space at x = 0 and k = 0.
Harmonic oscillator coherent states can be constructed by applying shift operators labeled
with points of the discrete phase space to a fiducial state, which is taken as the ground state
of the harmonic oscillator ([18, 21]). In this sense, harmonic oscillator coherent states are
generated by |α〉 = D̂(α)|0〉. The shift operator is given by

D̂(α) = eαâ†−α∗ â, (9)

where

α =
1√
2

[ x

σ
+ ikσ

]

. (10)

Here α is a complex-number representation of the phase point x and k, and the quantity σ

is a scaling parameter with the dimensions of length. Thus, the harmonic oscillator coherent
states can be constructed by applying the shift operator to the ground state of the harmonic
oscillator.

2.2. Supersymmetric quantum mechanics

For one-dimensional SUSY-QM, the superpotential W is defined in terms of the ground state
wave function by the Riccati substitution

ψ
(1)
0 (x) = N exp

[

−
∫ x

0
W1(x′)dx′

]

, (11)

where N is the normalization constant. The index “(1)” indicates that the ground state wave
function and the superpotential are associated with the sector one Hamiltonian. It is assumed
that Eq. (11) solves the Schrödinger equation with energy equal to zero

− d2ψ
(1)
0

dx2
+ V1ψ

(1)
0 = 0. (12)

This does not impose any restriction since the energy can be changed by adding any constant
to the Hamiltonian. From Eq. (11), the superpotential can be expressed in terms of the ground
state wave function by
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W1(x) = −
d

dx
ln ψ

(1)
0 (x). (13)

Substituting Eq. (11) into the Schrödinger equation in Eq. (12), we obtain the Riccati equation
for the superpotential

dW1(x)

dx
− W2

1 (x) + V1(x) = 0. (14)

On the other hand, if W1(x) is known, then V1(x) is given by

V1(x) =

(

W1(x)2 −
dW1(x)

dx

)

. (15)

Obviously, the Schrödinger equation in Eq. (12) is equivalent to

−
d2ψ

(1)
0

dx2
+

(

W2
1 −

dW1

dx

)

ψ
(1)
0 = 0. (16)

Analogous to the harmonic oscillator, the Hamiltonian operator can be factorized by
introducing the “charge” operator and its adjoint

Q1 =
d

dx
+ W1 = W1 + i p̂x, (17)

Q†
1 = −

d

dx
+ W1 = W1 − i p̂x, (18)

where p̂x = −i(d/dx) is the coordinate representation of the momentum operator.
Throughout this study, the ground state wave function ψ0(x) is assumed to be purely real;
hence, the superpotential W(x) is self-adjoint. Then, the sector one Hamiltonian is defined

as H1 = Q†
1Q1. Since E

(1)
0 = 0 for n = 0, it follows from the Schrödinger equation that for

n > 0

Q†
1Q1ψ

(1)
n = E

(1)
n ψ

(1)
n , (19)

where ψ
(1)
n is an eigenstate of H1 with E

(1)
n 6= 0. Applying Q1 to this equation, we obtain

H2

(

Q1ψ
(1)
n

)

= Q1Q†
1

(

Q1ψ
(1)
n

)

= E
(1)
n

(

Q1ψ
(1)
n

)

, (20)

where the sector two Hamiltonian is defined as H2 = Q1Q†
1. Thus, Q1ψ

(1)
n is an eigenstate of

H2 with the same energy E
(1)
n as the state ψ

(1)
n . Analogously, we consider the eigenstates of

H2
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H2ψ
(2)
n = Q1Q†

1ψ
(2)
n = E

(2)
n ψ

(2)
n . (21)

Applying Q†
1 to this equation, we notice that Q†

1ψ
(2)
n is an eigenstate of H1

H1

(

Q†
1ψ

(2)
n

)

=
(

Q†
1Q1

) (

Q†
1ψ

(2)
n

)

= E
(2)
n

(

Q†
1ψ

(2)
n

)

. (22)

It follows that the Hamiltonians H1 and H2 have identical spectra with the exception of the

ground state with E
(1)
0 = 0. For the ground state, Q1ψ

(1)
0 = 0, and this shows that the

quantity Q1ψ
(1)
0 cannot be used to generate the ground state of the sector two Hamiltonian.

Because of the uniqueness of the ground state with E
(1)
0 = 0, the indexing of the first and

second sector levels must be modified. It is clear that the eigenvalues and eigenfunctions of
the two Hamiltonians H1 and H2 are related by

E
(2)
n = E

(1)
n+1, E

(1)
0 = 0,

ψ
(2)
n =

Q1ψ
(1)
n+1

√

E
(1)
n+1

, ψ
(1)
n+1 =

Q†
1ψ

(2)
n

√

E
(2)
n

.

Analogously, starting from H2 whose ground state energy is E
(2)
0 = E

(1)
1 , we can generate

the sector three Hamiltonian H3 as a SUSY partner of H2. This procedure can be continued
until the number of bound excited states supported by H1 is exhausted.

2.3. SUSY Heisenberg uncertainty products

It follows from Eq. (13) that the charge operator annihilates the corresponding ground state

Qψ0 =
(

Ŵ + i p̂x

)

ψ0 = 0. (23)

Because we concentrate only on the sector one Hamiltonian in the present study, we suppress
the sector index. For the harmonic oscillator, the charge operators correspond to the raising
and lowering operators for the harmonic oscillator with W(x) = x. From the similarity,
the superpotential Ŵ can be regarded as a “SUSY-displacement” operator although such a
displacement would, in general, not be generated by the standard momentum operator p̂x.
In fact, Ŵ and p̂x are not canonically conjugate variables.

The ground state of the harmonic oscillator is a minimum uncertainty state, which minimizes
the Heisenberg uncertainty product ∆x̂∆ p̂x. Analogously, it is expected that the ground
state for a bound quantum system minimizes the SUSY Heisenberg uncertainty product
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∆Ŵ∆ p̂x. For an arbitrary normalized wave function, we consider the square of the
SUSY-displacement-standard momentum uncertainty product

(

∆Ŵ∆ p̂x
)2

= 〈ψ|W̃2|ψ〉〈ψ| p̃2
x|ψ〉, (24)

where W̃ = Ŵ − W0 and p̃x = p̂x − p0. The quantities W0 = 〈W〉 and p0 = 〈 p̂x〉 correspond
to the averaged SUSY-displacement and momentum values, respectively. In order to obtain
a lower bound on the uncertainty product in Eq. (24), we employ the Cauchy-Schwarz
inequality

〈ψ|W̃2|ψ〉〈ψ| p̃2
x|ψ〉 ≥ |〈ψ|W̃ p̃x|ψ〉|

2. (25)

The equality is satisfied when the two vectors W̃|ψ〉 and p̃x|ψ〉 are collinear. From this
condition, we obtain W̃|ψ〉 = λ p̃x|ψ〉. Rearranging this equation yields

(Ŵ − λ p̂x)|ψ〉 = (W0 − λp0)|ψ〉. (26)

As a special case for λ = −i, this equation becomes

(Ŵ + i p̂x)|ψ〉 = (W0 + ip0)|ψ〉. (27)

It follows from Eq. (23) that (W0 + ip0) = 〈ψ0|Ŵ + i p̂x|ψ0〉 = 0 for the ground state
of the system. Thus, Eq. (23) implies that the ground state satisfies the condition
in Eq. (27). Therefore, the ground state of a bound quantum system minimizes the
SUSY-displacement-standard momentum uncertainty product ∆Ŵ∆ p̂x.

We present some properties of the averaged SUSY-displacement and standard momentum
values for the ground state. The averaged SUSY-displacement for the ground state is
evaluated by

W0 = 〈ψ0|W|ψ0〉 =
∫

∞

−∞

ψ∗
0 (x)W(x)ψ0(x)dx = −

∫

∞

−∞

ψ∗
0 (x)

dψ0(x)

dx
dx, (28)

where Eq. (13) has been used. The averaged momentum for the ground state is given by

p0 = 〈ψ0| p̂x|ψ0〉 = −i
∫

∞

−∞

ψ∗
0 (x)

dψ0(x)

dx
dx. (29)

Again, from Eqs. (28) and (29), W0 + ip0 = 0 for the ground state of the system, as indicated
in Eq. (23). Furthermore, when the ground state wave function is purely real, it follows from
integration by parts that the integral in Eqs. (28) and (29) is equal to zero. Thus, the averaged
SUSY-displacement and momentum values for the real-valued ground state wave function
are equal to zero, W0 = p0 = 0.

The ground state of a quantum system is the minimizer of the SUSY Heisenberg uncertainty
product. We can derive the minimum value for the SUSY Heisenberg uncertainty product
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in Eq. (25). For the real-valued ground state wave function, W̃ = Ŵ − W0 = Ŵ and p̃x =
p̂x − p0 = p̂x. The right side of the uncertainty product in Eq. (25) becomes

〈ψ0|Ŵ p̂x|ψ0〉 = i〈ψ0|Ŵ
2|ψ0〉, (30)

where p̂x|ψ0〉 = iŴ|ψ0〉 from Eq. (23) has been used. Thus, the right side of the uncertainty
product in Eq. (25) is given by

|〈ψ0|Ŵ p̂x|ψ0〉|
2 = 〈Ŵ2〉2. (31)

Similarly, the left side of the uncertainty product in Eq. (25) is given by

〈ψ0|Ŵ
2|ψ0〉〈ψ0| p̂

2
x|ψ0〉 = 〈Ŵ2〉〈Ŵ2〉. (32)

Therefore, the equality in Eq. (25) holds for the ground state, and the SUSY Heisenberg
uncertainty product is equal to ∆Ŵ∆ p̂x = 〈Ŵ2〉.

The expectation value of Ŵ2 for the ground state is evaluated by

〈Ŵ2〉 =
∫

∞

−∞

ψ0(x)W(x)2ψ0(x)dx = −
∫

∞

−∞

ψ0(x)W(x)
dψ0(x)

dx
dx, (33)

where Eq. (13) has been used. From integration by parts, the integral can be expressed by

∫

∞

−∞

ψ0(x)W(x)
dψ0(x)

dx
dx = −

1

2

∫

∞

−∞

ψ0(x)
dW(x)

dx
ψ0(x)dx. (34)

Thus, the expectation value of Ŵ2 for the ground state is equal to one half of the expectation
value for the derivative of the superpotential

〈Ŵ2〉 =
1

2

〈

dŴ

dx

〉

. (35)

Moreover, the commutation relation of the SUSY-displacement and the momentum operator
is given by

[

Ŵ, p̂x
]

= i
dŴ

dx
. (36)

Therefore, the SUSY Heisenberg uncertainty product for the ground state becomes

∆Ŵ∆ p̂x = 〈Ŵ2〉 =
1

2

〈

dŴ

dx

〉

=
1

2i

〈[

Ŵ, p̂x
]〉

. (37)
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For the harmonic oscillator, W(x) = x and dW/dx = 1. We recover the conventional
Heisenberg uncertainty product for the ground state ∆x̂∆ p̂x = 1/2. As a special case, a
similar derivation has been employed to determine exact minimum uncertainty coherent
states for the Morse oscillator ([8]).

2.4. System-specific coherent states

Analogous to the harmonic oscillator coherent state, the analysis of a bound quantum
system in terms of the SUSY Heisenberg uncertainty principle suggests the construction of
system-specific coherent states based on the SUSY-QM ground state. Similarly, the procedure
for creating an overcomplete set of such coherent states is to apply the shift operator to the
ground state as a fiducial function ([18, 21])

ψα(x) = 〈x|α〉 = 〈x|D̂(α)|ψ0〉 = Neik0(x−x0)e−x0(d/dx)ψ0(x)

= Neik0(x−x0)ψ0(x − x0), (38)

where N is the normalization constant. The raising and lowering operators for the shift

operator are given by â† = (x̂ − i p̂x)/
√

2 and â = (x̂ + i p̂x)/
√

2, respectively. The quantity

α = (x0 + ik0)/
√

2 is a point in the phase space which completely describes the coherent
state. Thus, the functions ψα form an overcomplete set of the coherent states in the standard
phase space which are specifically associated with the quantum-mechanical system described
by the SUSY-displacement W(x).

We now consider a coordinate transformation given by x′ = x − x0 for the system-specific
coherent states in Eq. (38). The system-specific coherent state becomes

ψα(x′) = eik0x′
ψ0(x′), (39)

where ψ0(x′) is the normalized real-valued ground state wave function, and thus ψα(x′) is
also normalized. The momentum operator is invariant under the coordinate transformation
(i.e., p̂x′ = p̂x). It is straightforward to show that

(Ŵ(x′) + i p̂x′ )|ψα〉 = ik0|ψα〉. (40)

The averaged SUSY-displacement for the system-specific coherent state is given by

W0,α = 〈ψα|W|ψα〉 =
∫

∞

−∞

ψ∗
α(x′)W(x′)ψα(x′)dx′

= −
∫

∞

−∞

ψ0(x′)
dψ0(x′)

dx′
dx′. (41)
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Again, it follows from integration by parts that W0,α = 0 for all system-specific coherent
states. Analogously, the averaged momentum for the system-specific coherent state is given
by

p0,α = 〈ψα| p̂x′ |ψα〉 = k0 − i
∫

∞

−∞

ψ0(x′)
dψ0(x′)

dx′
dx′. (42)

Because the integral is equal to zero, p0,α = k0. Thus, Eq. (40) can be written as

(Ŵ(x′) + i p̂x′ )|ψα〉 = (W0,α + ip0,α)|ψα〉. (43)

Analogous to the uncertainty condition for the ground state in Eq. (27), this equation implies
that the system-specific coherent state |ψα〉 minimizes the SUSY-displacement-momentum
uncertainty product ∆Ŵ∆ p̂x′ for the displaced coordinate x′ = x − x0.

2.5. Discretized system-specific coherent states

A discretized SUSY-QM coherent state basis can be constructed by discretizing the

continuous label α = (q + ik)/
√

2 and setting up a von Neumann lattice in phase space
with an appropriate density D. The discretized system-specific coherent state basis is given
by

ψαi (x) = 〈x|αi〉 = Neiki(x−qi) exp

[

−
∫ x−qi

0
W(x′)dx′

]

, (44)

where i = 1, . . . , M and M is the number of basis functions. The phase space grid points are
defined as ([2])

{(qi, ki)} =

{(

m∆x

√

2π

D
,

n

∆x

√

2π

D

)}

m, n ∈ Z (45)

where m and n run over all integers, hence i can be thought of as a joint index consisting
of m and n. The quantity D is the density of grid points in units of 2πh̄. As discussed in
Klauder and Skagerstam’s book ([18]), generalized coherent states constructed by applying
displacement operators to a fiducial state are overcomplete; however, completeness of the
discretized system-specific coherent states in Eq. (44) has not been established here.

Since the ground state solves the time-independent Schrödinger equation for the
corresponding Hamiltonian, the system-specific coherent states build in the dynamics
of the system under investigation. This property leads to the expectation that these
dynamically-adapted and system-specific coherent states will prove more rapidly convergent
in calculations of the excited state energies and wave functions for quantum systems using
variational methods.
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E0 E1 E2 E3

Exact -56.25 -42.25 -30.25 -20.25

SSCS (M = 9) -56.25 -42.2499824 -30.2270611 -19.52261
SSCS (M = 15) -56.25 -42.2499999 -30.2499343 -20.23502

HOCS (M = 9) -54.95 -37.00 -21.08 -10.22
HOCS (M = 15) -56.13 -41.62 -28.61 -17.62

HO (M = 9) -53.79 -33.34 -16.45 -6.40
HO (M = 15) -55.54 -39.03 -23.84 -12.30

Table 1. Comparison of the energy eigenvalues for the Morse oscillator obtained by the system-specific coherent states

(SSCS), the harmonic oscillator coherent states (HOCS), and the harmonic oscillator basis functions (HO) with the exact results.
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rr
)

Figure 1. Logarithm of the relative error, versus grid spacing ∆x, of the first (◦), second (⋄), and third (�) excited state energies
for the Morse oscillator using the system-specific coherent states (—) and the harmonic oscillator coherent states (- - -) with 15

basis functions.

To use the Rayleigh-Ritz variational principle, we construct a trial wave function in terms of
a linear combination of the system-specific coherent states

|ψ〉 =
M

∑
i=1

ci|αi〉, (46)

where ci are the coefficients. Because of the non-orthogonality of the system-specific coherent
states, the energy eigenvalues and wave functions are determined by solving the generalized
eigenvalue problem ([36])

HC = ESC, (47)

whereHij = 〈αi|H|αj〉 is the matrix element of the Hamiltonian, Sij = 〈αi|αj〉 is the overlap
matrix, and C is a vector of linear combination coefficients for the eigenvector. Therefore,
solving Eq. (47) yields the variational approximation to the eigenvalues and eigenvectors of
the Hamiltonian operator.
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3. Computational results

3.1. Morse oscillator

In order to demonstrate features of system-specific coherent states, computational results
will be presented for three quantum systems. The first of these concerns the Morse oscillator.
The Hamiltonian of the Morse oscillator is given by

H = −

d2

dx2
+ V(x) = −

d2

dx2
+ 64

(

e−2x
− 2e−x

)

. (48)

The exact energy eigenvalues are En = −(n − 15/2)2 where n = 0, . . . , 7, and the analytical
expression of the ground state wave function is given by

ψ0(x) = N exp

[

−8e−x
−

15

2
x

]

, (49)

where N is the normalization constant. In this case, the superpotential and its derivative are
given by W(x) = 15/2 − 8 exp(−x) and dW/dx = 8 exp(−x), respectively. The minimum
SUSY Heisenberg uncertainty product in Eq. (37) is equal to ∆Ŵ∆ p̂x = 15/4. In addition,
the discretized system-specific coherent state basis functions in Eq. (44) are expressed by

ψαi (x) = Neiki(x−qi) exp

[

−8e−(x−qi)
−

15

2
(x − qi)

]

. (50)

The phase space grid in Eq. (45) used for the coherent states was m = −1, 0, 1 and n = −1, 0, 1
for M = 9 basis functions and m = −1, 0, 1 and n = −2, . . . , 2 for M = 15 basis functions. The
phase space density was set to be D = 1. In contrast with the present system-specific coherent
states in Eq. (50), different coherent states for the Morse oscillator defined as eigenstates of
the charge operator and minimum uncertainty states have been constructed ([8]).

Table 1 presents the computational results for the energy eigenvalues obtained by solving
the generalized eigen-equation in Eq. (47) using the discretized system-specific coherent state
basis functions with ∆x = 0.5. Since the basis includes the exact ground state wave function,
the computational result yields the exact ground state energy. As shown in this table, higher
accuracy can be achieved when we increase the number of the basis functions from M = 9 to
M = 15. In addition, Table 1 presents the computational results obtained using the harmonic
oscillator coherent state basis and the standard harmonic oscillator basis. The discretized
harmonic oscillator coherent state basis functions are readily determined by substituting
W(x) = x into Eq. (44)

ψαi (x) = Neiki(x−qi)e−(x−qi)
2/2. (51)

The standard harmonic oscillator basis is given by
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Figure 2. The ground state wave function of the double well potential obtained by the imaginary time propagation method is

shown with the scaled potential Vs(x) = V(x)/20.

φn(x) =
1

√

2nn!
√

π
Hn(x)e−x2/2, (52)

where Hn(x) is the Hermite polynomial. Compared with the results obtained from
these two basis sets, the computational results from the system-specific coherent states
achieve significantly higher accuracy using a small number of basis functions. Thus, the
system-specific coherent states provide more accurate approximations of the excited state
energies for the Morse oscillator.

Figure 1 displays the logarithm of the relative error of the excited state energies for the
system-specific coherent states and the harmonic oscillator coherent states with different
values for ∆x with 15 basis functions. The relative error is defined by

Err =
Enumerical − Eexact

|Eexact|
. (53)

As shown in this figure, the system-specific coherent states yield excellent results for the
excited state energies. The relative error of the first-excited state energy can even reach 10−9

for a wide range of ∆x. Additionally, compared with the harmonic oscillator coherent states,
the system-specific coherent states give much more accurate results for the first three excited
state energies. Also, the system-specific coherent states yield stable computational results for
a wide range of ∆x.

3.2. Double well potential

As an example of quantum systems without exact analytical solutions, we consider a
symmetric double well potential given by

V(x) = 3x
4 − 8x

2. (54)
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E0 E1 E2 E3

DVR -2.169693 -1.406472 3.102406 7.087930

SSCS (M = 9) -2.169697 -1.375254 3.106359 7.807534
SSCS (M = 15) -2.169697 -1.406417 3.102440 7.088186

HOCS (M = 9) -2.1223 -1.3214 3.3931 7.5166
HOCS (M = 15) -2.1688 -1.4048 3.1088 7.0992

HO (M = 9) -2.1246 -1.0650 3.5063 8.6640
HO (M = 15) -2.1543 -1.3930 3.1555 7.4491

Table 2. Comparison of the energy eigenvalues for the double well potential obtained by the system-specific coherent states

(SSCS), the harmonic oscillator coherent states (HOCS), and the harmonic oscillator basis functions (HO) with the discrete

variable representation (DVR) results.
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Figure 3. Logarithm of the relative error, versus grid spacing ∆x, of the first (◦), second (⋄), and third (�) excited state energies

for the double well potential using the system-specific coherent states (—) and the harmonic oscillator coherent states (- - -)

with 15 basis functions.

In order to construct the discretized system-specific coherent state basis functions in Eq. (44),
we numerically obtain the ground state wave function. We employed the split-operator
method ([35]) to integrate the imaginary time Schrödinger equation from t = 0 to t = 2
([36]). The computational grid extends from x = −8 to x = 8 with 213 grid points, and the
integration time step was ∆t = 0.01. The initial state is a Gaussian wave packet given by

ψ(x) =

(

2

π

)1/4

e
−x

2
, (55)

where the wave packet is centered at the origin. Figure 2 presents the resulting ground state
wave function of the double well potential with the ground state energy E0 = −2.169694.

From the computational result for the ground state, we can construct the approximate
discretized system-specific coherent states in Eq. (44) used to determine the excited state
energies of the double well potential by solving the generalized eigen-equation in Eq. (47).
In order to assess the accuracy of the computational results, accurate results were obtained
with a Chebyshev polynomial discrete variable representation (DVR) variational calculation
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E0 E1 E2 E3

DVR 0.000000 4.751807 6.646349 8.679575

SSCS (M = 81) 0 4.754974 6.647358 8.684308
SSCS (M = 225) 0 4.751812 6.646353 8.679596

HOCS (M = 81) 0.0762 5.3029 6.9378 10.4334
HOCS (M = 225) 0.0029 4.7915 6.6554 8.8479

HO (M = 81) 0.0870 5.3587 7.0307 10.5626
HO (M = 225) 0.0144 4.8953 6.6967 9.2190

Table 3. Comparison of the energy eigenvalues for the two-dimensional anharmonic oscillator system obtained by the

system-specific coherent states (SSCS), the harmonic oscillator coherent states (HOCS), and the harmonic oscillator basis

functions (HO) with the discrete variable representation (DVR) results.
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Figure 4. Logarithm of the relative error, versus grid spacing ∆x = ∆y, of the first (◦), second (⋄), and third (�) excited state

energies for the two-dimensional anharmonic oscillator system using the system-specific coherent states (—) and the harmonic

oscillator coherent states (- - -) with 225 basis functions.

using 1000 grid points on the computational domain extending from x = −4 to x = 4
([23]). Table 2 presents the computational results for the energy eigenvalues with ∆x = 0.5.
Again, computational results for the first three excited state energies with significantly
higher accuracy were achieved using a small number of the basis functions with M = 15.
In addition, compared with the harmonic oscillator coherent state basis and the standard
harmonic oscillator basis, the system-specific coherent states yields more accurate excited
state energies for the double well potential. Moreover, Fig. 2 displays the logarithm of the
relative error of the excited state energies for the system-specific coherent states and the
harmonic oscillator coherent states with different values for ∆x with 15 basis functions. As
shown in this figure, the system-specific coherent states generally yield much more accurate
results for the excited state energies than the harmonic oscillator coherent states except for
small ∆x.
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3.3. Two-dimensional anharmonic oscillator system

As an example of multidimensional systems, we consider a nonseparable nondegenerate

two-dimensional anharmonic oscillator system ([19]). The Hamiltonian is given by

H1 = −∇2 + V(x, y)

= − ∂2

∂x2
− ∂2

∂y2
+
(

4xy2 + 2x
)2

+
(

4x2y + 2
√

2y
)2

− 4
(

x2 + y2
)

−
(

2 + 2
√

2
)

. (56)

The exact ground state energy of the system is zero and the analytical expression of the

ground state wave function is given by

ψ
(1)
0 (x, y) = N exp

(

−2x2y2 − x2 −
√

2y2
)

, (57)

where N is a normalization constant. Analogous to the one-dimensional case, the discretized

system-specific coherent state basis functions are expressed by

ψαi (x, y) = Neikxi(x−qxi)eikyi(y−qyi)ψ0(x − qxi, y − qyi). (58)

In addition, the two-dimensional separable discretized harmonic oscillator coherent state

basis functions are given by

ψαi (x, y) = Neikxi(x−qxi)eikyi(y−qyi)e−(x−qxi)
2/2e−(y−qyi)

2/2. (59)

The phase space grid points for these two basis sets are defined by

{(qxi, qyi, kxi, kyi)} =

{(

m∆x

√

2π

D
, m∆y

√

2π

D
,

n

∆x

√

2π

D
,

n

∆y

√

2π

D

)}

m, n ∈ Z (60)

where m and n are integers. For computational results, we chose m = −1, 0, 1 and n = −1, 0, 1

for M = 81 basis functions and m = −1, 0, 1 and n = −2, . . . , 2 for M = 225 basis functions.

The phase space density was set to be D = 1.

Table 3 presents the computational results for the energy eigenvalues obtained using the

discretized system-specific coherent states and the harmonic oscillator coherent states with

∆x = ∆y = 0.4. Compared with the DVR results using 50 grid points in x and in y (for a total

of 2500 basis functions), the computational results obtained by the system-specific coherent

states achieve higher accuracy than the harmonic oscillator coherent states. In addition,

Table 3 presents the computational results obtained from the standard harmonic oscillator
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basis of the direct product of the eigenstates of a harmonic oscillator in each dimension

with frequency ω = 2
√

2. These results were obtained by a (Nx, Ny) = (9, 9) basis set

calculation with 81 basis functions and a (Nx, Ny) = (15, 15) basis set calculation with

225 basis functions. Again, compared with the results obtained from the other two basis

sets, the computational results from the system-specific coherent states achieve significantly

higher accuracy using a small number of basis functions. Furthermore, Figure 4 displays the

logarithm of the relative error of the excited state energies for the system-specific coherent

states and the harmonic oscillator coherent states with different values for the grid spacing

with 225 basis functions. As shown in this figure, the system-specific coherent states yield

much more accurate results for the excited state energies than the harmonic oscillator

coherent states for different grid spacings, and the relative errors reach around 10−6 for

a wide range of the grid spacings.

4. Discussion and perspectives

The application of SUSY-QM to non-relativistic quantum systems generalizes the powerful

ladder operator approach used in the treatment of the harmonic oscillator. The lowering

operator of the harmonic oscillator annihilates the ground state, while the charge operator

annihilates the ground state of the corresponding ground state for other quantum systems.

The similarity between the lowering operator of the harmonic oscillator and the SUSY charge

operator implies that the superpotential can be regarded as a system-specific generalized

displacement variable. Analogous to the ground state of the harmonic oscillator which

minimizes the Heisenberg uncertainty product, the ground state of any bound quantum

system was identified as the minimizer of the SUSY Heisenberg uncertainty product.

Then, system-specific coherent states were constructed by applying shift operators to

the ground state of the system, which serves as a fiducial function. In addition, we

employed the discretized system-specific coherent states as a dynamically-adapted basis

set to determine the excited state energies and wave functions for the Morse oscillator, the

double well potential, and the two-dimensional anharmonic oscillator system. Variational

calculations in terms of the discretized system-specific coherent states demonstrated that

these dynamically-adapted coherent states yield significantly more accurate excited state

energies and wave functions than were obtained with the same number of the conventional

coherent states and the standard harmonic oscillator basis.

As presented in the current study, the ladder operator approach of the harmonic oscillator

and the SUSY-QM formulation share strong similarity. This observation suggests that the

connection of the SUSY-QM with the Heisenberg minimum uncertainty (µ−) wavelets

should be explored ([13, 14, 21, 22]). The SUSY-displacement with the SUSY Heisenberg

uncertainty product can lead to the construction of the SUSY minimum uncertainty wavelets

and the SUSY distributed approximating functionals. These new functions and their potential

applications in mathematics and physics are currently under investigation. In addition,

this study presents a practical computational approach for discretized system-specific

coherent states in calculations of excited states. The issue of completeness of discretized

system-specific coherent states should be examined. These relevant studies will be reported

elsewhere in the future.
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