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1. Introduction

Quantum algorithms have proven to be faster than the fastest known classical algorithms.
Clearly, such a superiority means counting on a real quantum computer. Although this
essential constraint elimination is in development process, many people is working on that
and interesting advances are being made [1–3]. Meanwhile, new algorithms and applications
of the existing ones are current research topics [4, 5]. One of the main goals of quantum
computing is the application of quantum techniques to classical troubleshooting: the Shor
algorithm [6], for example, is a purely quantum-mechanical algorithm which comes to solve
the classical factoring problem, also the contribution of Lov Grover [7, 8] to speed up the
search for items in an N-item database is very important. Both mathematical finds are the
cornerstones of quantum computation, so, considerable amount of work on diverse subjects
make use of them. Other algorithms which has been very important for quantum computing
progress are Simon’s and Deutsch-Jozsa’s. Through the quantum games, Meyer in [9] and
Eisert in [10], among other, showed that quantum techniques are generalizations of classical
probability theory, allowing effects which are impossible in a classical setting. These and
many other examples, show that there is no contradiction in using quantum techniques to
describe non-quantum mechanical problems and solve hard to solve problems with classical
tools. Adding, decision theory and game theory, two examples where probabilities theory is
applied, deal with decisions made under uncertain conditions by real humans. Basically, the
former considers only one agent and her decisions meanwhile the other considers also the
conflicts that two or more players cause to each other through the decisions they take. Due
to their inherent complexity this kind of problems results convenient to be analyzed by mean
of quantum games models.

Widely observed phenomena of non-commutativity in patterns of behavior exhibited in
experiments on human decisions and choices cannot be obtained with classical decision
theory [11] but can be adequately described by putting quantum mechanics and decision
theory together. Quantum mechanics and decision theory have been recently combined
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[11–13] to take into account the indeterminacy of preferences that are determined only when
the action takes place. An agent is described by a state that is a superposition of potential
preferences to be projected onto one of the possible behaviors at the time of the interaction.
In addition to the main goal of modeling uncertainty of preferences that is not due to lack of
information, this formalism seems to be adequate to describe widely observed phenomena
of non-commutativity in patterns of behavior.

Within this framework, we study the dating market decision problem that takes into account
progressive mutual learning [14, 15]. This problem is a variation on the Stable Marriage
Problem introduced by Gale and Shapley almost four decades ago [16], that has been recently
reformulated in a partial information approach [17, 18]. Specifically, perfect information
supposition is very far from being a good approximation for the dating market, in which
men and women repeatedly go out on dates and learn about each other.

The dating market problem may be included in a more general category of matching
problems where the elements of two sets have to be matched by pairs. Matching problems
have broad implications in economic and social contexts [19, 20]. As possible applications
one could think of job seekers and employers, lodgers and landlords, men and women who
want to date, or solitary ciliates courtship rituals [21]. In our model players earn an uncertain
payoff from being matched with a particular person on the other side of the market in each
time period. Players have a list of preferred partners on the other set. Quantum exploration
of partners is compared with classical exploration at the dating set. Nevertheless dating is
not just finding, but also being accepted by the partner. The preferences of the chosen partner
are important in quantum and classic performances.

Recently [22], we introduced a quantum formulation for decision matching problems,
specifically for the dating game that takes into account mutual progressive learning. This
learning is accomplished by representing women with quantum states whose associated
amplitudes must be modified by men’s selection strategies, in order to increase a particular
state amplitude and to decrease the others, with the final purpose to achieve the best possible
choice when the game finishes. Grover quantum search algorithm is used as a playing
strategy. Within the same quantum formulation already used in [22], we will concentrate
first on the information associated to the dating market problem. Since we deal with mixed
strategies, the density matrix formalism is used to describe the system. There exists a
strong relationship between game theories, statistical mechanics and information theories.
The bonds between these theories are the density operator and entropy. From the density
operator we can construct and understand the statistical behavior about our system by using
statistical mechanics. The dating problem is analyzed through information theory under a
criterion of maximum or minimum entropy. Even though the decisions players make are
based on their payoffs, past experiences, believes, etc., we are not interested in that causes
but in the consequences of the decision they take, that is, the influence of the strategies they
apply on the quantum system stability. In order to identify the conditions of stability we
will use the equivalence between maximum entropy states and those states that obey the
Collective Welfare Principle that says that a system is stable only if it maximizes the welfare
of the collective above the welfare of the individual [23].

Interesting properties merge when entanglement is considered in quantum models of social
decision problems [24]. People decisions are usually influenced by other people actions,
opinions, or beliefs, to the extent that they may proceed in ways that they would rarely or
never do if moved by their own benefit. Love, hate, envy, or a close friendship, which encase
a bit of everything, are examples of relationships between people that may correlate their
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decisions. So, as driven by a no local force, people may make an inconvenient choice in
the heat of a competence. In order to formulate in a mathematical way this sort of problem
we remodel the quantum dating between men and women with the inclusion of quantum
entanglement between men decision states.

The chapter organization is as follows: First of all, to ease game theory unfamiliar readers
comprehension a brief introduction to game basics is presented. In the course of the next
sections the quantum dating game is particularly studied. In section 3 the Grover quantum
search algorithm as a playing strategy is analyzed. In section 5, the system stability is under
study. Finally, section 6 explores entangled strategies performance. At the end of each
section the results and the consequent section discussions are set. The chapter ends with a
final conclusion.

2. Quantum games

Game theory [25] is a collection of models (games) designed to study competing agents
(players) decisions in some conflict situation. It tries to understand the birth and development
of conflicting or cooperative behaviors among a group of individuals who behave rationally
and strategically according to their personal interests. Although the theory was conceived
in order to analyze and solve social and economy problems, existing applications go beyond
[26]. Furthermore, the models reach not only individuals but also governments conflicts,
institutions trades or smart machines (phones, computers) access management.

Before starting to explain quantum games basics, the classic games notation is presented. The
game can be set in strategic (or normal) form or in extensive form, in any of them it has three
elements: a set of players i ∈ J which is taken to be a finite set 0, ..., N − 1, the set of pure
strategies Si = {s0, s1, ..., sN−1}, i = 0, ..., N − 1 which is the set of all strategies available
to the player, and the payoffs function ui(s0, s1, ..., sN−1), i = 0, ..., N − 1, where si ∈ Si. In
the strategic form, the game can be denoted by G(N, S, u), where S = S0 × S1 × ... × SN−1

and u = u0 × u1 × ... × uN−1. Extensive form representation is useful when it is wanted to
include not only who makes the move but also when the move is made. Players apply pure
strategies when they are certain of what they want, but such condition is not always possible,
so mixed strategies must be considered. A mixed strategy is a probability distribution over
S which corresponds to how frequently each move is chosen.

As an example, we can mention the well-known Prisoners Dilemma (PD) : Two suspected of
committing a crime are caught by the police. As there is insufficient evidence to condemn
them, the police place the suspects into separate rooms to convince them to confess. If one of
the prisoners confesses, and help the police to condene his partner, he gains his freedom and
the other prisoner must serve of 10 years. But if both confess, they must serve a sentence of
3 years. In other case, if both refuse to confess, they both will be convicted of a lesser charge
and will have to serve a sentence of only one year in prison. In summary, they can choose
between two possible strategies “Confess” (C) or “Not Confess” (N). However, observe that
the luck of each player depends both on his election as that of the other. As consequence,
confessing is a dominant strategy because regardless the other player decision the one who
chooses it avoid the worst conviction. The prisoners know that if neither confesses they must
serve a minimum sentence. However, as no one knows the other strategy to do not confess
is very risky, specially because camaraderie is not a common quality between criminals. It
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is very common to represent in a bimatrix the possible strategies combinations with their
respective reward. The corresponding bimatrix for the prisoners game is 1.

S1 \ S2 C N

C 3,3 0,10

N 10,0 1,1

Table 1. Prisoners Dilemma: C ≡ confess; N ≡ do not confess. The number on the left is for the years the prisoner S1 prisoner

must serve.

Quantum game theory is a classic game theory generalization. That is, quantum game
strategies and outcomes include the classical as particularities, but also quantum features
let the application of new strategies which leads to solutions classically imposible. The N

players quantum game si denoted by G(N,H, ρ, S(H), u), where H is the Hilbert space of
the physical system and ρ ∈ S(H) is the system initial condition, being S(H) the associated
space state. In quantum games, players strategies are represented by unitary operators,
which in quantum mechanics are also known as evolution operators related to the system’s
Hamiltonian [27]. If we call Ui the operator corresponding to player i strategy, the N-players
strategies operator results U = U0

⊗
U1...Ui

⊗
...

⊗
UN−1. Starting from the initial pure state

|Ψ0〉 of the system, players apply their strategies U in order to modify it according to their
preferences, that is modifying the probability amplitudes associated with each base state.
As a consequence, evolution from the initial system state to some state |Ψ1〉 is given by
|Ψ1〉 = U|Ψ0〉. Quantum games provide new ways to cooperate, to eliminate dilemmas, and
as a consequence new equilibriums arise. As can be seen in [10], for example, the dilemma is
avoided in the quantum Prisoner’s game. That is, the system equilibrium is not longer (C,C)
to be (N,N).

3. Quantum search strategy

In the classic dating market game [28, 29], men choose women simultaneously from N

options, looking for those women who would have some “property" they want. Unlike
the traditional game, in the quantum version of the dating game, players get the chance to
use quantum techniques, for example they can explore their possibilities using a quantum
search algorithm. Grover algorithm capitalizes quantum states superposition characteristic
to find some “marked" state from a group of possible solutions in considerably less time than
a classical algorithm can do [8]. That state space must be capable of being translatable, say
to a graph G where to find some particular state which has a searched feature or distinctive
mark, throughout the execution of the algorithm. By “distinctive mark" we mean problems
whose algorithmic solution are inspired by physical processes. Furthermore it is possible to
guarantee that the searched node is marked by a minimum (maximum) value of a physical
property included in the algorithm.

Let agents be coded as Hilbert space base states. As a result, men are able to choose from
Nw women set W = {|0〉, |1〉, ..., |Nw − 1〉}. Table 1 displays four women states in the first
column and some feature that makes them unique in the second column which we will code
with a letter for simplicity.

If a player is looking for a woman with a feature “d", the table must be searched on its second
column and when the desired “d" is found, look at the first column where the corresponding
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woman feature

|0〉 a
|1〉 b
|2〉 c
|3〉 d

Table 2. Sample woman database. Left column contains women states and right column displays a letter representing some

feature or a feature set that characterizes each woman on the left.

chosen woman state is: |3〉 in this example. The procedure is very simple if the table has
just a few rows, but when the database gets bigger, the table in the best case would have
to be entered Nw/2 times [30]. Under this framework we propose to use Grover algorithm
in order to achieve man’s decision in less time. Without losing generality let Nw = 2n

being n the qubits needed to code Nw women. Quantum states transformation are made
by applying Hilbert space operators U to them, following Ψ1 = U1Ψ0 is a new system
state starting from Ψ0. As a consequence any quantum algorithm can be thought as a set
of suitable linear transformations. Grover algorithm starts with n qubits in |0〉, resulting
ψini = |00..00〉 ≡ |0〉

⊗

n the system initial state, where
⊗

symbol denotes Kronecker tensor
product. Initially, the woman identified by state |0〉 is chosen with probability one. The
next step is to create superposition states and like many other quantum algorithms Grover
uses Hadamard transform to do this task since it maps n qubits initialized with |0〉 to a
superposition of all n orthogonal states in the |0〉, |1〉,.. |n − 1〉 basis with equal weight,

ψ1 = Hψini =
1√
Nw

∑
Nw−1
i=0 |i〉. As an example, when Nw = 4, the state results ψ1 = H|00〉 =

1
2 ∑

3
i=0 |i〉 =

|00〉+|01〉+|10〉+|11〉
2 . One-qubit Hadamard transform matrix representation is (1),

and n-qubits extension is H
⊗

n, see [27],

H =
1√
2

(

1 1
1 −1

)

(1)

Another quantum search algorithms characteristic, is the “Oracle", which is basically a black
box capable of marking the problem solution. We call U f the operator which implement the
oracle

U f (|w〉|q〉) = |w〉|q ⊕ f (w)〉, (2)

where f (w) is the oracle function which takes the value 1 if w correspond to the searched
woman, f (w) = 1, and if it is not the case it takes the value 0, f (w) = 0. The value of f (w)
on a superposition of every possible input w may be obtained [27]. The algorithm sets the
target qubit |q〉 to 1√

2
(|0〉 − |1〉). As a result, the corresponding mathematical expression is:

|w〉( |0〉 − |1〉√
2

) 7−→U f (−1) f (w)|w〉( |0〉 − |1〉√
2

) (3)

Observe that the second register is in an eigenstate, so we can ignore it, considering only the
effect on the first register.
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Figure 2. Grover Quantum searching algorithm

|w〉 7−→U f (−1) f (w)|w〉 (4)

Consequently, if f (w) = 1 a phase shift is produced, otherwise nothing happens. As we
already stated our algorithm is based on the classical Gale-Shapley (GS) algorithm which
assigns the role of proposers to the elements of one set, the men say, and of judges to the
elements of the other.

Actually, for a more symmetric formulation of the algorithm where both sets are, at the same
time, proposers and judges, it would be necessary another oracle which evaluates women
features matching by means of another function g(x) [31], but we will not go into that. As
far as we are concerned up to now the Oracle is a device capable of recognizing and “mark"
a woman who has some special feature, said hair color, money, good manners, etc. Oracle
operator U f makes one of two central operations comprising of a whole operation named
Grover iterate G (Fig.1), and a rotation operator UR, or conditional phase shift operator
represented by equation (5).

UR and U f , together with Hadamard transformations represented by H blocks (1), in the
order depicted by (Fig. 1), make the initial state vector asymptotically going to reach the
solution state vector amplitudes. The symbol I in UR equation is the identity operator.

UR = 2|0〉〈0| − I (5)

Furthermore, after applying Grover iterate, G, O(
√

Nw) times, the man finds the woman he
is looking for. In Figure 1 Grover iterate is shown and Grover quantum algorithm scheme is
depicted in 2.
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iteration number with Grover’s algorithm.

As the number of iterations the algorithm makes depends on the size of the options set, this
must be known at the beginning of simulations. Every operator has its matrix representation
to be used in simulations. We suppose the player chooses a woman who has some specific
particularity that would distinguish her from any other of the group, so we construct matrix
U f and other matrixes for that purpose. The evolution of the squared amplitude with the
iteration number is shown in Figure 3. The searched state amplitude is initially the same for
all possible states |i > in the Ψ1 expression. The fast increasing of the probability to find
the preferred state on each iteration contrasts with the decreasing of the probability to find
every other state. The example displayed is for Nw = 1024 women and as the can be seen in
Figure 3, the number of iterations needed to get certainty to find the preferred woman are
25. Classically, a statistical algorithm would need approximately Nw = 1024 iterations.

Thus when a given man who wants to date a Nw size set selected woman, he must set his
own U f operator out, according to his preferences, and then let the algorithm do the job. The
case of Nm men may be obtained generalizing the single man case: every one of them must
follow the same steps. Nevertheless, achieving top choice is hard because of competition
from other players and your dream partner may not share your feelings. If all players play
quantum, the time to find woman is not an issue and the N stable solutions will be the same
as for the classic formulation [32].

4. Quantum vs classic

To compare the quantum approach efficiency with the classical one we will consider some
players playing quantum and others playing classic. Let us follow the evolution of agents
representative from each group, Q and C respectively.
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Q, that plays quantum can keep his state as a linear combination of all the prospective results
when unitary transforms such as the described above for Grover’s algorithm are applied,
provided no measurement producing collapse to any of them is done. On the other hand,
the only way C has to search such a database is to test the elements sequentially against the
condition until the target is found. For a database of size Nw, this brute force search requires
an average of O(Nw/2) comparisons [7].

Two different games where both men want to date with the same woman are presented: In
the first one player Q gives player C the chance to play first and both have only one attempt
per turn, which means only one question to the oracle. The second game, in order that Q
plays handicapped, is set out in the way that C can play Nw/2 times while Q only once, and
player C plays first again. For the last case we analyzed two alternatives for the classic player:
in the first one he plays without memory of his previous result and therefore, in every try
he has 1/Nw probability to find the chosen woman to date, the other alternative permits the
classic player to discard previous unfavorable outcomes at any try in order to avoid choosing
them again and diminish the selection universe.

The player who invites the chosen woman first has more chances to succeed, as well as
that who asks the same woman more times. Nevertheless the woman has the last word,
and therefore the dating success for each player depends on that woman preferences. So,
let us define Pi

c as the probability that woman i accepts dating the classic player C and Pi
q

as the probability that she accepts the quantum player Q proposal. In order to compare
performances, we consider T = 1000 playing times on turns and count the dating success
times, then calculate the mean relative difference between Q and C success total number as
D/T = Qsuccess−Csuccess

T , for different woman acceptation probabilities.

Initially, both players begin with the system in the initial state ψ1 = 1√
Nw

∑
Nw−1
i=0 |i〉, therefore

the probability to select any woman is the same for both, p(wi) = 1/N. In the next step the
Oracle marks one of the prospective women state according men preferences.

The results are highly dependent on the women set size Nw because, as mentioned above,

Grover algorithm needs O(
√

(Nw)) steps to find the quantum player’s chosen partner while
the classic player must use O(Nw) for the same task. In the case of only one woman and one
man, for example, classic and quantum will not have any advantage on searching and the
dating success difference for the first game will depend only on that woman preferences, that
is, if Pc > Pq then D/T < 0 and the quantum player will do better when Pq > Pc . Similar
chances for both players is not usual in most quantum games, such as, for example the coin
flip game introduced by Meyer [9] where the quantum player always beats the classic player
in a “mano a mano" game. For a two women set Q uses only one step, but C needs two steps
to find the right partner. In this case Q does better when Pq > Pc/4. Winning conditions
improve for the quantum player for increasing Nw, but not in a monotonous way, because the
number of steps used by Grover algorithm in Q search is an integer that increases in discrete
steps.

In order to facilitate comprehension the set size in the simulations results shown is Nw = 8,
that is the biggest Nw (taken as 2n) in which Q uses only one step in Grover algorithm.

Under the first game conditions both players have only one attempt by turn. Since C cannot
modify state ψ1 amplitudes, he has 1/8 chance to be right. On the other hand player Q,
using Grover algorithm as his strategy, can modify states amplitudes in order to increase
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Figure 4. First game: One attempt for both players. Mean relative difference between Q and C success total number as
D/T =

Qsuccess−Csuccess
T , for different woman acceptation probabilities Pi

c and Pi
q. Q outperforms C in all shown cases. The

small region where C prevails is not shown.

his chances to win, reaching 0.78 as the probability to find his preferred woman in only one
iteration. Figure 4 shows that situation outcomes for different Pi

c and Pi
q combinations. The

vertical axis depicts D/T values as a function of Pi
c and Pi

q respectively. D/T is positive for all

Pi
c and Pi

q values used in the simulation, which means that even at extremes where Pi
c >> Pi

q,

the quantum player performs better. However there is a very small region where Pi
c ≈ 1 and

Pi
q ≈ 0 not shown in the figure that corresponds to a prevailing C.

Under the second game conditions player C have Nw
2 = 4 attempts before Q plays. After each

C attempt the system is forced to collapse to one base state, so a third party, that could be
the oracle, arrange the states again and mark the solution. As we explained above, to mark
a state means to change its phase but nothing happens to the state amplitude, consequently,
for the classic player C, the probability that state results the one the Oracle have signaled is,

marked or not, 1/Nw = 1/8, even though, due to his “insistence", he tries Nw
2 = 4 times, his

dating success chances increase considerably with respect to the first case. Figure 5 shows the
corresponding results, where it is possible to see that classic player C begins to outperform
Q when Pi

c >> Pi
q, that is, when woman has a marked preference for player C.

Player C probability to find the chosen woman can increase to 1
2 when using a classical

algorithm like “Brute-Force algorithm". As shown in figure 5, when C has Nw
2 = 4 tries while

Q has only one, C’s odds of success in dating increases, and there are zones on the graph
where D/T < 0. This implies that player C outperforms player Q. Nevertheless, to achieve
that, the chosen woman preferences must be considerably greater for the classic player, that
is Pi

c > 2Pi
q.

Quantum Dating Market
http://dx.doi.org/10.5772/53842

529



0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

PCvecPQvec
 

D
/T

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5. Second game: Classic player C has four tries while Q has only one. Mean relative difference between Q and C
success total number as D/T = Qsuccess−Csuccess

T , for different woman acceptation probabilities Pi
c and Pi

q. C outperforms Q

when Pi
c >> Pi

q

4.1. Section discussion

In this section we have introduced a quantum formulation for decision matching problems,
specifically for the dating game. In that framework women are represented with quantum
states whose associated amplitudes must be modified by men’s selection strategies, in order
to increase a particular state amplitude and to decrease the others, with the final purpose to
achieve the best possible choice when the game finishes. This is a highly time consuming
task that takes a O(N) runtime for a classical probabilistic algorithm, being N the women
database size. Grover quantum search algorithm is used as a playing strategy that takes

the man O(
√

N) runtime to find his chosen partner. As a consequence, if every man uses
quantum strategy, no one does better than the others, and stability is quickly obtained.

The performances of quantum vs. classic players depend on the number of players N. In
a “one on one” game there is no advantage from any of them and the woman preferences
rule. Similar chances for quantum and classic players in “one on one” situation is not usual
in most quantum games. Winning conditions improve for the quantum player for increasing
N and the same number of attempts, but not in a monotonous way. The comparison
between quantum and classic performances shows that for the same numbers of attempts,
the quantum approach outperforms the classical approach. If the game is set in order that
the classic player has N

2 opportunities and the quantum player only one, the former player
begins to have an advantage over the quantum one when his probability to be accepted by
the chosen woman is much higher than the probability for the quantum player.
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5. Stability of couples

There is a group of Nm men and Nw women playing the game. Be Si = {|0〉, |1〉, ..., |Nw − 1〉}
the states in a Hilbert space of man i decisions, where {0, 1, ..., Nw − 1} are indexes in decimal
notation identifying all the women he may choose. As a result each man has been assigned
log2(Nw) qubits in order to identify each woman. Generally, the state vector of one man

decisions will be in quantum superposition of the base states, Ψi = ∑
Nw−1
j=0 αj|j〉, where |αj|

2

is the probability that man i selects woman j when system state is Ψi so must satisfied the

normalization condition ∑
Nw−1
j=0 |αj|

2 = 1. If there is no correlation between players, the state

space of all men decision system is represented through SM = S0
⊗

S1
⊗

...
⊗

SM−2
⊗

SM−1,
where

⊗
is the Kronecker product. Note that the SM extends to any possible combination

of men elections. On the other side there are the women who receive men proposals and
must decide whether to accept or not one of them. With greater or lesser probability they
will receive the all men’s proposals, so following the same argument used with the men, be

Ψj = ∑
M−1
i=0 αi|i〉 the woman j acceptation state and be SW = S0

⊗
S1

⊗
...

⊗
SNw−2

⊗
SNw−1

the women acceptances space state. Finally, to close the circle, we define the couples possible
states which must include so all possible men’s elections as all possible women’s acceptances.
Accordingly, state space of the couples emerge from the Kronecker product of the men and
women spaces,i.e. SC = SM

⊗
SW .

5.1. Strategies

In quantum games, players strategies are represented by unitary operators, which in
quantum mechanics are also known as evolution operators related to the system’s
Hamiltonian [27]. If we call Ui the operator corresponding to player i strategy, the N-players
strategies operator results U = U0

⊗
U1...Ui

⊗
...

⊗
UN−1. Starting from the initial pure state

|Ψ0〉 of the system, players apply their strategies U in order to modify it according to their
preferences, that is modifying the probability amplitudes associated with each base state.
As a consequence, evolution from the initial system state to some state |Ψ1〉 is given by
|Ψ1〉 = U|Ψ0〉. Note that, following the reasoning of the preceding paragraph, when Ψ0 is
the initial state and Ψ1 is the final state of the couples system, U arises from men and women
strategies UM and UW respectively through U = UM

⊗
UW . That is, UM is applied by men

to the qubits that identify the women states, meanwhile the women action on the qubits that
identify men states is given by UW .

5.2. Density matrix and system entropy

Often, as in life, players are not completely sure about which strategy to apply, that is, by the
way of example, the case where someone chooses between the strategy Ua with probability
pa and Ub with probability pb = 1 − pa, that situation is referred in a mixed strategies game.
Despite the complete system can be represented by its state vector, when it comes to mixed
states the density matrix is more suitable. It was introduced by von Neumann to describe a
mixed ensemble in which each member has assigned a probability of being in a determined
state. The density operator, as it is also commonly called, represents the statistical mixture
of all pure states and is defined by the equation
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ρ = ∑
i

pi|Ψi〉〈Ψi|, (6)

where the coefficients pi are non-negative and add up to one. From the density operator we
can construct and understand the statistical behavior about our system by using statistical
mechanics and a criterion of maximum or minimum entropy. Continuing the example, if it is
supposed that the system starts in the pure state ρ0 = |Ψ0〉〈Ψ0|, after players mixed actions
density matrix evolution is

ρ1 = paUaρ0U†
a + pbUbρ0U†

b . (7)

Entropy is the central concept of information theories, [33]. The quantum analogue of entropy
was introduced in quantum mechanics by von Neumann,[34] and it is defined by the formula

S(ρ) = −Tr{ρ log2 ρ}. (8)

5.3. N = 2 Model

In order to set up the notation let us look at the following example of two men and two
women that interact for T times periods. Let define Ψi

0 = α|0〉+ β|1〉 as the initial decision
state of men i which is a linear superposition of the two possible options he has, they are
woman 0 or 1. Without losing generalization consider α = 1 and β = 0 which is consistent
with thinking that they both have preference for the most popular, the most beautiful, the
richest, or any superficial feature that most of the time makes men desire a woman at first
glance. Consequently, the men’s initial state vector is ΨM

0 = Ψ0
0

⊗
Ψ1

0 = |00〉, where the
first qubit represent man’s 0 choice and the second is man’s 1 choice. As we explain above,
the initial quantum pure state is not stable, so during the game the state will change to

the general form ΨM
a = ∑

1
i=0,j=0 αij|ij〉 with probability pa and ΨM

b = ∑
1
i=0,j=0 βij|ij〉 with

probability pb. As women have the last decision, they must evaluate men proposals and

decide to accept one of them or reject all. We consider, just for the example that woman 0
chooses man 0 with p0m and man 1 with probability 1 − p0m, similar condition for woman
1 but in this case being p1m the probability to choose man 0. That condition doesn’t affect
system stability but depending on the probabilities values does affect the maximum and
minimum of the couple system’s entropy. Equation 9 shows the women density matrix
which has no off diagonal elements.

ρw0=p0m p1m |00〉〈00|+p0m(1−p1m)|01〉〈01|+(1−p0m)p1m |10〉〈10|+(1−p0m)(1−p1m)|11〉〈11|. (9)

The direct product of all possible men proposals with all possible women decisions generates

a possible partners state vector which in decimal notation is ΨP
0 = ∑

15
i=0 |i〉. Index i is a

four qubits number, the first two qubits represent men 0 and 1 choices respectively and the
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Figure 6. Quantum entropy corresponding to the situation where player 0 varies the probability p to apply strategy U0
0

other two are the two women possible selections, then 16 are the possible couples states.
For example, the state |0101〉 corresponds to the case that man 0 chooses woman 0 and
she accepts him and the same occurs with man 1 and woman 1. Note that not all states
corresponds to possible dates, some of them are considering the cases where there are no
date, or the ones where only one couple is formed, the state |0001〉 is an example of the last
case where the man man 0 chooses woman 0 and she accepts but on the other hand man
1 also chooses woman but she doesn’t and woman 1 does not receive any proposition. As
the game progress, probability amplitudes associated with mismatches must decrease, that
because it is considered that people prefer to be coupled.

Single players moves or strategies are associated with unitary operators Ui(θ), with 0 ≤ θ ≤
π, applied on each one of their qubits, that in the general case where players have 2n options,
each pure strategy U is composed by n different Ui(θk), being k each state qubit. The general
formula of Ui is 10, that are rotation operators, as explained in [27] any qubit operation can
be decomposed as a product of rotations. In this work we consider γ = 0, therefore in what
follows U(θ, 0) is always replaced by the simplest notation U(θ).

U(θ, γ) =

(

eiγ · cos(θ/2) sin(θ/2)
−sin(θ/2) e−iγ · cos(θ/2)

)

(10)

Let p0 be the probability of player 0 to apply strategy U0
0 and 1 − p0 the probability to apply

strategy U0
1 to the initial state Ψ

i
0, while U1

0 and U1
1 are the strategies the man 1 applies with

probability p1 and 1 − p1 respectively. The strategies operators used in the examples are
defined below, equations 11 and 12 are applied by man 0. Both of them transform the initial
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Figure 7. Quantum entropy corresponding to the situation where player 1 varies the probability p to apply strategy U1
0

state |0〉 into states that are linear superpositions of 0 and 1, representing states with different
probabilities of choosing one woman or the other. On the other hand, strategies applied by
man 1 are presented in 13 and 14.

Figures 6 and 7 show two situations where the system entropy varies considerably as a
function of the strategies the players use. Figure 2, for example, shows the case where the
man 1 applies his strategies with fixed probability, just varying the angle θ while the other
man (0) varies both strategies angle and the probability p. In all the cases we present here, in
order to simplify the outcomes display, women density matrix doesn’t change as explained
above.

U0
0 = U(θ) (11)

U0
1 = U(θ)U(π) (12)

U1
0 = U(θ) (13)

U1
1 = U(−θ) (14)

For example, if both men choose the same woman with probability one, this is represented
in Fig. 1 with p = 0. This situation is completely unstable because it is impossible for the
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woman to choose both of them at the same time (we assume). This correspond to minimum
entropy as can be easily seen in Fig. 1. Depending on the strategies applied by men, the
whole system entropy, that is the couple system entropy changes reaching maximum and
minimum limits. As p increases, the mixing of the strategies also increases producing an
increase in entropy that indicates a tendency to stability. The mixing of the strategies means
that the men proposals are less focused on one woman. Fig. 2 shows the case where men’s
role change, that is man 0 fixes his strategies probabilities while 1 varies his own. Although
for fixed θ angle, as expected, the minimum entropy points are located where player is
applying a pure strategy (p = 0), for θ = π/2 the entropy value does not change regardless
of the value of p, because U0

0 and U0
1 are equivalent and therefore player 1 is applying a pure

strategy. A result not shown in the figures is that entropy maxima increase when women
preferences are the same for every men.

In this way, maxima and minima entropy points may be used to find stable states.
Nevertheless, these stable states may not correspond to equilibria states of the game, because
the players utilities has not been considered. In order to find Nash equilibria states, these
utilities must be considered. This is beyond this chapter goals.

5.4. Section discussion

As a continuation of the analysis of a quantum formulation for the dating game that takes
into account mutual progressive learning by representing women with quantum states whose
associated amplitudes must be modified by men’s selection strategies. we concentrate on the
information associated to the problem. Since we deal with mixed strategies, the density
matrix formalism is used to describe the system. Even though the decisions players make are
based on their payoffs, past experiences, believes, etc., we are not interested in that causes
but in the consequences of the decision they take, that is, the influence of the strategies
they apply on the quantum system stability by means of the equivalence between maximum
entropy states and those states that obey the Collective Welfare Principle that says that a
system is stable only if it maximizes the welfare of the collective above the welfare of the
individual. Maxima and minima entropy points are used to find characteristic strategies that
lead to stable and unstable states. Nevertheless, in order to find Nash equilibria states, the
players utilities must be considered.

Maxima and minima entropy do not depend only on the strategies of men but also on women
preferences, reaching the highest value when they have no preferences, that is when they
choose every man with equal probability. On the other hand, minimum entropy correspond
to men betting all chips to a single woman, without giving a chance to other woman.

6. Entangled strategies

The quantum dating market problem has been formulated as a two-sided bandit model [28],
where in one side there are the men who must choose one “item" from the other side, which
unlike the one side bandit, is composed by women able to reject the invitations.

The quantum formulation, which was presented in previous section, proceeds by assigning
one basis of a Hilbert state space to each woman. As a consequence, if Nw is number of
women playing, Si = {|0〉, |1〉, ..., |Nw − 1〉} are the states in the Hilbert space representing a
man i decisions, therefore every man needs at least log2(Nw) qubits to identify each woman.
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The state of man i decisions is a quantum superposition of the base states, Ψi = ∑
Nw−1
j=0 αj|j〉,

where |αj|2 is the probability that man i selects woman j when system state is Ψi and |·〉 is

known as Dirac’s notation. The normalization condition is ∑
Nw−1
j=0 |αj|2 = 1. On the other side

of the market, women receive men proposals and must decide which is the best, accept it and

reject the others. Thus, Ψj = ∑
Nm−1
i=0 αi|i〉 is woman j acceptation state. Finally, combining

proposals and acceptances the couples space which is the Kronecker product of all men’s
and all women’s spaces is defined, i.e. SC = SM

⊗

SW .

Men decision states are separable when there is no connection among players, that is,
for instance, no man has any emotional bond with some other that could condition their

actions, thus all men decision state, ψM, is defined as ψM =
⊗M−1

i=1 ψi. The same reasoning
corresponds to women states. On the other hand, if there is some relationship between two
or more men, their actions are non-locally correlated, that is, their decisions are far from
being independent. John Stuart Bell shown in 1966 that systems in entangled states exhibit
correlations beyond those explainable by local “hidden" properties, or in other words, a
non-local connection appears when two quantum particles are entangled, [35]. Therefore, we
will study the case with correlation between agents by means of quantum entanglement, in
other words, how harmful or beneficial can be for players knowing each other in advance.

As we mention in the previous section, players strategies are represented by unitary operators
in quantum games. Starting the system in some state |Ψ0〉 at time t0, players apply their
strategies U in order to modify it according to their preferences, that is modifying the
probability amplitudes associated with each base state. Thus, evolution from the initial
system state to some state |Ψ1〉 in time t1 is given by |Ψ1〉 = U|Ψ0〉. The strategy operator
U arises from men and women preferences operators UM and UW respectively through
U = UM

⊗

UW , where UM is applied by men to the qubits that identify the women states,
meanwhile the women action on the qubits that identify men states is given by UW .

In order to understand the problem we analyze here a simple example of two men and
two women. Single players moves or strategies are associated with 2 × 2 unitary rotation
operators Ui(θ, γ) applied on each one of their qubits (15), where 0 ≤ θ ≤ π and 0 ≤
γ ≤ π/2. Men choices are coded by states |w0〉 = |0〉 and |w1〉 = |1〉, meanwhile women
must decide between men |m0〉 = |0〉 and |m1〉 = |1〉. Since any qubit operation can be
decomposed as a product of rotations, strategies combinations and possible outcomes are
infinite. As a consequence, focusing on men relationship, we study three relevant cases. We
suppose, as a measure of satisfaction, that men receive some payoff pwi

if accepted by woman
wi, so for the example we have considered that pw0 = 2 and pw1 = 5.

U(θ, γ) =

(

eiγcos(θ/2) sin(θ/2)
−sin(θ/2) e−iγcos(θ/2)

)

(15)

6.1. Results

For the first case, let us consider ψ0 =
√

2
2 (|01〉+ |10〉) as the initial state of men decisions

system, where the left qubit of ψ0 is representing man 0 election while the right one

represents man 1 choice. As men states are entangled, it is not possible to uncouple their
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single actions. Therefore judging on the probability amplitudes, there is 50% probability that

man 0 chooses woman 0 while man 1 chooses woman 1 and the other 50% for the other case.

Since there is no way that men choose the same woman it is a state of mutual cooperation.

Women acceptation state is initialized to ψw = 0.5(|00〉+ |01〉+ |10〉+ |11〉), implying that

there is initially 25% chance that they choose the same man. In order to analyze the effect

of woman behavior on men payoffs, for this and the following two cases, we consider that

men decision state ψ0 is invariant, while women strategies and their acceptation state ψw

change. Figure 8 shows the payoff for man 0 as a function of women strategies which are

set as Ui = (t · π, t · π/2) for t ∈ [−1, 1] and i = 0, 1. Different strategies imply changes on

women preferences, so some change in Ui(θ, γ) implies that woman i acceptation probability

distribution is modified. Following [9], equation 16 represents man 0 payoff, where P00 and

P01 are his chances to be accepted for a date with woman 0 and 1 respectively.

$m0 = 2 · P00 + 5 · P01 (16)

In the second example we introduce competition between men. The initial men state is

given by ψ0 =
√

2
2 (|00〉+ |11〉). Figure 9 depicts again the resulting payoffs for man 0 as a

function of women strategies. Finally a third case is considered where men decision state

is ψm = 0.5(|00〉+ |01〉+ |10〉+ |11〉). In this case men make independent choices choosing

one of four possible options with equal probability. Figure 10 show the resulting payoffs as

a function of woman strategies.

As the figures show, the different scenarios present significant differences on payoff topology

and maximum payoff values.

The cooperative situation presents the highest payoff compared with the competitive and the

independent ones as shown in figure 8. Figures 9 and 10 show that a better payoff may be

obtained in the competitive setup compared to the independent one, but on the other hand,

also a much lower payoff for other women strategies may be available. The independent

decision scenario is thus characterized by lowest maxima and less variation on payoffs.

6.2. Section discussion

We have considered the dating market decision problem under the quantum mechanics point

of view with the addition of entanglement between players states. Women and men are

represented with quantum states and strategies are represented by means of unitary operator

on a complex Hilbert space. Men final payoff, considering payoff as a measure of satisfaction,

depends on the woman he is paired with. If men decision states are entangled, their actions

are non-locally correlated modeling competition or cooperation scenarios. Three examples

are shown in order to illustrate the more usual scenarios. In two of them the men strategies

are correlated in a cooperative and a competitive way respectively. In the other example

men strategies are independent. Although cooperative and competitive strategies can drive

to higher payoffs, changing of women preferences on those scenarios can lead to very low

payoffs. The independent decision scenario is characterized by less variation on payoffs.
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Figure 8. Payoff for man 0 if men never choose the same woman, as function of women acceptation strategies. For the

example γ varies as θ/2.

Figure 9. Payoff for man 0 if men always choose the same woman, as function of women acceptation strategies. For the

example γ varies as θ/2.
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Figure 10. Payoff for man 0 if men choose without restrictions, states are not entangled, as function of women acceptation
strategies. For the example γ varies as θ/2.

7. Final remarks

The dating market problem may be included in a more general category of matching
problems where the elements of two sets have to be matched by pairs. Matching problems
have broad implications not only in economic and social contexts but in other very different
research fields such as communications engineering or molecular biology, for example. The
main goal of this chapter is to introduce and analyze a quantum formulation for the dating
market game, whose nearest classical antecedent is the Stable Marriage Problem. Players
strategies are represented by unitary operators, which in quantum mechanics are also known
as evolution operators related to the Hamiltonian of the system. Significant outcomes arise
when classic players play against quantum ones. For instance, when a quantum player
uses Grover search algorithm as her strategy, her winning probabilities grow with increasing
number of players, but none leads in a “one on one” game. Besides, from stability point
of view, maxima and minima entropy points are used to find characteristic strategies that
lead to unstable and stable states, resulting the highest entropy values when women have no
preferences, that is, when they choose every man with equal probability. On the other hand,
minimum entropy correspond to men betting all chips to a single woman, without giving a
chance to other woman. Finally, to model relationships between people that may correlate
their decisions, our model consider the situation when men decision states are entangled and
their actions are non-locally correlated modeling competition or cooperation scenarios. One
of the main outcomes is for example that, although cooperative and competitive strategies
can drive to higher payoffs, changing of women preferences on those scenarios can lead to
very low payoffs.
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