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1. Introduction

Regenerative medicine is based on advanced and applied biomaterials science. Biomaterials
have a major impact on the patient cure for improving the quality of life. We have been chal‐
lenging to develop bioabsorbable dentin materials (Murata et al, 2011; Murata et al, 2012),
harmonized with bone remodelling, by using the supersonic and acid-etching technology
(Akazawa et al, 2012).

While human bone autograft was done in 19th century, human dentin autograft for bone
augmentation was reported in IADR 2003. The first clinical case was a sinus lifting using au‐
to-dentin for bone augmentation (Murata, 2003). Dentin is acellular matrix, while bone in‐
clude osteocytes. Very interestingly, biochemical components in dentin and bone are almost
simillar. They consist of body fluid (10%), collagen (18%), non-collagenous proteins (NCPs:
2%) and hydroxyapatite (HAp: 70%) in weight volume (Fig. 1). Demineralized dentin matrix
(DDM) and demineralized bone matrix (DBM) are mainly type I collagen with growth fac‐
tors such as bone morphogenetic proteins (BMPs) (Urist, 1965) and fibroblast growth factors
(FGFs) (Fig. 2) (Butler et al.,1977; Murata et al, 2010a,b).

Korea Tooth Bank (KTB) was established in Seoul 2009 for an unique service of tooth-derived
graft materials. The medical service system is the preparation and delivery of the tooth-de‐
rived materials on demand (Kim et al,2010; Kim et al, 2012). The tooth-derived materials were
named as auto-tooth graft materials, which divided into the block-type and powder-type (Park
et al., 2010). The block-type material, which is hydrated in 0.9% NaCl solution for 15-30 min be‐
fore use, can be cut by operators with surgical knife or scissors. Recently, the enamel-dentin
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grafting has been becoming a realistic alternative to the bone grafting in Korea. We have
thought the non-functional teeth as native resources of various graft materials and have ach‐
ieved the medical recycle of patient-own teeth as novel materials for bone regeneration in Ja‐
pan and Korea. This matrix-based bone therapy is Dental Innovation early in 21st century. Our
innovative technique will expand from East Asia to the world.

BMPs, FGFs: matrix-binding proteins in NCPs. OCN: mineral-binding proteins in NCPs; Collagen: mainly type I collagen

Figure 1. Chemical components (w/v%) of human dentin and bone;

2. Biochemistry of human dentin

Dentin and bone are mineralized tissues and almost similar in chemical components. They
consist of body fluid, collagen, non-collagenous proteins (NCPs) and hydroxyapatite (HAp)
in weight volume (Fig. 1). The NCPs in dentin and bone are secreted into the ECM in the
process of biomineralization. The category is termed the SIBLING (Small Integrin-Binding
Ligand, N-linked Glycoprotein) family that includes dentin sialophosphoprotein (DSPP),
dentin matrix protein 1 (DMP1), bone sialoprotein (BSP) and osteopontin (OPN) (Fisher et
al, 2001; Qin et al, 2007; Sun et al, 2010; Qin et al, 2011).
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Both DDM and DBM are composed of predominantly type I collagen (95%) and matrix-
binding proteins such as BMPs (Murata et al., 2000; Akazawa et al., 2006; Murata et al.,
2007). BMPs, transforming growth factor-beta (TGF-β), insulin growth factor-I (IGF-I) and
IGF-II were detected in human dentin (Finkelman et al., 1990). In the rabbit study, complete‐
ly demineralized dentin matrix induced bone in the muscle at 4 weeks, while calcified den‐
tin induced bone at 8-12 weeks after implantation (Yeoman & Urist, 1967; Bang & Urist,
1967). Many researchers made effort to discover dentin-derived BMPs. (Butler et al., 1977;
Urist et al., 1982; Kawai & Urist., 1989; Bessho et al., 1990). In our study, human DDM and
human DBM induced bone and cartilage independently in the subcutaneous tissues at 4
weeks (Murata et al, 2010b). These results indicated that highly calcified tissues such as cort‐
ical bone and calcified dentin are not earlier in osteoinduction and osteoconduction than
spongy bone, DBM, and DDM. The delayed inductive properties of the calcified dentin and
bone may be related to the inhibition of BMPs-release by HAp crystals (Huggins et al., 1970).

a: wet granules, b,c,d: SEM of DDM granule. Note: dentinal tubes

Figure 2. Crushed tooth granules and SEM photos of demineralized dentin matrix (DDM)
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DDM is defined as an acid-insoluble dentin collagen that is absorbable, but hard to digest in
human body (Fig. 2). DDM is acellular biomatrix with the micro-tube structure. DDM and
DBM possess the ability to coagulate blood plasmas (Huggins & Reddi., 1973). The coagula‐
tion action of blood plasma by DDM should become advantageous for surgical operations.

Dentin formation is a dynamic and complicated process, involving interplays among a num‐
ber of molecules including type I collagen, NCPs and prtoteoglycans, which work collective‐
ly to precisely control the site and rate of apatite formation. Type I collagen secreted by
odontoblasts forms the scaffold, upon which HAp crystals are deposited. In addition to type
I collagen, the extracelluar matrix contains a number of NCPs which play critical roles in the
initiation and regulation of HAp crystals (Qin et al., 2011).

3. Clinical study of human dentin

3.1. Case 1: Bone augmentation, 17 year-old female

Patient: A 17-year-old female presented with missing teeth (#11). Clinical and radiological
examinations revealed atrophied bone and fractured root residue in the region (Fig. 3a,b).
Her medical history was unremarkable.

Surgical procedure 1: Four wisdom teeth were extracted for the preparation of tooth-de‐
rived materials (block-type, powder-type).

Preparations of dentin materials: The extracted molar was divided into the crown portion
and the root portion. The crown portion was crushed under the cooling. The crushed gran‐
ules were decalcified in 0.6N HCl solution, rinsed in cold distilled water and freeze-dried.
On the other hand, the root portion was perforated by using a round bar to create a porous
structure. The root with many holes was decalcified in 0.6N HCl solution, rinsed and freeze-
dried. These biomaterials are named as auto-tooth bone (ATB) by KTB.

Surgical procedure 2: This patient-own blood sample was centrifuged and the middle layer
was collected as fibrin glue (so called concentrated growth factors: CGF) (Fig. 4a,b). The dif‐
ferent ATB materials were immersed in 0.9% NaCl solution before use (Fig. 4c). Additional‐
ly, ATB granules were mixed with the fibrin glue (CGF) prepared from autologous blood
(Fig. 4d,e). The root-dentin material was divied into 2 parts by using a knife. A titanium fix‐
ture (Nobel Replace Tapered NP: 16mm) was implanted into the atrophied bone under local
anesthesia (Fig. 3c,d). The root-dentin wall was grafted into the bone defect (fixture-exposed
region) as veneer graft (Fig. 4f). The composite of ATB and fibrin contributed to the attach‐
ment between the grafted root-dentin and the muco-periosteal flap (Fig. 5a,b,c).

Results and discussion: This patient was successfully restored with the dental implant and
the autograft of 2 types of ATB (root-on, powders) with autologous fibrin glue (Fig. 5d).
Properly hydrated ATB should facilitate its adaption to the bone defect due to its elasticity
and flexibility. The results demonstrated that autogenous tooth could be recycled as the in‐
novative biomaterials.
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a: intraoral initial view (before operation), Note: a missing tooth (#11) b: X-ray photo, Note: radio-opacity of residual
root c: exposed bone, Note: concave shape d: view just after Ti. fixture implantation, Note: labial bone defect

Figure 3. Case 1: Auto-tooth bone graft for implant placement, 17 year-old girl;

a: blood after centrifugation, Note: 3 layers b: fibrin glue; middle layer in 4a c: wettable ATB materials (block-type ⇩,
powder-type) d,e: composite of powder and fibrin glue f: covering with block-type of dentin

Figure 4. Case 1: Auto-tooth bone (ATB) graft for implant placement, 17 year-old girl
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a:  fibrin  glue  including ATB powders  (⇦)  b:  repositioned flap.  Note:  suture  with  nylon c:  X-ray  photo  just  after
operation d: final view after prosthetic restoration

Figure 5. Case 1: Auto-tooth bone graft for implant placement, 17 year-old girl

3.2. Case 2: DDM onlay graft and tooth autograft, 25 year-old female

Patient: A 25-year-old female presented with missing teeth (#46). She lost the first molar
about 12 years ago. A clinical examination revealed an atrophied bone in the region. Her
medical history was unremarkable.

Surgical procedure 1: A non-functional vital tooth (#28) was extracted and immediately
crushed with saline ice by our newly developed tooth- mill (Osteo-Mill®, Tokyo Iken Co.,
Ltd) at 12000rpm for 30 sec (Fig. 6) (Patent: 4953276). Briefly, vessel and blade were made in
ZrO2. The crushed tooth-granules were decalcified in 2% HNO3 solution for 20 min (Murata
et al., 2009). The DDM granules including cementum were rinsed in cold distilled water.
Cortical perforations were performed in the atrophied bone, and DDM were immediately
autotransplanted on the perforated bone under local anesthesia.

Surgical procedure 2: At 4 months after the first operation, a non-functional vital tooth (#18)
was extracted and received the immediate root canal filling (RCF), using a new fixation de‐
vice (Fig. 7). The device was developed for tooth transplantation and replantation (Patent:
4866994).

Advances in Biomaterials Science and Biomedical Applications396



After the bone biopsy for the tissue observation and the preparation of transplated cavity,
tooth autograft was carried out into the host bone (Fig. 8a,b,d).

Results and discussion: The biopsy tissue showed that DDM granules were received to
host, and partially replaced by new bone (Fig. 8e). This case was onlay graft of DDM on per‐
forated cortical bone (Murata et al, 1999; Murata et al, 2000). Though RCF is generally car‐
ried out at more than 4 weeks after tooth transplantation, we did immediate RCF, using the
medical device. This patient was successfully restored with her own 2 teeth. This case was
the immediate tooth autotransplantition with the immediate root canal filling at 4 months
after DDM autograft in 2009.

a: mill, b: tooth with ice blocks, c: ZrO2 vessel, d: crushed tooth, e: DDM granules before clinical use.

Figure 6. Preparation of DDM using automatic tooth mill (Osteo-Mill®, Tokyo Iken)
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a: whole view, Note: the device developed for tooth transplantation and replantation b: fixed tooth, Note: corre‐
spondence to all teeth c: crown treatment, Note: periodontal ligament tissue protected from infected fine particles d:
root view, Note: keeping blood even after cutting and root canal filling

Figure 7. New device for protecting periodontal ligament cells (Mr.FIX®, Tokyo Iken)

a: initial X-ray photo: missing tooth (#46) and atrophied bone. Non-functional tooth (⇦) for DDM b: just after DDM
graft. Non-functional tooth (⇨) for next tooth autograft c: tooth auto-transplantation at 4 months after DDM graft d:
DDM autograft on perforated cortical bone before suture e: biopsy: mature bone connected with DDM residue (HE
section)

Figure 8. Case 2: 24 year-old woman
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4. Supersonic and acid-etching method for Dentin geometry

Compact structure inhibits the body fluid permeation and the cell invasion into the inside of
the materials. Generally, this situation is called a material wall. Dentin and cortical bone
have compact structure. We have been challenging to develop new dentin materials, using a
supersonic and acid-etching technology (Akazawa et al., 2009; Akazawa et al., 2010; Akaza‐
wa et al., 2012). The surface structure design of dentin by the supersonic treatment might
easily produce new functional scaffolds, which control the bio-absorption rate and the ad‐
sorption ability for protein and cells. Figure 9 shows the dissolution efficiencies of human
dentin granules, which were demineralized for 5-45 min in 2.0%-HNO3 solutions by the su‐
personic treatment at 600W. A photograph inside Fig.9 is Digital microscopic view of DDM,
dissolution for 30 min in 2.0%- HNO3 by the supersonic treatment at 600W and 28 kHz.

Figure 9. Dissolution efficiencies of human dentin granules, demineralized for 5-45 min in 2.0%-HNO3 by supersonic
treatment at 600W. Inside photo: Digital microscopic DDM view, dissolution for 30 min in 2.0%- HNO3 by supersonic
treatment at 600W and 28 kHz.

The innovative technology can create the adequate geometry and the surface structure of
commercially available materials (Akazawa et al., 2012). Geometrical factors will improve
the performance of biomaterials for bone regeneration (Reddi, 1974: Kuboki et al, 1995; Mur‐
ata et al, 1998). Biomaterials science should support and develop the advanced regenerative
therapy using tooth-derived materials for patients in the near future.
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