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1. Introduction

Mosquito-borne diseases, including malaria are undergoing a global resurgence [1-7]. The
factors responsible for the re-emergence are very complex, and management requires inte‐
grated cooperation at many levels, however, a need to better understand the ecology of disease
vectors remains critical for any control program to succeed. In the case of malaria, the spatial
and temporal changes in anopheline mosquito abundance, quantification of transmission
potential of vector populations, characterizations of climatic conditions, and description of
distributions of host (human) populations are necessary prerequisites for predicting high-risk
malaria areas and implementing an effective disease control program [5, 8]. Tools such as
remote sensing and geographic information systems (GIS), which are increasingly being used
in studies of disease transmission and vector ecology have greatly enhanced our abilities to
analyze landscape level relationships of vectors and diseases. Yet these tools can be success‐
fully used only in combination with a thorough understanding of ecologic and epidemiologic
processes of disease transmission.

Among the most important determinants of adult mosquito abundance and distribution is the
presence and quality of larval habitats.1 An understanding of the dynamics and productivity
of larval habitats in the changing environment is required if efforts to model and predict adult
abundance and ultimately limit the disease spread are to succeed [8-12]. While biology of adult
mosquitoes has been reviewed from multiple perspectives [13-15], there has been no recent
comprehensive review of mosquito larval habitats.2

1 terms larval habitat, breeding site, breeding habitat have been used interchangeably for descriptions of places where
mosquito females oviposit eggs, larvae hatch, grow and pupate [16]. We will be using the term larval habitat throughout
the paper.
2Anopheles species included in Sinka’s et al [17] list of dominant vector species plus An. vestitipennis have been included
in this review.

© 2013 Rejmánková et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



A vast amount of literature on malaria vectors is available. More than 60 years ago, Marston
Bates wrote in the Introduction to his The Natural History of Mosquitoes: “Mosquitoes in
general, and the malaria carriers in particular, have been the subject of a tremendous amount
of study, whose results have been reported in the voluminous literature. Much of this literature
is an uncritical accumulation of facts that were easy to record, or of facts that were related to
some momentarily fashionable subject of study, or of facts that were needed for the attainment
of some immediately practical objective. This accumulation awaits to be converted into an
orderly and useful structure of knowledge” [18]. It is hard not to feel the same today, with the
Web of Science responding with > 600 references to an inquiry for Anopheles larval habitats.
We won’t be able to provide “an orderly and useful structure of knowledge” in this short
chapter, but we will attempt to cover a few important topics:

–History of description of larval habitats

–Determinants of larval habitats

–Habitat selection

–Landscape context

–Human impact and adjustment to new habitats

–Implications for vector control

–Future priorities

Research and reporting efforts and resulting available information are disproportionately
distributed and heavily skewed towards the most important malaria vector, An. gambiae with
over 5440 references in the Web of Science, followed by An. stephensi, An. arabiensis and An.
funestus with 1557, 744 and 537 references respectively. The majority of remaining species from
Sinka’s [17] list are referenced < 200 times with the exception of An. albimanus, An. quadrima‐
culatus, An. darlingi and An. dirus referenced 592, 456, 264 and 255 times, respectively. However,
in most cases these species are primary vector species. In considering potential vector replace‐
ment following the environmental change (see examples further in the text) it will be important
to keep in mind that secondary, little studied and less efficient, vector species might be found
replacing primary malaria vector species.

2. History of description of larval habitats

Much of what we know about the detailed behavior of individual insect vectors resulted from
observations made during the pre-DDT era of the 1920’s and 1930’s [8, 19], when programs for
malaria control through environmental management and regular larvicidal treatment of larval
habitats were developed across Europe, Middle East, Asia, and the Americas [20, 21]. Examples
of successful treatment schemes [21] show that they were all accomplished based on a good
knowledge of larval ecology. The concept that the prevalence of malaria can more effectively
be reduced by destroying vector mosquitoes in their adult stage than in their aquatic, larval
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stages became central to antimalarial efforts practiced throughout the world's tropical regions
beginning first with pyrethrum and later with DDT spraying. Success of those efforts led start-
up of the Global Malaria Eradication Strategy, GMES [20, 22]. One of the unfortunate conse‐
quences of GMES was a substantial reduction in funding for research related to larval ecology,
it was even credited with “exterminating more medical entomologists than mosquitoes” [20].
However, as early as 1983, Service [23] pointed out that “the general disillusionment with
chemical control methods has led to the resurrection of biological control from the pre-DDT
era” and although funding has not been easy to come by, the 1990’s saw an exponential increase
in studies on larval ecology and larval habitats. Laird’s The Natural History of Laval Mosquito
Habitats [24] provided an important source of information.

Although earlier papers are not often cited in the contemporary literature, there are several
reasons why older papers are important and should not be ignored:

They provide records of species distributions: The older papers often describing simple
surveys or even just few locations where a particular species was found provide historical
evidence of species distribution prior to human interference [25, 26]. Example: Positive records
of the presence of An. darlingi in southern Belize (then British Honduras) published by Komp
[25] and Kumm and Ram [26] and a report of absence of this species 30 years later by Bertram
[27], made one of the authors of this chapter (DR) suspects that disappearance of An. darlingi
was most probably a response to DDT house-spraying [28]. The species was eventually
recorded again from Belize (a consequence of the interruption of DDT-spraying?). The whole
story points to the need to continuously study changing roles of malaria vectors in different
geographical areas.

They contain important ecological and ecophysiological observations: Already in the 1940’s
mosquito entomologists realized what many recent papers present as a new discovery, i.e.,
that human interference can lead to a vector change. As described by Muirhead-Thomson [29]
from the coastal zones of Sierra Leone, draining and dyking of mangroves, which used to be
very productive habitats for An. melas, and changing land use to rice cultivation, resulted in
very productive habitat for An. gambiae and eventual replacement of An. melas by An. gam‐
biae. Goma [30, 31] discarded a long time belief that high incidence of malaria in Uganda is
related to the extensive papyrus swamps hypothesizing [30, 31] and eventually experimentally
proving [32] that interior of a papyrus swamp is unsuitable for anophelines and only the
swamps altered by human activities are significant providers of larval habitats. Numerous
interesting observations and results of simple experiments on oviposition and larval devel‐
opment as influenced by environmental factors were published [18, 33] and are well summar‐
ized in Bates’s Natural History of Mosquitoes [34].

There can be a good information on well executed larval control: A series of detailed studies
on larval habitats originated from the US Tennessee Valley Authority, TVA (TVA is a federally
owned corporation in the US created in 1933 to provide navigation and flood control, electricity
generation, fertilizer manufacturing and economic development in the Tennessee Valley, a
region strongly affected by the Great Depression; http://www.tva.com/abouttva/history.htm).
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This watershed area of the fifth largest river system in the United States was transformed into
a series of reservoirs encompassing more than 11,000 miles of shoreline. Because the im‐
poundment of the river provided enhanced breeding opportunities for An. quadrimaculatus in
(then) malaria-endemic region, antimalarial measures were required as integral parts of all
TVA projects. The general philosophy was to control mosquito breeding through natural
measures and limit larvicidal and other temporary controls to an absolute minimum [35].
Papers by Hinman et al [36], Penfound [37], Hess and Hall [38], Hall [39] focused on the
importance of aquatic vegetation in anopheline larval habitats (see section on Vegetation).

Older correlative studies can provide a good starting point for hypotheses testing through
experimental studies: Starting in early 1990’s there is a progression of studies that include
habitat characteristics and attempts to relate the presence of larvae to these characteristics [17,
40-51]. An important change compared to the majority of older papers was that in these
correlative studies, environmental characteristics of both, larvae positive and negative habitats
were recorded. As more information became available on the relationships between larval
presence and habitat characteristics, attempts to classify anopheline larval habitats appeared.
As an example Rejmankova et al. [44] classified larval habitats of An. albimanus on the coastal
plain of Chiapas into 16 habitat-types based on the dominant aquatic vegetation. The goal was
a hierarchical system of habitat classification that could be universally used for larval habitat
description in the study area and it became a basis for many future studies on larval ecology
by the Tapachula-based Center for Malaria Studies [52-54]. The analytical methods and
hierarchical system described in Rejmankova et al [44] article are applicable to a wide range
of studies on phytoecological relationships of vectors to aquatic habitats.

The need for regional classification of larval habitats into higher units became more urgent
with the increasing use of remote sensing technology in malaria vector studies [55-57]. The
step-wise approach (paradigm) advocated by Roberts and Rodriguez [58] became widely
applied [59, 60]. These steps included the following: 1) developing an understanding of vector
ecology and defining the environmental determinants for its presence and abundance (this
step is based on field studies); 2) constructing a database that characterizes the landscape
elements associated with the important aspects of vector biology and human habitation (RS
and GIS are suitable tools for this step); and 3) formulating and verifying predictions of vector
abundance.

Recently, studies describing larval habitats of anophelines were included in the global database
on 41 dominant vector species, DVS, of human malaria. The contemporary distribution of each
of the DVS, alongside a comprehensive description of the ecology and behavior of each species,
has been published in a series of papers by Sinka and coauthors [17, 61-63]. The authors stated
that simple, universal species-specific statements regarding the biology of these vectors are
nearly impossible due to the behavioral plasticity of most species, in some cases sympatric
distributions of sibling species, changing taxonomic categorization and the influence of
environmental disturbance, all contributing to a high level of complexity.
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While the descriptive and correlative studies of larval habitats have mushroomed in the 1990’s
and 2000’s, good experimental studies explaining the hypothetical relationships between
larvae and the habitat characteristics are still relatively lacking. They are increasingly called
for [11, 22], e.g., by proposing development and application of enclosed, pathogen-free, semi-
field mesocosms in which vector populations can be experimentally manipulated. There are a
few exceptions such as Goma’s [31] study from the papyrus swamps in Uganda. Based on his
observations on the absence of An. gambiae larvae from the swamp interior, Goma hypothe‐
sized that the larvae are not found there because the conditions are unfavorable for their
development. He conducted a series of experiments in which known amounts of larvae of
different instars were placed in floating cages in different locations throughout a swamp and
confirmed that larvae in the swamp interior suffered significantly higher mortality and those
surviving took longer to develop into adults than larvae in cages placed at the swamp
periphery. The high mortality has been later explained as a result of inhibition of larval
breathing due to the surface layer of oil produced by papyrus [64]. For other examples of
hypotheses driven experimental studies see, e.g., [10, 65-76] and other examples provided in
further text.

2.1. Dichotomy between medical entomologists and ecologists in larval studies

There has been quite a deep divide between medical entomologists and ecologist in their
approach to studying mosquito larval habitats [22, 77]. Medical entomologists generally study
larval habitats with the focus on design of efficient control interventions and often don’t realize
that it is the ecological approach to studying larval habitats in the context of other ecosystem
components that can eventually lead to a thorough understanding of the larvae – habitat
relationships. A relatively small number of researchers realize that filling the gap between
ecologically based and epidemiologically based information is a necessity [77]. As Chase and
Knight [78] put it: because larval mosquitoes are components of a much larger metacommunity
of interacting species, the interplay between biotic interactions (competitors and predators)
and abiotic constraints (temperature, habitat drying) is essential for understanding the controls
on mosquito abundance. By placing mosquitoes into a broader community context, a much
better predictive framework can be developed for understanding and predicting year-to-year
variation in mosquito abundances [79, 80]. Ecology should—like other basic disciplines such
as molecular biology and bioinformatics—be considered an enabling science essential for
defining the target product profiles of completely new control technologies and delivery
systems [22].

3. Environmental determinants of larval habitats

Larval habitats or breeding sites - places where eggs are laid, larvae hatch, change instars,
pupate, and adults emerge - are primary drivers of adult distribution, abundance and fitness
[5, 9, 10, 81]. They are always composed of water bodies, natural or man-made, permanent or
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temporary, large or small, freshwater or saline. The mosquito reproduction is successful only
if larval habitats remain stable for a duration equivalent to the development of immature stages
[82]. The great diversity of habitats, often combined with inaccessibility, makes studies of the
ecology of larval anopheline mosquitoes methodologically quite difficult [9].

Larval densities are controlled by interactions between abiotic (hydrology, temperature, light/
shade, pH, salinity, nutrient availability) and biotic (predation, competition) factors [78, 83-85].
For comprehensive analyses of patterns in the productivity of larval habitats the studies should
incorporate a landscape context, because presence and abundance of mosquito larvae in
aquatic habitats and consequently the number of adults capable of malaria transmission are
regulated by a variety of ecosystem processes operating and interacting at several organiza‐
tional levels and spatial/temporal scales [86]. The conceptual scheme in Figure 1 summarizes
the main factors and processes important for good understanding of interactions between
larvae and their habitat characteristics in the larger ecosystem context. Humans can affect
habitat availability and quality through ecosystem and landscape changes such deforestation/
reforestation, desertification, irrigation and other hydrological changes, and agricultural
practices (see further). In the following text we will focus on the main determinants of larval
development.

Figure 1. Relationships between larval development and environmental factors on both habitat and ecosystem level.
The relationships reviewed in the chapter are indicated in red.
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3.1. Temperature

Temperature affects all the important processes such as the rate of larval development and
survivorship, pupation rates, larval-to-adult survivorship and larval-to adult development
time [81, 87-89]. Water temperature is influenced by various parameters, such as local climate,
water depth and movement, habitat size and geometry, land cover type or canopy overgrowth,
presence of vegetation and/or algae, soil properties and turbidity [81]. Despite its importance,
there are not many detailed outdoor studies on the temperature of larval habitats and the
available data are hard to compare due to different methods of temperature measurement (air
temperature vs. water temperature; data loggers vs. hand-held thermometers). Available data
on An. gambiae point to a consensus that one of the main reasons for higher productivity of
An. gambiae and An. funestus in habitats associated with agricultural crops or swamp margins
is higher temperature as compared to shaded dense papyrus swamps [72, 90, 91]. Additional
proof comes from Wamae et al [88] who compared An. gambiae densities in shaded (by napier
grass, Pennisetum purpureum) and unshaded water channels in reclaimed sites in Western
Kenya highlands. In these studies, the shading reduced anopheline larvae by > 75%, apparently
due to ~ 3 degrees C reduced water temperature. High water temperature pools (30-33 degrees
C) were reported as the most productive habitats for An. gambiae in Gambia [92]. In South
America, Marten et al [93] found the majority of An. albimanus larvae on the coastal plain of
Colombia associated with sun-exposed sites with a mid-day temperature range of 27.5 - 30.0°
C. Pinault and Hunter [94] report minimum water temperatures that might limit the upper
altitudinal distribution of An. albimanus (18.7° C) and An. pseudopunctipennis (16.0° C). Larvae
are not generally able to survive temperatures over 40 degrees C as documented by Muirhead-
Thomson [29] for An. minimus, (but see An. bwambae in hot springs, [95]). Recent detailed study
on the longevity and mortality of An. gambiae under a wide range of temperatures [87]
concluded that under extremely cold (10–12oC) or hot (38–40oC) temperatures all larvae died
within a few days. While the low temperature range is rarely experienced in larval habitats of
An. gambiae, the higher temperatures are frequently encountered in most tropical regions. In
nature, however, such high temperatures occur for no more than a few hours and larvae may
survive these short periods.

Paaijmans et al [81, 96] stressed the importance of temperature fluctuations for larval devel‐
opment. The authors provided a conceptual model of radiation and energy fluxes at the air–
water and soil–water interfaces of small, shallow and clear water pools and did filed meas‐
urements comparing smaller and larger water bodies [81]. In general, the small-sized water
pool reacted more dynamically to suddenly changing meteorological variables and experi‐
enced larger fluctuations. Several important conclusions follow from these experiments: The
top layer (upper 2 mm) of each water pool differed in temperature from the layers underneath,
which has important consequences for larval dynamics as anopheline larvae generally live
horizontally near the air–water interface of aquatic habitats [66]. There can be large differences
(> 10 degrees C) between air and water temperature. Larger pools had larger buffering
capacity. Mosquito immatures can be exposed to a wide temperature range under natural
conditions and they are apparently evolutionarily adapted to their direct environment. The
observed differences between air and water temperature have important consequences and

Ecology of Larval Habitats
http://dx.doi.org/10.5772/55229

403



should be carefully employed for ecological models that use the air temperature as an input
parameter for larval development.

3.2. Light

There are species occurring mostly in sun-exposed environments such as An. gambiae s.s., An.
albimanus, An. pseudopunctipennis, members of the An. sundaicus complex, An. sinensis, An.
aconitus etc., while others seem to prefer shaded water bodies (An. funestus, An. vestitipennis).
The question of whether sun or shade has a direct effect on the development of larvae or
impacts them indirectly through the effect of temperature on food source development has
not been answered, although some laboratory experiments seem to show that light is not an
important direct factor [83, 97]. It is possible that in some instances, larvae are positively
correlated with shaded environment only because shade of trees reduces drying speed of the
pools [98]. Little is known about the effects of darkness on larval development in Anopheles
species. It has been shown, however, that light deprivation causes a significant reduction in
the development of adult An. stephensi when larvae were bred in the absence of light [33]. In
the dark treatment group, only about 60% of pupae transformed into adults.

3.3. Salinity

There are large differences in the tolerance of anopheline larvae to water salinity. While the
majority of anopheline larvae are found in fresh waters, there are several species that show
high salinity tolerance and are associated with coastal malaria transmission. Anopheles melas
and An. merus within the An. gambiae complex are examples from Africa [61]. Anopheles
farauti s.s. and An. irenicus (formerly designated An. farauti No. 7) in the Farauti Complex are
reported to be salinity-tolerant in Australasia [63, 99]. Malaria vectors of the An. sundaicus
complex in Southeast Asia are well known brackish water breeders [100, 101]. On the American
continent an example of salt tolerant species is An. aquasalis [48, 102].

A  major  challenge  faced  by  all  mosquito  larvae  is  the  tendency  for  larval  habitats  to
fluctuate  widely  in  salinity  due  to  changes  in  rainfall  and  evaporation  [13].  Organisms
living in brackish and saline environments have evolved various mechanisms of  coping
with increased salinity, and in order to survive in these conditions, they have to be able to
regulate their osmotic potential. Larvae of salinity tolerant mosquito possess cuticles that
are less permeable to water than freshwater forms, and their pupae have thickened and
sclerotized cuticles that are impermeable to water and ions. Larval survival depends upon
the  ability  to  regulate  hemolymph  osmolarity  by  absorbing  and  excreting  ions  [103].
Osmoregulatory  mechanisms  vary  among  various  mosquito  genera,  for  example  An.
albimanus  larvae  osmoregulate  through  rectal  ion  excretion  and  the  larvae  undergo  a
dramatic shift in rectal Na+/K+-ATPase (an enzyme important for ion regulation) localiza‐
tion when reared in freshwater vs. saline water [103].

Saltwater tolerance is a trait that involves ionic regulation at the aquatic larval stage, and it
appears to have been a factor in the adaptive radiation of the A. gambiae complex into diverse
larval habitats. A mechanistic understanding of the physiology and genetics of ion regulation
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is important because it can open up new classes of larvicide [104]. Additionally, increasing
amounts of saltwater pools and puddles associated with natural disasters (tsunami), land
subsidence, or sea level rise would facilitate increased breeding of brackish water malaria
vectors (e.g., An. sundaicus) and may increase the risk of malaria outbreaks [105, 106].

3.4. Hydrology and geomorphology

Hydrology of a region, i.e., distribution and seasonal dynamics of lotic and lentic water bodies
is determined by the geomorphology and precipitation patterns [107, 108]. Water quality in
these different water bodies is influenced by rock and soil chemistry, vegetation of the
surrounding landscape, and human activities. Both hydrology and water chemistry determine
the type of aquatic vegetation present in lakes, pools, and streams [42]. Geomorphological
parameters such as elevation, slope, aspect, and ruggedness play an important role in malaria
transmission as exemplified, e.g., by Atieli [108] who found broad flat-bottomed valleys in
Kenya Highlands to have a significantly higher number of Anopheles larvae/dip in their habitats
than the narrow valleys. Heavy rains in the tropics can be detrimental to larval survival. In
particular, rainstorms are known to flush mosquito larvae from their breeding sites [109, 110]
– but see Manguin et al. [47] who reported survival of 3rd and 4th instar larvae in clumps of
detritus that was stranded in trees and shrubs in the wake of the flood.

3.5. Vegetation

Many shallow water bodies are dominated by aquatic plants – both microphytes (algae and
cyanobacteria) and macrophytes.

Aquatic macrophytes, often also called hydrophytes, are key components of aquatic and
wetland ecosystems. As primary producers, they are at the base of herbivorous and detritiv‐
orous food chains, providing food to invertebrates, fish and birds, and organic carbon for
bacteria. Their stems, roots and leaves serve as a substrate for periphyton, and a shelter for
numerous invertebrates and different stages of fish, amphibians and reptiles [66, 111].
Biogeochemical processes in the water column and sediments are to a large extent influenced
by the presence/absence and type of macrophyte, and macrophytes can also have a profound
impact on water movement and sediment dynamics in water bodies [112].

Phytoecological relationships of many species are strong enough to indicate presence or
absence of mosquitoes according to presence or absence of associated plants [44]. The effect of
aquatic plants on mosquito oviposition and larval survival and development, particularly
among the anophelines, has been recognized since the early 1930’s [38, 39, 66, 113-115]. Many
aquatic plants provide food and protection for mosquito larvae and create favorable conditions
for oviposition. Of special importance is the interface of air-plant-water, which has been termed
the intersection line [38]. The intersection line is important to anopheline larvae because it is
where the larvae find food and shelter and adults find the water surface broken up into
numerous quiet cells favorable for ovipositing [19, 66]. A number of studies have documented
a positive correlation between larval density and amount of plant cover or intersection line,
e.g., [38, 115-118]. Plants provide favorable conditions for anopheline production if they
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continuously intersect the water surface during the mosquito breeding season. Collins and
Resh [118] present a table showing the evaluation of common wetland plants for habitat
suitability including the intersection line value.

Aquatic macrophytes are extremely diverse taxonomically, morphologically and functionally.
Thus it is not surprising that different groups of macrophytes provide suitable habitats for
different mosquito species (Figure 2). Of the four major macrophyte categories, i.e., freely
floating, emergent, submerged, and floating-leaved [112], emergents generally provide the
largest number of intersection lines. The positive benefits associated with aquatic macrophyte
cover, and dense patches of emergent plants in particular, should result in a strong selective
advantage (i.e., increased fitness) to individuals that choose high density macrophyte patches
as habitat [66]. Selective pressure for such habitat preferences should operate on both larval
and adult stages of Anopheles and the strong preferences of larvae and ovipositing adults for
higher density patches of Myriophyllum were indeed observed by Orr and Resh [66].

While the majority of anopheline species are rather generalists and not very selective for a
particular type of vegetation, there are others with tighter phytoecological associations.
Anopheles gambiae is an example of a generalist whose larval habitats are shallow temporary
water bodies with algae or short grasses but also devoid of any vegetation [61], see Figure 2H
and papers of Mutuku et al. [119] and Ndenga et al. [89] for illustrations. Among examples of
an extremely close association are the larval habitats of An. pseudopunctipennis, which are
typically sun-exposed streams with abundant filamentous algae [42, 94, 120-124], see Figure
2E. The selection of filamentous algae by An. pseudopunctipennis has been confirmed by
oviposition experiments [125, 126]. Similarly, the presence and abundance of An. farauti larvae
was positively associated with filamentous algae in Solomon Islands [99]. Another species
whose habitat can be clearly defined by vegetation presence is An. vestitipennis. Numerous
reports confirm its association with tall dense macrophytes and/or flooded swamp forest
[127-130] see Figure 2A. It is perhaps the preference of An. vestitipennis for a shaded environ‐
ment generally that results in it being associated with these two types of habitats [129].
Preferred habitats for An. darlingi are patches of detritus often accumulated behind a fallen
stump, or vegetation at the shady edges in slowly running streams and rivers [26, 42, 47, 73,
82] see Figure 2F. Barros et al [82] call these habitats “microdams” and they found the presence
of microdams to be the most important parameter determining spatial distribution of An.
darlingi larvae in northern Brazilian Amazon. Achee et al [73] experimentally evaluated the
importance of floating detritus patches and overhanging bamboo for An. darlingi habitat
selection using floating screened enclosures placed in a river at a location with documented
presence of both larval and adult An. darlingi populations. The detritus treatment had a
significantly higher average count of An. darlingi larvae documenting that females preferen‐
tially oviposited in this habitat.

Even with these tight associations, there are often exceptions, e.g., An. pseudopunctipennis found
in tall dense macrophytes (Schoenoplectus californicus) in the coastal zones of Peru (DR, ER
unpublished data), or even without vegetation [124], but these snapshot observations on larval
presence don’t really provide information about survival and adult fitness.
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Figure 2. Examples of various larval habitat types as defined by vegetation. A: Freshwater marsh with tall dense mac‐
rophyte, Typha domingensis, a typical habitat for Anopheles vestitipennis; B: River edge vegetation dominated by a
dense submersed macrophyte Cabomba aquatica, a potential habitat of An. darlingi; C: Marsh dominated by floating-
leaved macrophyte, Nymphaea ampla, an example of an environment where larvae are typically not found; D: Marsh
with sparse emergent macrophyte, Eleocharis cellulosa, interspersed with floating mats of cyanobacteria, a typical
habitat of An. albimanus; E: A stream with filamentous green algae, a typical habitat for An. pseudopunctipennis; F:
Detritus in a protected riverine environment, a typical habitat of An. darlingi.G: Small, partially shaded stream with
vegetated margins, a tyical habitat for An. minimus; H: An. gambiae habitat from Equatorial Guinea (Malabo region); I:
Stagnant pool of water with floating mats of algae, a habitat of An. epiroticus (Sundaicus complex) from southern
Vietnam. Note the different scale bars.(Photo G & I courtesy of Sylvie Manguin; photo H courtesy of Pierre Carnevale).

3.6. Rice fields

Considering the large extent of rice fields in the areas with endemic malaria, they deserve their
own subchapter. The changing crop practices, such as the shift to irrigated wetland rice affect
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Anopheles vector populations, increasing the extent of larval habitats and transmission of
malaria [131]. Irrigated rice cultivation extends the time in which vectors breed and in countries
with two crops of rice per year, anopheline breeding and biting rates extend well beyond their
usual seasons [131, 132].

The aquatic community in rice fields is a dynamic system related closely to rice plant growth,
rice cultivation practices, and seasonal climatic changes [133-135]. Each mosquito species often
has a preference for a particular phase in rice field development, which may result in an orderly
succession of species as the rice plants develop and mature [136]. The pioneer colonizers are
typically sun-preferring species, such as An. gambiae (Africa) An. albimanus (Central America),
and An. fluviatilis and An. culicifacies (Oriental region); but when the rice grows taller it shades
the water and shade-preferring species, such as An. funestus (Africa), An. umbrosus (India), An.
hyrcanus group (Asia), An. leucosphyrus complex (Malaysia), An. freeborni (North America), An.
punctimacula (South America) usually become more abundant [131, 136]. The abundance of
aquatic macroinvertebrates, including predators, also changes during the growth of a single
rice crop [76, 135, 137]. Compared to Asia and Africa there is less documentation of linkages
between rice cultivation and disease in Latin America, although in parts of Mexico and
Venezuela rice appears to be associated with seasonal increases in malaria incidence [138].

3.7. Food sources

Aquatic plants (both micro- and macrophytes) provide protection from predators and,
together with trees and shrubs, contribute detritus that supports the bacterial community,
which, in turn, serves as food for larvae [139]. An understanding of the spatial and temporal
distribution of the dietary resources available to larval mosquitoes in their natural habitats
could clarify the relationships among food availability, vector competence, and mosquito
fitness [19, 140, 141]. Yet, the quantity and quality of food sources available to larvae is often
ignored in the study of larval growth and development [9]. Natural food assemblages of larval
mosquitoes are extremely diverse biochemically [142]. Generally, bacteria have been consid‐
ered the most important of the microorganisms that comprise the food of mosquito larvae [19,
24], and mosquito growth can occur on cultures of bacteria alone [19]. In the water column of
aquatic ecosystems, bacteria are the major decomposers of organic matter and the presence of
particulate heterotrophic bacterial biomass represents an important link between detritus,
dissolved organic matter, and higher trophic levels [143]. This bacterial production is control‐
led by or directly related to the supply of decomposable organic material. Thus, larval habitats
with ample supplies of autochthonous and/or allochthonous detritus are capable of providing
sufficient supplies of larval food resources. Experiments with diets also demonstrated that
mosquito larvae can develop solely by drinking dissolved nutrients [19]. Larval food sources
are not distributed homogeneously throughout the water column. The surface microlayer
contains relatively high amounts of nutrients, organic material both particulate and dissolved,
and various microorganisms as compared to subsurface water [144]. Anopheline larvae are
well suited to utilize food sources from the enriched surface layer as they typically feed at the
surface of the water where they engage in interfacial feeding behavior [13, 144].
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Microalgae and/or small cyanobacteria can also serve as an important food source [19, 53, 93,
145]. Gimnig’s et al [10] study demonstrated that larval grazing reduced algal abundances and
biomass by an order of magnitude, and changed microeukaryote community structure.
Changes in this algal food resource due to larval consumption almost certainly led to the
observed density-dependent responses in larval development. Kaufman et al [145] conducted
experiments to investigate the importance of algal food resources for larval growth and adult
emergence of An. gambiae in simulated larval habitats in Kenya. Their results confirmed the
importance of algal biomass in the surface microlayers of larval habitats to larval development
and production of An. gambiae adults. They also showed that soil quality in these ephemeral
larval habitats is important as the growth of algae depends on nutrient availability, particularly
phosphorus (P). Thus soils releasing more P after flooding would support more algae that can
feed more larvae.

While some microalgae are an important food source, other algae can be harmful to anopheline
larvae. Marten’s [146] review concludes that many species of green algae in the order Chlor‐
ococcales are resistant to digestion by mosquito larvae. Larvae are unable to complete their
development if indigestible algae are numerous enough in the aquatic habitat to prevent the
larvae ingesting enough other food to satisfy their nutritional needs. In addition, cyanobacteria
(blue-green algae) can potentially kill larvae by toxins they produce [53].

3.8. Essential fatty acids

Lipids are an important food component for mosquito larvae because they provide a concentrat‐
ed form of energy storage and a source of essential biochemical nutrients. Fatty acid (FA)
constituents of lipids are present in a great structural variety, and are increasingly being used as
chemical markers of biogeochemical processes and trophic relationships [147].  While the
saturated palmitic acid (16:0) is often one of the most abundant fatty acids in lipid extracts, the
interest of nutritional studies has concentrated on polyunsaturated fatty acids (PUFA) with two
or more double bonds [148]. Some of these PUFAs are essential to the normal function of cells
and they or their corresponding precursors have to be obtained in animal diets. In most ani‐
mals, the 18-carbon chain, 18C, PUFAs can be converted to the longer-chain essential PUFAs,
specifically arachidonic acid, ARA, eicosapentaenoic acid, EPA, and docosahexaenoic acid,
DHA. Mosquitoes seem to be an exception because their dietary FA requirements cannot be
satisfied by the C-18 PUFAs [149, 150]. They require some 20- and 22-C polyunsaturated fatty
acids, EPA, ARA and DHA and without an adequate supply of these PUFAs they are not able to
fly [149, 150]. Adult females may get these from a blood meal [151] but these PUFAs are be‐
lieved essential in the larval stage for flight muscle development. The understanding of the spatial
and temporal distribution of dietary resources available to mosquito larvae is needed in order to
clarify the relationship among food availability, vector competence, and mosquito fitness. Not
only does the nutrient availability within the habitat have to meet a minimum dietary require‐
ment for proper larval development, but the food consumed in the larval stage is critical for a
number of physiological processes that impact adult performance [152].

Kominkova et al. [153], in order to reveal the importance of feeding habitats for the nutrition of
anopheline larvae, analyzed the FA composition of larvae of three malaria transmitting mosquito
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species An. albimanus, An. vestitipennis and An. darlingi and their corresponding habitats. They
found that habitats were generally low in essential PUFAs and there were no significant
differences among the FA composition of habitat samples. However, there were significant
differences in FA composition of larvae.  Anopheles  darlingi  contained significantly higher
amounts of FA, specifically the linoleic acid. Large differences in PUFA content were found
between field collected and laboratory-reared An. vestitipennis larvae, however, there were no
differences in the total dry weight of the 4th stage larvae between the wild vs. laboratory-reared
populations. Total FA in both larvae and samples of habitats of An. albimanus and An. darlingi
were positively correlated with the concentration of particulate organic carbon and nitrogen
(POC, PON) in their respective habitats, but no such correlation was found for An. vestitipennis.
This study revealed that PUFA are a good indicator of nutritional quality although factors
controlling the success of anopheline development in larval habitats are likely to be more complex
and include, among others, the presence of predators, pathogens and toxins.

3.9. Species interactions (predation and competition)

Understanding species interactions such as competition and predation, across environmental
gradients provides insight into how assemblages of mosquitoes are structured. This informa‐
tion is then critical for proper application of biological control [154]. The topic of competition
and predation is a good example of the dichotomy in the approach to studying larval stages
of mosquitoes. Many papers focus on use of predators for larval control [155-157]. There is a
lack of studies focusing on larval competition and predation in the ecological context such as
habitat size and temporal stability. But it is what influences the prevalence, pattern, and effects
of species interactions across freshwater communities [158-160]. Spatial variation in biotic
interactions can explain spatial variation in larval mosquito densities and ultimately the
abundance of adult mosquitoes [78, 158]. Studies on predators of mosquito larvae go way back
into history. Hinman [161] in his summary of predators on mosquito larvae lists over 100
references. Competition on the other hand is less studied even though interspecific competition
for limited resources can be quite important and has been shown to have large effects on
mosquito larvae. Mosquitoes compete with tadpoles [162, 163], other species of mosquitoes
[164] and cladocerans [165].

Relative impacts of competition and predation change across a gradient of habitat size and
permanence [159]. Bodies of water that may serve as larval habitats form a gradient from small
and highly ephemeral to large and permanent. At the small, ephemeral end of this gradient,
large long-lived predatory organisms (namely fish) are often absent, and aquatic organisms
need to develop quickly. These conditions favor rapid growth and development, active
foraging, movement, and competitive ability. As water bodies become larger and temporally
more stable they can support more diverse community of larger, longer-lived predators. This
increase of diversity, number, and voracity of predators favors refuge use, inconspicuousness,
predator deterrence, and slow growth and development [159]. Organization of mosquito
communities can be viewed in the same way. Interspecific competition among mosquitoes can
be more important as a determinant of community structure in small ephemeral habitats,
whereas predation can be more important in large permanent habitats [159]. Limited evidence

Anopheles mosquitoes - New insights into malaria vectors410



suggests interspecific competition and cannibalism among mosquitoes is common in small
pools [70], but comprehensive review of the ecology of competitive interactions of mosquitoes
is lacking.

Natural predators of mosquito larvae are quite diverse and include the tadpole stages of
amphibians [166], planktivorous fishes [165] and aquatic insects (Coleoptera, adult Hetero‐
ptera and larval Odonata). There is a range of papers reviewing predators on mosquito larvae
and their potential use in biological control. Kumar and Hwang [167] provided an excellent
review of larvicidal efficiency of amphibian tadpoles, larvivorous fish, cyclopoid copepods
and aquatic insects. Mogi [168] reviewed insects and invertebrate predation on different life
stages of mosquito. Quiroz-Martinez and Rodriguez-Castro [169] summarized the information
on arthropods (insects, mites and spiders) that prey on mosquito larvae and discussed the
potential of these predators in mosquitoes’ biological control programs. Shaalan and Canyon’s
[156] review covered the predation of different insect species on mosquito larvae, predator
prey-habitat relationships, co-habitation developmental issues, survival and abundance,
oviposition avoidance, predatorial capacity and integrated vector control. Rozendaal [170] and
Chandra et al [171] reviewed information on different larvivorous fish species and the present
status of their use in mosquito control.

Despite thorough reviews and much information on different types of predators, there is a
paucity of well-designed experimental studies verifying the long term effect of predators on
mosquito populations. Although predation has been suggested as one of the important
regulation mechanisms for malaria vectors in long lasting aquatic habitats, the predatory
efficiency of potential predators is largely unknown [22, 157]. Research on predation of
mosquito larvae has relied partly on the identification of larvae in the predators’ gut –
serological methods [172, 173], partly on correlative field observations evaluating the abun‐
dance of larvae and predators in the habitats [52, 174], and partly on laboratory feeding studies
[157]. However, many predators that have been shown to be highly successful in eliminating
target prey in the laboratory do not show a similar response in their natural habitats [75, 155].
The most basic question is whether predators have an important impact on mosquito popu‐
lations in the field in the presence of alternative prey. Collins and Resh [118] listed the
ecological factors affecting predation that should be considered when designing predation
experiments: 1) dietary preference for mosquitoes, 2) abundance of alternative pray; 3) degree
of congruity between habitats of the predator and target mosquito; 4) density of predators
within habitat; 5) density of mosquito population; 6) quality of habitat as a refuge from
predator. Among examples of well-designed experimental studies on multiple predator
impacts we can cite Kumar et al [155] who compared the control potential of three larvivorous
predators commonly co-occurring in the wetlands of tropical and subtropical regions, the
mosquito fish Gambusia affinis, the cyclopoid copepod Mesocyclops aspericornis, and naiads of
the dragonfly Zyxomma petiolatum, against the larvae of An. stephensi in the presence of
alternative cladoceran prey. The presence of the alternative prey significantly reduced larval
consumption by all three predators. Kumar et al [155] also discuss the issues related to using
non-native mosquito fish considering its potential negative impacts on native assemblages and
its lower selectivity for mosquito larvae.
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Mosquito control using fish has focused on a limited number of species, primarily Gambusia
affinis and Poecilia reticulata that have traditionally been used for controlling mosquito larvae
[175, 176]. One of the most important concerns when introducing exotic fish for mosquito
control is their impact on native species [177] and thus information on the predation role of
native species is desirable. Louca et al [175] evaluated the role of larval predation by native
fishes in Gambia River and they pointed out that the major impact on larvae was actually
exerted by a detritivorous Tilapia, which is a prevailing species in the system that feeds on
larvae only opportunistically in small aquatic habitats.

Blaustein [134] documented an unefficient control of anopheline larvae in the rice fields in
California. He pointed out that contrary to what a good system should be composed of, i.e., a
relatively permanent habitat, a specialist control agent and a relatively abundant pest species,
the fish-mosquito-rice field system does not have any of these attributes. In addition, mosquito
fish may have indirect positive effects on mosquito abundance; they also feed on invertebrates
which are either natural predators (see [178]) or potential competitors of mosquito immatures
[165]. Thus, this strategy attempts to control a relatively rare prey species with a generalist
predator. The underlying mechanisms of predator-prey relationships need to be more clearly
defined in order to use this biological control agent more effectively. There is a general need
for field experiments on competition, predation, and mutualism, and on their context depend‐
ence across species and habitats [159].

Predation at larval stages can have important evolutionary consequences for mosquitoes [179].
For example, the predation of aquatic immature stages has been identified as a major evolution‐
ary force driving habitat segregation and niche partitioning in the malaria mosquito An. gambiae
in humid savannahs of West Africa [160, 180]. These studies explored behavioral responses to
the presence of a predator in wild populations of the M and S molecular forms that typically breed
in permanent (e.g., rice field paddies) and temporary (e.g., road ruts) water collections. The
experiments showed that the M and S forms modify their behavior in the presence of a natural
predator by becoming less active and positioning themselves at the wall of the container. These
behavioral modifications suggest that mosquitoes are able to detect a predator’s presence,
through as yet unknown mechanisms which deserve further investigation.

4. Habitat selection

Habitat selection, defined as a process in which individuals preferentially choose and occupy
a nonrandom set of available habitats, is of major importance for interpretation of spatial and
temporal distributions of populations [139, 181]. The choice for suitable places for female
mosquitoes to lay eggs is a key-factor for the survival of immature stages (eggs and larvae).
Oviposition site selection has been recognized as critical both for the survival and population
dynamics of mosquitoes. It is influenced by several environmental factors [182], including the
salinity and turbidity of the water, the size and degree of permanence of the water body, the
amount of sunlight, the presence of emergent/floating vegetation and shade, presence of
predators, and distance to human habitation [8, 66]. In general, larvae of anopheline mosqui‐
toes prefer clean rather than polluted water [8, 183], although in urban areas in parts of Africa
An. gambiae appears to be adapting to new habitats such as rubbish-filled pools, sometimes
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containing sewage [182, 184]. Larvae of several Asian species (An. dirus, An. punctulatus, An.
subpictus) have been reported from muddy and/or polluted waters [63].

In choosing sites for oviposition, females have to consider multiple—and possibly conflicting
—factors to arrive at a site selection strategy that will optimize their reproductive success [185].
As many other oviparous species, mosquitoes also avoid oviposition in habitats with high risk
of predation to their larvae [154, 186]. Females perceive these different characteristics of their
habitats through a set of various cues both positive and negative. Among positive cues, volatile
substances released from larval habitats have been implicated as potential olfactory cues
mediating oviposition [54, 126, 139]. Experimental verification of dose response confirmed that
low concentrations of volatile materials extracted from species-specific larval habitat materials
increased oviposition, while there was a shift to reduced oviposition at high volatile concen‐
trations. Rejmankova et al [139] also confirmed through reciprocal treatment tests that volatile
effect was strongly habitat/species-specific.

Different mosquito species may rely on distinct chemical cues to avoid predators [187].
Mosquitoes that can detect aquatic predators often do so by sensing predator-released
kairomones [187], see also review in Vonesh and Blaustein [188]. This was confirmed by
preferential oviposition of An. gambiae in containers with clean water rather than water
conditioned with predators (backswimmers, Notonecta sp. and tadpoles, Xenopus sp.) [72]. The
experiment with Notonecta was later successfully repeated on other strains of An. gambiae by
Warburg et al [187].

After oviposition, the main factors determining larval survival are food availability and refuge
from predators. Orr and Resh [66] documented microhabitat selection by larvae of An.
freeborni. They found that larval distribution throughout the habitat (an emergent macrophyte,
Myriophyllum aquaticum) was not random, but that the larvae tended to congregate in denser
patches of macrophytes. Observational data confirmed an active mechanism of selection, i.e.,
larvae actively choose patches with higher plant densities.

Larval habitats of the main malaria vectors in Belize are associated with three distinctly
different aquatic environments: marshes with sparse macrophytes and cyanobacterial mats
(An. albimanus), tall dense macrophyte marshes (An. vestitipennis), and floating detritus
assemblages within freshwater rivers (An. darlingi). To assess species specific habitat suitabil‐
ity, we conducted mosquito transplant experiments [74]. First instar larvae of An. albimanus,
An. vestitipenis and An. darlingi were placed in floating containers in the respective habitats of
each species. Response of mosquito species to environmental conditions of its own and
transplanted habitats clearly showed that each species was performing best in its own habitat.
Survivorship of An. vestitipenis and An. darlingi in the An. albimanus habitat was extremely low
or none.

5. Landscape context, remote sensing, GIS

Larval habitats are not located in a vacuum, they are an integral part of a broader landscape
and their environmental requirements should be studied in this context. The landscape level
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approach gained momentum when technologies such as remote sensing (RS) and GIS became
widely used in 1990’s [55, 57, 59, 60, 189-191] and it has continued improving with the progress
in RS technology (see review in Machault and coauthors [192, 193]. Direct measurements of
the Earth’s hydrological and biophysical characteristics, its geological features and its climate
from space have provided new data layers with spatial and temporal resolutions relevant to
landscape-scale habitat characteristics and ecological processes [194, 195]. The landscape,
vegetation, and ecosystem attributes derived from the applied remote sensing data contribute
significantly to defining habitat characteristics and help discern patterns and gradients that
may exist even within seemingly homogeneous environments.

The use of RS may involve various degree of complexity. The simplest case is when larval
habitats are large enough to be directly identified within spatial resolution of remote sensors
as, e.g., in Wood et al [55] study from irrigated rice in northern and central California. This
study [55] provided a model of rice field mosquito population dynamics using spectral and
spatial information. Analysis of field data revealed that rice fields with rapid early season
vegetation canopy development, located near livestock pastures (i.e. bloodmeal sources), had
greater mosquito larval populations than fields with more slowly developing vegetation
canopies located further from pastures. Remote sensing reflectance measurements of early
season rice canopy development and GIS measurements of distance to livestock pasture were
combined to distinguish between high and low mosquito-producing rice fields. These
distinctions were made with 90% accuracy nearly two months before anopheline larval
populations peaked.

A more complex approach is needed in situations where larval habitats are spatially below the
detection limit of RS data. As an example, a hierarchical approach was used to link larval
habitat-types with larger land cover units in an integrated RS, GIS and field study in the Pacific
coastal plain of Chiapas, Mexico [57]. Using this approach, villages with high vs. low risk for
malaria transmission were identified and it was demonstrated that remote sensing-based
models generated for one area can be used successfully in another, comparable area [59, 60].
Similarly, RS generated maps of larval habitats in Madagascar rice fields and urban areas were
used for predictions of adult densities and definitions of areas that may require indoor
insecticide spraying [196, 197]. The landscape determinants of anopheline mosquito larval
habitats in Kenya highlands and lowlands and their temporal changes were assessed by
Mushinzimana et al. [198], Jacob et al [199], Munga et al [200], Mutuku et al [201], from
elsewhere in Central and west Africa by Dambach [193] and Clennon et al [202], and from
Malaysia by Ahmad et al [203]. The use of RS as a predictive tool to locate larval habitats has
not always been successful as demonstrated by Achee et al [204]. Their results indicated that
remotely sensed land cover is not a valuable indicator of the location in which An. darlingi
larval habitats will form. High-resolution satellite imagery could be used to detect homes along
river systems and potentially predict general areas at risk for An. darlingi breeding habitat
formation based on distances from houses to waterways (Figure 3). The basic idea behind the
remotely sensed assessment of larval habitats is to define environmental parameters that can
be used to identify areas with increased risk of malaria transmission [193]. Yet, as already
stated by
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Roberts et al [205], the successful use of RS and GIS technologies to predict potential or actual
malaria trouble spots is dependent on clear understandings of environmental factors that
determine the presence of malaria vectors.

Figure 3. IKONOS 1m-resolution panchromatic image showing three houses (A-C) along a section of the Sibun River.
Distance from the river to houses (black lines) was predictive for presence and abundance of An. darlingi, the primary
malaria vector in Belize.

5.1. Ecological niche models

Populations of mosquito larvae are ideally suited to GIS and remote sensing applications due
to their close association with their microenvironment. Specifically, larval mosquitoes have
three distinct ecological characteristics that are directly related to predictive risk-modeling: 1)
specific habitat preferences, 2) microclimate requirements and 3) vegetation-dependent
associations to include plant height and density. Spatial-temporal interactions of mosquito
larvae with their natural environment are critical to understanding the risk of contact between
the vectors and their human hosts. Due to the fact that mosquitoes spend a substantial portion
of their life cycle in the larval stage, population structure and vector survival is greatly
influenced by the environmental surroundings. One area that is increasingly being applied to
disease ecology which takes advantage of these environmental associations is the use ecolog‐
ical niche models [206]. An ecological niche model is an estimate of the distribution of a species
and requires two input data sets: the known locations of a species and environmental data in
an image format (such as larval habitats, climate data, elevation data, land cover, etc.). The
ecological niche modeling program examines the environmental data at the locations where
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the species occurs to infer the environmental requirements of the species across a much larger
area. The requirements of the species are then used to create a map of the predicted distribution
of the species. Any species affected by environmental conditions such as climate can be
modeled including disease vectors, disease hosts and pathogens. Models of monthly predic‐
tions of dengue fever in Mexico have been created based on mosquito activity [207]. Niche
models of malaria vectors in the An. gambiae complex have been developed for under-sampled
regions of Africa [208]. The benefit of niche modeling is the development of maps showing
predicted distribution of an organism based on current and projected vector ecology and
environmental data.

6. Human impact land use/global change

Natural ecosystems throughout the world are being severely altered by human intervention.
Population pressure results in transformation of natural ecosystems to agriculture, construc‐
tion of roads and hydroelectric dams, irrigation projects, open pit mines, and uncontrolled
human colonization [209, 210]. Anthropogenic modification of the ecosystems also contributes
to global climate change represented by an increase in temperature and accompanied by
extremes of the hydrologic cycle (e.g., floods and droughts) [211, 212]. The global rate of
tropical deforestation continues with nearly 2% to 3% of global forests lost each year and land
use change for agriculture represents the largest driver of land cover change across the earth
[85, 209, 213]. Arthropod vectors in general, and insect vectors in particular are very sensitive
to their environment, which determines their presence, development and behavior. As a
consequence, climatic, as well as landscape and land cover factors greatly influence the spatial
distribution of vectors and the diseases they transmit [214].

Mosquitoes are among the most sensitive insects to environmental change; their survival,
density, and distribution are dramatically influenced by small changes in environmental
conditions, such as temperature, humidity, and the availability of suitable larval habitats [48,
88, 215-219]. All these changes can alter the incidence, seasonality and intensity of transmis‐
sion, and geographic range of diseases such as malaria. Changes in the distribution of malaria
cases and intensities of malaria transmission have been documented by many historical
examples. As described by Hackett [220], malaria increased in Malaya as jungle was cleared
for rubber plantations. Where forest was removed the sun penetrated and populations of
Anopheles maculatus mosquitoes proliferated, greatly increasing the incidence of human
malaria. The better we are able to assess and explain the distribution and dynamics of vector
species in relation to fluctuations in their environments, the more accurate prediction can be
made of malaria in the context of ongoing environmental change [221, 222]. This will allow us
to evaluate the risks associated with current practices, better explain the patterns of increasing
and decreasing disease, better identify measures to mitigate the likelihood and impact of
disease emergence, and eventually improve its control [213]. Below are specific examples of
changes related to important human activities.
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6.1. Deforestation

Deforestation is one of the most important factors driving emerging and re-emerging infectious
diseases. Through the process of clearing forests and subsequent agricultural development,
deforestation changes almost every attribute of local ecosystems such as microclimate, soil,
and aquatic conditions, and most significantly, the ecology of local flora and fauna, including
human disease vectors. Numerous country and area studies have described the influence of
deforestation and subsequent land use on the density of local mosquito vectors [223]. One of
the most thorough evaluations of the impact of deforestation combined with the prediction of
future changes has been presented by Yasuoka and Levins [224] who conducted a meta-
analysis of 60 published studies of changes in ecology of 31 anopheline species and malaria
incidence as a consequence of deforestation. In comprehensive tables they summarized density
changes by land cover, and for larval habitats the niche-width and sun-preference indices of
each species. The conclusion was that mechanisms linking deforestation and agricultural
development with mosquito ecology and malaria epidemiology are extremely complex. The
impacts of deforestation on mosquito density and malaria incidence are influenced by both
the nature of the agricultural development and the ecological characteristics of the local vector
mosquitoes. Some species were directly affected by deforestation, some favored or could adapt
to the different environmental conditions, and some invaded and/or replaced other species in
the process of development and cultivation. The results of the statistical analyses showed that
deforestation and agricultural development are favorable for sun-loving species, allowing
them to increase in or invade deforested areas where water bodies become exposed to sunlight.

As a specific example of the complexity of a malaria vector to deforestation we present the case
of An. darlingi in the Amazon region. Vittor et al [225] examined the larval breeding habitat of
a major South American malaria vector, An. darlingi, in areas with varying degrees of ecologic
alteration in the Peruvian Amazon and concluded that deforestation and associated ecologic
alterations are conducive to An. darlingi larval presence, and thereby increase malaria risk.
According to Barros et al [82], deforestation and human presence creates a new habitat, a forest
fringe ecosystem, by promoting three changes in An. darlingi bionomics: (i) increasing contact
with humans; (ii) increasing the number of microdams (small river obstruction causing the
accumulation of debris), which increases the number of potential larval habitats as well as the
breeding season; and (iii) reducing the number of shaded breeding sites in a given geographical
area, which results in a concentration of larvae in remaining shaded areas. The ideal breeding
site occurs in the forest fringe, where the three factors, shade, microdams and human blood
meals, are located close to each other.

Environmental changes caused by deforestation often lead to vector replacement (for examples
referenced in older papers see Service [136]). Conn et al. [226] conducted entomological surveys
in malaria areas of Macapá, northeastern Amazonia, and found An. marajoara replacing An.
darlingi as the primary vector. It is hypothesized that the observed change in mosquito
population densities was caused by deforestation for agriculture that resulted in newly created
ground pools favoring An. marajoara larvae. For many regions in the Amazon Basin, popula‐
tions of An. darlingi have increased because road construction in the forest has considerably
expanded the breeding sites—large areas of neutral, partially shaded and unpolluted water.
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These characteristics also attract human inhabitants. Subsequently, clearing of forests and
water pollution reduce the suitability of these for An. darlingi breeding. However, these sites,
and newly created ponds for agricultural use, attract other mosquito species such as An.
marajoara. In addition, humans have colonized land near extensive marshy areas, another
preferred breeding habitat of An. marajoara.

6.2. Dam construction

Water reservoirs have long been recognized to be a risk factor for malaria transmission
[227-231]. Hydroelectric or irrigation dam construction increases the habitat availability by the
formation of lakes. Shallow parts of these lakes are typically overgrown with macrophytes that
provide excellent breeding sites for anopheline mosquitoes [227]. However, compared to the
number of studies on land use change due to deforestation and agricultural expansion,
research related to the entomological and ecological determinants of the rising malaria burden
in the vicinity of large dams is rather limited [232]. There are historical examples, such as that
of Tennessee Valley Authority ([35], see also p. 3) of well executed environmental management
measures to control malaria vectors [21, 35]. These successfully executed environmental
measures can be adapted to control malaria associated with dam construction in sub-Saharan
Africa and elsewhere in malaria endemic regions. Construction of new reservoirs under the
tropical, sub-humid climatic conditions should therefore be accompanied by entomologic
studies to predict the risk of malaria epidemics [233]. Keiser et al [231] calls for institutionali‐
zation of health impact assessments for future water development projects analogous to
environmental impact assessments as well as the employment of monitoring and surveillance
systems that would facilitate systematic evaluation of the impact of these ecosystem interven‐
tions over time. The reality is that more dams will be built and thus mitigation strategies to
alleviate potential negative health effects are mandatory to reduce the current burden of
malaria in settings near irrigation or dam projects.

6.3. Wetland destruction

Draining wetlands has been extensively practiced and promoted as the easiest solution to
localized public health threats posed by malaria vectors [21, 234]. Unfortunately, this practice
has not always worked. Among many cases of increasing malaria transmission after destruc‐
tion of natural wetlands are the examples from African papyrus swamps [64]. As stated already
by Goma [32, 235] and confirmed recently by others [72, 88, 236], the interior of a papyrus
swamp is unsuitable for anophelines, while the swamp periphery and cultivation of natural
swamps provides productive larval habitats for An. gambiae and consequently, increase the
risks of malaria transmission to the human population. Many natural wetlands have been
destroyed and changed to brick-making pits – the most abundant habitat type containing An.
gambiae larvae in Africa [237].

What has not been taken into account when manipulating wetlands for health benefits is the
loss of valuable ecosystem services provided by these wetlands, such as water purification,
flood control, or provision of food and fiber, and their contributions to human health. This
aspect was emphasized by the 2008 Conference of the Contracting Parties to the Ramsar
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Convention on Wetlands, whose resolution stated among others: “Those concerned with
wetland conservation and management should encourage new and ongoing research regard‐
ing the links between wetlands and human health and to bring information on the scientifically
proven contributions that functioning wetland ecosystems make to good health to the attention
of national ministries and agencies responsible for health, sanitation, and water supply. The
human health sector, and all relevant stakeholders should collaborate in assessing the
consequences of wetland management linked with human health, and vice versa the conse‐
quences for the ecological character of wetlands of current practices which seek to maintain
or improve human health, including the identification of appropriate trade-offs in decision-
making.”

6.4. Wetland creation and restoration

In addition to rice fields, which are the most extensive human made wetlands and their
significance as larval habitat has been already described previously, the use of constructed
wetlands for wastewater treatment is expanding [236, 238, 239]. Constructed wetland tech‐
nology has broad applications for the treatment of many types of wastewaters and provides
an ecological approach to mitigate the release of nutrients and toxic materials into the envi‐
ronment [240]. However, design features, maintenance activities and the characteristics of the
wastewater undergoing treatment contribute differentially to potential levels of mosquito
production and, consequently, to threats to human and animal health from mosquito-borne
pathogens. Nutrients (nitrogen and phosphorus), and the configuration and maintenance of
emergent vegetation can have strong effects on mosquito production. As loading rates of
organic matter and nutrients decline, the diversity of mosquitoes produced by treatment
wetlands tends to increase and the relative abundance of Anopheles species increases in
temperate man-made wetlands [239, 241]. A proper design, e.g. subsurface rather than surface
flow or flow-through rather than pond-type wetland [242] can help local mosquito problems.
Surface-flow wetlands can also be designed to minimize mosquito breeding by increasing
macro-invertebrate predators [243]. Greenway [243] concluded that a marsh with a diversity
of macrophytes appears optimal for macro-invertebrate biodiversity and the control of
mosquito larvae by predation. The key to mosquito management is to ensure a well-balanced
ecosystem supporting a diversity of aquatic organisms [240]. A general conclusion from those
areas that contain both treatment wetlands and unimpacted natural wetlands is that ade‐
quately designed and appropriately managed treatment wetlands do not pose any greater
mosquito threat than the existing natural wetlands [244].

To compensate for a large loss of wetlands in the past, we are now witnessing many projects
attempting to restore, rehabilitate, or create various types of wetland habitats. The resulting
restored wetland areas provide flood control, improve water quality, and provide habitat for
wildlife, especially bird species. However, they create great mosquito habitat and only a few
restoration project address this issue properly [234] and there is a need for a better coordination
between wetland restoration design and management and mosquito larval management.
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6.5. Eutrophication

Freshwaters are among the most extensively and rapidly altered ecosystems on the planet
[213]. Increased use of fertilizers in agriculture and destruction of natural buffer zones leads
to runoff of excessive nutrients, specifically nitrogen and phosphorus to lakes, rivers and
reservoirs [245-250]. Nutrient increase is generally responsible for plant production resulting
in potential changes in other trophic levels. Several studies have shown positive correlations
between concentrations of inorganic nutrients in surface waters and larval abundance for
Anopheles [43, 251]. Nutrient enriched waters are easily invaded by aggressive aquatic weeds
such as water hyacinth (Eichhornia crassipes), which are known to be very productive anophe‐
line habitats [37, 44, 252].

The authors’ research in Belize [56, 86] provided data in support of the hypothesis that
eutrophication causes changes in freshwater communities. The Central American country of
Belize contains large wetland areas that used to be dominated by phosphorus limited sparse
macrophyte communities interspersed with floating mats of cyanobacteria – a typical An.
albimanus habitat (Figure 4).

Figure 4. Schematic representation of the change of plant communities in marshes of Belize caused by increased eu‐
trophication by phosphorus. This change is accompanied by the replacement of An. albimanus habitat with An. vestiti‐
pennis habitat.
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Anthropogenically mediated P enrichment of wetland plant communities through introduc‐
tion of fertilizer runoff from expanding sugar cane fields is causing a switch from sparse
macrophytes to tall dense macrophytes represented mostly by Typha domingensis. Tall dense
macrophytes provide favorable habitat for An. vestitipennis, which appears to be a more
efficient vector of malaria. Thus human-caused nutrient enrichment of marshes may lead to
increased risk of malaria transmission in human settlements in proximity to the impacted
marshes.

6.6. Temperature and precipitation changes

Malaria transmission is very sensitive to both temperature and precipitation, which makes the
issue of change in risk due to past and projected warming trends one of the most important
climate change-health questions to follow [253, 254]. Large malaria epidemics in the East
African highlands during the mid and late 1990s initiated research on the role that global
warming might have on malaria transmission. Historically, these highlands have been used
as a shelter against malaria because malaria has been naturally absent due to conditions that
limit the biology of the parasite [255]. Several authors proposed that spread of malaria into
areas that rarely saw malaria transmission could be related to the impacts of small increases
in temperature [253, 256]. The issue became hotly debated [255]. Recently, Chaves et al [257]
assessed conclusions from both sides of the argument and found that evidence for the role of
climate is robust but they also found a large heterogeneity in malaria trends. They argued that
over-emphasizing the importance of climate is misleading for setting a research agenda to
understand climate change impacts on emerging malaria patterns. The global change is
expected to influence rainfall patterns both seasonal rainfall totals and inter-annual variability
in malaria endemic regions, and these events will impact larval habitats availability and thus
mosquito population dynamics [258].

6.7. Sea level rise

Along with warming temperatures, any increase in sea levels will affect the extent of saline
(>30 ppt) or brackish (0.5-30 ppt) water bodies in coastal areas. These include coastal estuaries,
lagoons, marshes and mangroves [106]. An expansion of brackish and saline water bodies in
coastal areas, associated with rising sea levels, can increase densities of salinity-tolerant vector
mosquitoes and lead to the adaptation of freshwater vectors to breed in brackish and saline
waters. Higher vector densities can increase transmission of vector-borne infectious diseases
in coastal localities, which can then spread to other areas [106].

The consequences of human-induced ecological changes provide another set of examples.
Large-scale shrimp farming in the Mekong delta of Vietnam locally increased the density of
An. sundaicus [259]. The greater availability of brackish water bodies can also lead to freshwater
breeding mosquitoes such as An. stephensi and An. culicifacies getting adapted to breed in
brackish waters as was observed immediately after the 2004 tsunami in India [260] and some
years later in eastern Sri Lanka [261].
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6.8. Replacability and adaptability

As already indicated by a few examples in the above text, a change in ecology of a region
whether due natural factors or human impact can lead to changes in the quality and quantity
of larval habitats. This often leads to changes in mosquito population dynamics and species
composition [262]. The original anopheline species can be replaced by species better adapted
to new conditions or they can adapt themselves. Mosquito species distributed over broad
geographic ranges are more likely to have greater habitat diversity than species distributed
over a small range [263] and thus their adaptability can be higher. Except for a few examples,
our knowledge on the species adaptability is quite limited. But since at least some species are
able to adapt to different environmental conditions, an effort needs to be made to obtain data
on anopheline population dynamics before, during, and after ecologic alterations. Further‐
more, the long-term effectiveness of any control strategy will depend on whether vectors
respond to the evolutionary selection pressure created by intervention [22]. For example,
mosquitoes may respond by phenotypic plasticity, or by evolving traits such as insecticide
resistance or behavioral avoidance.

7. Implication for vector control

Malaria vector control targeting the larval stages of mosquitoes was applied successfully
against many species of Anopheles in malarious countries until the mid-20th Century [3, 8,
264-266]. Since the introduction of DDT in the 1940s and the associated development of indoor
residual spraying (IRS), which usually has a more powerful impact on vectorial capacity than
larval control, the focus of malaria prevention programs shifted to the control of adult vectors
[8, 267]. However, when it became clear that this strategy is not working (Service 1983), an
integrated disease management approach including control of larval stages of malaria vectors,
i.e., Integrated Vector Management (IVM) began to be reconsidered [21, 268]. A great step in
that direction was made by Keiser et al [264] who provided a systematic review and a meta-
analysis of malaria control programs, emphasizing environmental management as their main
feature. Most of the 40 studies (85%) were implemented before the Global Malaria Eradication
Campaign (1955–69). The authors concluded that malaria control programs that emphasize
environmental management are highly effective in reducing malaria. Lessons learned from
these past successful programs can guide sound and sustainable malaria control approaches
and strategies. The conclusions of Keiser’s et al [231] meta-analysis of past control strategies
are in agreement with recently developed malaria transmission models showing that sub‐
stantial reductions of the entomological inoculation rate are possible when an integrated
malaria control program with multiple interventions (e.g., environmental management tools)
implemented simultaneously is used [269, 270].

The larval source management (LSM) also termed Environmental management that has been
successfully used to control mosquitoes in many developed countries (US, Brazil, Canada) is
recently becoming an integral component of malaria control methods in Africa [271]. LSM
includes: (1) habitat (or environmental) modification, (2) habitat (environmental) manipula‐
tion, (3) biological control and (4) larviciding [236, 264, 271]. Habitat modification is designed

Anopheles mosquitoes - New insights into malaria vectors422



to prevent, eliminate, or reduce vector habitat and it involves a permanent change of land and
water, including landscaping, drainage of surface water, land reclamation and filling but also
coverage of large water storage containers, wells and other potential breeding sites. Habitat
manipulation refers to activities that reduce larval habitats of the vector mosquito through
temporary changes to the aquatic environment in which larvae develop. It is a recurrent
activity, such as water-level manipulation, which includes measures such as flushing, drain
clearance, shading or exposing habitats to the sun depending on the ecology of the local vector.
It may include planting water-intensive tree species such as Eucalyptus robusta to reduce
standing water in marshy areas. The best strategies are those that are adapted to local vector
ecology, epidemiology and resources, guided by operational research and subject to routine
monitoring and evaluation [22, 272]. Bond’s et al [122, 123] studies can serve as an example of
habitat manipulation. They report on how manual algal removal from breeding pools along a
river in southern Mexico significantly reduced both larval and adult densities of An. pseudo‐
punctipennis. In a follow up study, the abundance of An. pseudopunctipennis larvae + pupae was
dramatically reduced by this treatment and remained depressed for two to three months. Algal
extraction did not reduce the overall abundance of aquatic insects in river pools. Biological
control of mosquitoes refers to the introduction of natural enemies into aquatic habitats; these
are predatory fish or invertebrates, parasites or disease organisms (see the predator section).
Bacillus thuringiensis israelensis (Bti) and Bacillus sphaericus (Bs) are bacterial species reported
to be effective against mosquitoes, and have been widely studied and used as biolarvicides
[266, 273, 274]. Recently, researchers have focused on the resident microbiota of insect vectors
that can potentially impede transmission of human pathogens. These microbes may prove
effective agents for manipulating the vector competence of malaria and other important human
pathogens [275-278]. Biological control agents should be evaluated with respect to their
climatic compatibility and their capability to maintain very close interactions with target
populations [155].

8. What next?

Almost every paper that we reviewed for this chapter ends up with the call for more infor‐
mation on larval stages of malaria vectors, in order to enable a better vector control and more
accurate predictions of vector response to changing environment. It is (finally!) becoming clear
that understanding the ecology and evolution of mosquito vectors needs to complement
epidemiology, genetics and molecular biology in solving malaria problems. Several review
papers provide good suggestions for future directions in vector ecology research (see, e.g.,
Table 2 in Chaves and Koenraadt [255] and Box 3 in Ferguson et al [22]). As stated in the
preceding text, almost any factor defining a larval habitat can change as a result of direct human
modification (deforestation, agricultural practices, eutrophication) and/or indirectly caused
environmental change (temperature, precipitation). In addition, new habitats can be created.
All these changes can and will impact the basic environmental determinants of larval habitats
– food availability, refuge, predator presence. There are indications that some species will be
able to adapt, some will be replaced by other species, and some anophelines that have not
traditionally been regarded as vectors may become important ones.
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In the context of ecosystem change whether due to nutrient, temperature, precipitation, salinity
or vegetation changes, there is a strong need for studies on adaptability of different anopheline
species to new conditions. The majority of these studies would be best executed as manipula‐
tive field or semi-field experiments focused not only on changing characteristics of species
performance but also on interactions with other species (both competition and predation). To
be able to accomplish these types of experiments, systems of enclosed, pathogen-free, semi-
field mesocosms in which vector populations can be experimentally manipulated will have to
be established within environmentally realistic, contained semi-field settings. See, e.g.,
Ng’habi et al [11] semi-field system of large, netting-enclosed mesocosms, in which vectors
can fly freely, feed on natural plant and vertebrate host sources, and access realistic resting
and oviposition sites. Ideally, systems of these experimental mesocosms should be established
along environmental (temperature, precipitation) gradients or with the capability to experi‐
mentally manipulate these variables so that we can conduct the experiments focused on species
response to changing environments.

In addition, there is an ongoing need for regular monitoring and good quality long-term
dataset on species distributions. High resolution satellite data enable more detailed observa‐
tions on vegetation changes and regional distribution of precipitations and temperature, which
all can results and result in better risk prediction maps [193]. In order to include a temporal
component to the risk models, a network of longitudinal population monitoring sites for vector
development needs to be established. The ecological niche models [206, 279] mentioned above
will undoubtedly play increasingly important role in predictions of disease outbreaks.
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ciados a su hábitat en Sucre, Venezuela. Revista de Biologia Tropical. 2010; 58(2)
777-87.

[103] Smith KE, VanEkeris LA, Okech BA, Harvey WR, Linser PJ. Larval anopheline mos‐
quito recta exhibit a dramatic change in localization patterns of ion transport pro‐
teins in response to shifting salinity: a comparison between anopheline and culicine
larvae. Journal of Experimental Biology. 2008; 211(19) 3067-76.

[104] White BJ, Collins FH, Besansky NJ. Evolution of Anopheles gambiae in relation to hu‐
mans and malaria. Annual Review of Ecology, Evolution, and Systematics, Vol 42.
2011; 42 111-32.

Anopheles mosquitoes - New insights into malaria vectors432



[105] Krishnamoorthy K, Jambulingam P, Natarajan R, Shriram AN, Das PK, Sehgal SC.
Altered environment and risk of malaria outbreak in South Andaman, Andaman &
Nicobar Islands, India affected by tsunami disaster. Malaria Journal. 2005; 4 32.

[106] Ramasamy R, Surendran SN. Possible impact of rising sea levels on vector-borne in‐
fectious diseases. BMC Infectious Diseases. 2011; 11 18.

[107] Mitsch WJ, Gosselnk JG. Wetlands. 4th edition ed. Hoboken, New Jersey: John Wiley
& Sons, Inc.; 2007.

[108] Atieli HE, Zhou GF, Lee MC, Kweka EJ, Afrane Y, Mwanzo I, et al. Topography as a
modifier of breeding habitats and concurrent vulnerability to malaria risk in the
western Kenya highlands. Parasites & Vectors. 2011; 4 241.

[109] Paaijmans KP, Wandago MO, Githeko AK, Takken W. Unexpected high losses of
Anopheles gambiae larvae due to rainfall. Plos One. 2007; 2(11) e1146.

[110] Charlwood JD, Braganca M. The effect of rainstorms on adult Anopheles funestus be‐
havior and survival. Journal of Vector Ecology. 2012; 37(1) 252-6.

[111] Timms RM, Moss B. Prevention of growth of potentially dense phytoplankton popu‐
lations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shal‐
low wetland ecosystem. Limnology and Oceanography. 1984; 29 472-86.

[112] Rejmankova E, Sirova D, Carlson E. Patterns of activities of root phosphomonoester‐
ase and phosphodiesterase in wetland plants as a function of macrophyte species
and ambient phosphorus regime. New Phytologist. [Article]. 2011; 190(4) 968-76.

[113] Ancona AH. Las Lemnaces y las larvas de los mosquitos. Anales del Instituto de Biol‐
ogía de México. 1930; 1(3) 3-37.

[114] Matheson R. The utilization of aquatic plants as aids in mosquito control. American
Naturalist. 1930; 64 56-86.

[115] Balling SS, Resh VH. Seasonal pattern of pondweed standing crop and Anopheles occi‐
dentalis densities in Coyote Hills marsh. Proceedings of the California Mosquito Vec‐
tor Control Association. 1985; 52 122-5.

[116] Rozeboom LE, Hess AD. The relation of the intersection line to the production of
Anopheles quadrimaculatus. Journal of the National Malaria Society. 1944; 3 169-79.

[117] Walker ED, Merritt RW, Wotton RS. Analysis of the distribution and abundance of
Anopheles-quadrimaculatus (Diptera, Culicidae) larvae in a marsh. Environmental En‐
tomology. 1988; 17(6) 992-9.

[118] Collins JN, Resh VH. Measurements of temperature and light in artificial pools with
reference to the larval habitat of Anopheles (Myzomyia) gambiae Giles and A. (M.) fu‐
nestus Giles: California MVCA and University of California Mosquito Research Pro‐
gram1989.

Ecology of Larval Habitats
http://dx.doi.org/10.5772/55229

433



[119] Mutuku FM, Alaii JA, Bayoh MN, Gimnig JE, Vulule JM, Walker ED, et al. Distribu‐
tion, description, and local knowledge of larval habitats of Anopheles gambiae s.l. in a
village in western Kenya. American Journal of Tropical Medicine and Hygiene. 2006;
74(1) 44-53.

[120] Fernandez-Salas I, Roberts DR, Rodriguez MH, Marina-Fernandez CF. Bionomics of
larval populations of Anopheles pseudopunctipennis in the Tapachula foothills area,
southern Mexico. Journal of the American Mosquito Control Association. 1994; 10(4)
477-86.

[121] Rueda LM, Peyton EL, Manguin S. Anopheles (Anopheles) pseudopunctipennis Theobald
(Diptera: Culicidae): Neotype designation and description. Journal of Medical Ento‐
mology. 2004; 41(1) 12-22.

[122] Bond JG, Rojas JC, Arredondo-Jimenez JI, Quiroz-Martinez H, Valle J, Williams T.
Population control of the malaria vector Anopheles pseudopunctipennis by habitat ma‐
nipulation. Proceedings of the Royal Society of London Series B-Biological Sciences.
2004; 271(1553) 2161-9.

[123] Bond JG, Quiroz-Martinez H, Rojas JC, Valle J, Ulloa A, Williams T. Impact of envi‐
ronmental manipulation for Anopheles pseudopunctipennis Theobald control on aquat‐
ic insect communities in southern Mexico. Journal of Vector Ecology. 2007; 32(1)
41-53.

[124] Manguin S, Roberts DR, Peyton EL, Rejmankova E, Pecor J. Characterization of
Anopheles pseudopunctipennis larval habitats. Journal of the American Mosquito Con‐
trol Association. 1996; 12(4) 619-26.

[125] Bond JG, Arredondo-Jimenez JI, Rodriguez MH, Quiroz-Martinez H, Williams T.
Oviposition habitat selection for a predator refuge and food source in a mosquito.
Ecological Entomology. 2005; 30(3) 255-63.

[126] Torres-Estrada JL, Meza-Alvarez RA, Cruz-Lopez L, Rodriguez MH, Arredondo-Ji‐
menez JI. Attraction of gravid Anopheles pseudopunctipennis females to oviposition
substrates by Spirogyra majuscula (Zygnematales : Zygnemataceae) algae under labo‐
ratory conditions. Journal of the American Mosquito Control Association. 2007; 23(1)
18-23.

[127] Johnson HA. Occurence of Anopheles vestitipennis in Porto Rico. The American Jour‐
nal of Tropical Medicine. 1925; 6(2) 153-5.

[128] Loyola EG, Arredondo-Jimenez I, Rodriguez MH, Brown DN, Vacamarin MA.
Anopheles vestitipennis, the Probable Vector of Plasmodium vivax in the Lacandon For‐
est of Chiapas, Mexico. Transactions of the Royal Society of Tropical Medicine and
Hygiene. 1991; 85(2) 171-4.

[129] Rejmankova E, Pope KO, Roberts DR, Lege MG, Andre R, Grieco J, et al. Characteri‐
zation and detection of Anopheles vestitipennis and Anopheles punctimacula (Diptera :

Anopheles mosquitoes - New insights into malaria vectors434



Culicidae) larval habitats in Belize with field survey and SPOT satellite imagery.
Journal of Vector Ecology. 1998; 23(1) 74-88.

[130] Ulloa A, Rodriguez MH, Arredondo-Jimenez JI, Fernandez-Salas I. Biological varia‐
tion in two Anopheles vestitipennis populations with different feeding preferences in
southern Mexico. Journal of the American Mosquito Control Association. 2005; 21(4)
350-4.

[131] Gratz NG. Emerging and resurging vector-borne diseases. Annual Review of Ento‐
mology. 1999; 44 51-75.

[132] Forattini OP, Kakitani I, Massad E, Marucci D. Studies on mosquitos (Diptera, Culici‐
dae) and anthropic environment - 3-survey of adult stages at the rice irrigation sys‐
tem and the emergence of Anopheles albitarsis in South-Eastern, Brazil. Revista De
Saude Publica. 1993; 27(5) 313-25.

[133] Mogi M, Okazawa T, Miyagi I, Sucharit S, Tumrasvin W, Deesin T, et al. Develop‐
ment and survival of anopheline immatures (Diptera, Culicidae) in rice fields in
northern Thailand. Journal of Medical Entomology. 1986; 23(3) 244-50.

[134] Blaustein L. Larvivorous fishes fail to control mosquitos in experimental rice plots.
Hydrobiologia. 1992; 232(3) 219-32.

[135] Mogi M, Miyagi I. Colonization of rice fields by mosquitoes (Diptera, Culicidae) and
larvivorous predators in asynchronous rice cultivation areas in the Philippines. Jour‐
nal of Medical Entomology. 1990; 27(4) 530-6.

[136] Service MW. Agricultural-development and arthropod-borne diseases - A review.
Revista De Saude Publica. 1991; 25(3) 165-78.

[137] Ohba SY, Huynh TTT, Le LL, Ngoc HT, Hoang SL, Takagi M. Mosquitoes and their
potential predators in rice agroecosystems of the Mekong Delta, southern Vietnam.
Journal of the American Mosquito Control Association. 2011; 27(4) 384-92.

[138] Lacey LA, Lacey CM. The medical importance of riceland mosquitos and their con‐
trol using alternatives to chemical insecticides. Journal of the American Mosquito
Control Association. 1990; 1-93.

[139] Rejmankova E, Higashi R, Grieco J, Achee N, Roberts D. Volatile substances from
larval habitats mediate species-specific oviposition in Anopheles mosquitoes. Journal
of Medical Entomology. 2005; 42(2) 95-103.

[140] Lyimo EO, Takken W, Koella JC. Effect of rearing temperature and larval density on
larval survival, age at pupation and adult size of Anopheles-gambiae. Entomologia Ex‐
perimentalis Et Applicata. 1992; 63(3) 265-71.

[141] Koella JC, Lyimo EO. Variability in the relationship between weight and wing length
of Anopheles gambiae (Diptera: Culicidae). Journal of Medical Entomology. 1996; 33(2)
261-4.

Ecology of Larval Habitats
http://dx.doi.org/10.5772/55229

435



[142] Peck GW, Walton WE. Effect of bacterial quality and density on growth and whole
body stoichiometry of Culex quinquefasciatus and Culex tarsalis (Diptera: Culicidae).
Journal of Medical Entomology. 2006; 43(1) 25-33.

[143] Cole JJ, Findlay S, Pace ML. Bacterial production in fresh and saltwater ecosystems -
a cross-system overview. Marine Ecology-Progress Series. 1988; 43(1-2) 1-10.

[144] Walker ED, Merritt RW. Bacterial enrichment in the surface microlayer of an Anophe‐
les quadrimaculatus (Diptera, Culicidae) larval habitat. Journal of Medical Entomolo‐
gy. 1993; 30(6) 1050-2.

[145] Kaufman MG, Wanja E, Maknojia S, Bayoh MN, Vulule JM, Walker ED. Importance
of algal biomass to growth and development of Anopheles gambiae larvae. Journal of
Medical Entomology. 2006; 43(4) 669-76.

[146] Marten GG. Larvicidal algae. Journal of the American Mosquito Control Association.
2007; 23(2) 177-83.

[147] Napolitano GE. Fatty acids as trophic and chemical markers in freshwater ecosys‐
tems. In: Arts MT, Wainman BC, editors. Lipids in Freshwater Ecosystems. Verlag:
Springer; 1999. p. 21-44.

[148] Parish CC. Determination of total lipid, lipid classes and fatty acids in aquatic sam‐
ples In: Arts MT, Wainman BC, editors. Lipids in Freshwater Ecosystems. Verlag:
Springer; 1999. p. 4-20.

[149] Dadd RH, Kleinjan JE, Stanley-Samuelson DW. Polyunsaturated fatty acids of mos‐
quitoes reared with single dietary polyunsaturates. Insect Biochemistry. 1987; 17
7-16.

[150] Dadd RH, Kleinjan JE. Prostaglandin sparing of dietary arachidonic-acid in the mos‐
quito Culex pipiens. Journal of Insect Physiology. 1988; 34(8) 779-85.

[151] Nor Aliza AR, Stanley DW. A digestive phospholipase A2 in larval mosquitoes,
Aedes aegypti. Insect Biochemistry and Molecular Biology. 1998; 28 561-9.

[152] Timmermann SE, Briegel H. Effect of plant, fungal and animal diets on mosquito de‐
velopment. Entomologia Experimentalis Et Applicata. 1996; 80(1) 173-6.

[153] Kominkova D, Rejmankova E, Grieco J, Achee N. Fatty acids in anopheline mosquito
and their habitats. Journal of Vector Ecology. 2012; 37(2) 382-395.

[154] Blaustein L, Kiflawi M, Eitam A, Mangel M, Cohen JE. Oviposition habitat selection
in response to risk of predation in temporary pools: mode of detection and consisten‐
cy across experimental venue. Oecologia. 2004; 138(2) 300-5.

[155] Kumar R, Muhid P, Dahms HU, Tseng LC, Hwang JS. Potential of three aquatic
predators to control mosquitoes in the presence of alternative prey: a comparative
experimental assessment. Marine and Freshwater Research. 2008; 59(9) 817-35.

Anopheles mosquitoes - New insights into malaria vectors436



[156] Shaalan EAS, Canyon DV. Aquatic insect predators and mosquito control. Tropical
Biomedicine. 2009; 26(3) 223-61.

[157] Kweka EJ. Predation efficiency of Anopheles gambiae larvae by aquatic predators in
western Kenya highlands. Tropical Medicine & International Health. 2012; 17 53.

[158] Knight TM, Chase JM, Goss CW, Knight JJ. Effects of interspecific competition, pre‐
dation, and their interaction on survival and development time of immature Anophe‐
les quadrimaculatus. Journal of Vector Ecology. 2004; 29(2) 277-84.

[159] Juliano SA. Species interactions among larval mosquitoes: context dependence across
habitat gradients. Annual Review of Entomology. 2009; 54 37-56.

[160] Gimonneau G, Pombi M, Dabire RK, Diabate A, Morand S, Simard F. Behavioural re‐
sponses of Anopheles gambiae sensu stricto M and S molecular form larvae to an
aquatic predator in Burkina Faso. Parasites & Vectors. 2012; 5 56.

[161] Hinman EH. Predators of the Culicidae (mosquitoes). I. The predators of larvae and
pupae, exclusive of fish. Journal of Tropical Medicine and Hygiene. 1934; 37 129-34.

[162] Blaustein L, Margalit J. Mosquito larvae (Culiseta-longiareolata) prey upon and com‐
pete with toad tadpoles (Bufo-viridis). Journal of Animal Ecology. 1994; 63(4) 841-50.

[163] Mokany A, Shine R. Biological warfare in the garden pond: tadpoles suppress the
growth of mosquito larvae. Ecological Entomology. 2003; 28(1) 102-8.

[164] Grill CP, Juliano SA. Predicting species interactions based on behaviour: Predation
and competition in container-dwelling mosquitoes. Journal of Animal Ecology. 1996;
65(1) 63-76.

[165] Blaustein L, Karban R. Indirect effects of the mosquitofish Gambusia-affinis on the
mosquito Culex-tarsalis. Limnology and Oceanography. 1990; 35(3) 767-71.

[166] Mokany A. Impact of tadpoles and mosquito larvae on ephemeral pond structure
and processes. Marine and Freshwater Research. 2007; 58(5) 436-44.

[167] Kumar R, Hwang JS. Larvicidal efficiency of aquatic predators: A perspective for
mosquito biocontrol. Zoological Studies. 2006; 45(4) 447-66.

[168] Mogi M. Insects and other invertebrate predators. Journal of the American Mosquito
Control Association. 2007; 23(2) 93-109.

[169] Quiroz-Martinez H, Rodriguez-Castro A. Aquatic insects as predators of mosquito
larvae. Journal of the American Mosquito Control Association. 2007; 23(2) 110-7.

[170] Rozendaal JA. Vector Control: Methods for Use by Individuals and Communities.
Geneva: World Health Organization; 1997.

[171] Chandra G, Bhattacharjee I, Chatterjee SN, Ghosh A. Mosquito control by larvivo‐
rous fish. Indian Journal of Medical Research. 2008; 127(1) 13-27.

Ecology of Larval Habitats
http://dx.doi.org/10.5772/55229

437



[172] Service MW. Identification of predators of Anopheles gambiae resting in huts, by pre‐
cipitin test. Transactions of the Royal Society of Tropical Medicine and Hygiene.
1973; 67(1) 33-4.

[173] Service MW. Mortalities of immature stages of species-b of Anopheles gambiae com‐
plex in kenya - comparison between rice fields and temporary pools, identification of
predators, and effects of insecticidal spraying. Journal of Medical Entomology. 1977;
13(4-5) 535-45.

[174] Caillouet KA, Keating J, Eisele TP. Characterization of aquatic mosquito habitat, nat‐
ural enemies, and immature mosquitoes in the Artibonite Valley, Haiti. Journal of
Vector Ecology. 2008; 33(1) 191-7.

[175] Louca V, Lucas MC, Green C, Majambere S, Fillinger U, Lindsay SW. Role of fish as
predators of mosquito larvae on the floodplain of the Gambia River. Journal of Medi‐
cal Entomology. 2009; 46(3) 546-56.

[176] Walton WE. Larvivorous fish including Gambusia. Journal of the American Mosqui‐
to Control Association. 2007; 23(2) 184-220.

[177] Preston DL, Henderson JS, Johnson PTJ. Community ecology of invasions: direct and
indirect effects of multiple invasive species on aquatic communities. Ecology. 2012;
93(6) 1254-61.

[178] Bence JR. Indirect effects and biological-control of mosquitos by mosquitofish. Jour‐
nal of Applied Ecology. 1988; 25(2) 505-21.

[179] Diabate A, Dabire RK, Heidenberger K, Crawford J, Lamp WO, Culler LE, et al. Evi‐
dence for divergent selection between the molecular forms of Anopheles gambiae: role
of predation. BMC Evolutionary Biology. 2008; 8 5.

[180] Gimonneau G, Bouyer J, Morand S, Besansky NJ, Diabate A, Simard F. A behavioral
mechanism underlying ecological divergence in the malaria mosquito Anopheles gam‐
biae. Behavioral Ecology. 2010; 21(5) 1087-92.

[181] Morris DW. Toward an ecological synthesis: a case for habitat selection. Oecologia.
2003; 136(1) 1-13.

[182] Impoinvil DE, Keating J, Mbogo CM, Potts MD, Chowdhury RR, Beier JC. Abun‐
dance of immature Anopheles and Culicines (Diptera : Culicidae) in different water
body types in the urban environment of Malindi, Kenya. Journal of Vector Ecology.
2008; 33(1) 107-16.

[183] Munga S, Minakawa N, Zhou GF, Barrack OOJ, Githeko AK, Yan GY. Oviposition
site preference and egg hatchability of Anopheles gambiae: Effects of land cover types.
Journal of Medical Entomology. 2005; 42(6) 993-7.

[184] Keating J, MacIntyre K, Mbogo C, Githeko A, Regens JL, Swalm C, et al. A geograph‐
ic sampling strategy for studying relationships between human activity and malaria

Anopheles mosquitoes - New insights into malaria vectors438



vectors in urban Africa. American Journal of Tropical Medicine and Hygiene. 2003;
68(3) 357-65.

[185] Blaustein L. Oviposition site selection in response to risk of predation: evidence from
aquatic habitats and consequences for population dynamics and community struc‐
ture. In: Wasser SP, editor. Evolutionary theory and processes: modern perspectives.
Dordrecht: Kluwer Academic Publishers; 1999. p. 441-56.

[186] Kershenbaum A, Spencer M, Blaustein L, Cohen JE. Modelling evolutionarily stable
strategies in oviposition site selection, with varying risks of predation and intraspe‐
cific competition. Evolutionary Ecology. 2012; 26(4) 955-74.

[187] Warburg A, Faiman R, Shtern A, Silberbush A, Markman S, Cohen JE, et al. Oviposi‐
tion habitat selection by Anopheles gambiae in response to chemical cues by Notonecta
maculata. Journal of Vector Ecology. 2011; 36(2) 421-5.

[188] Vonesh JR, Blaustein L. Predator-induced shifts in mosquito oviposition site selec‐
tion: A meta-analysis and implications for vector control. Israel Journal of Ecology &
Evolution. 2010; 56(3-4) 263-79.

[189] Beck LR, Lobitz BM, Wood BL. Remote sensing and human health: New sensors and
new opportunities. Emerging Infectious Diseases. 2000; 6(3) 217-27.

[190] Stoops CA, Gionar YR, Shinta, Sismadi P, Rachmat A, Elyazar IF, et al. Remotely-
sensed land use patterns and the presence of Anopheles larvae (Diptera : Culicidae) in
Sukabumi, West Java, Indonesia. Journal of Vector Ecology. 2008; 33(1) 30-9.

[191] Lourenco PM, Sousa CA, Seixas J, Lopes P, Novo MT, Almeida APG. Anopheles atro‐
parvus density modeling using MODIS NDVI in a former malarious area in Portugal.
Journal of Vector Ecology. 2011; 36(2) 279-91.

[192] Machault V, Vignolles C, Borchi F, Vounatsou P, Pages F, Briolant S, et al. The use of
remotely sensed environmental data in the study of malaria. Geospatial Health. 2011;
5(2) 151-68.

[193] Dambach P, Machault V, Lacaux JP, Vignolles C, Sie A, Sauerborn R. Utilization of
combined remote sensing techniques to detect environmental variables influencing
malaria vector densities in rural West Africa. International Journal of Health Geo‐
graphics. 2012; 11, 8.

[194] Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M. Remote
sensing for biodiversity science and conservation. Trends in Ecology & Evolution.
2003; 18(6) 306-14.

[195] Buermann W, Saatchi S, Smith TB, Zutta BR, Chaves JA, Mila B, et al. Predicting spe‐
cies distributions across the Amazonian and Andean regions using remote sensing
data. Journal of Biogeography. 2008; 35(7) 1160-76.

[196] Rakotomanana F, Randremanana RV, Rabarijaona LP, Duchemin JB, Ratovonjato J,
Ariey F, et al. Determining areas that require indoor insecticide spraying using Multi

Ecology of Larval Habitats
http://dx.doi.org/10.5772/55229

439



Criteria Evaluation, a decision-support tool for malaria vector control programmes in
the Central Highlands of Madagascar. International Journal of Health Geographics.
2007; 6, 2.

[197] Rakotomanana F, Ratovonjato J, Randremanana RV, Randrianasolo L, Raherinjafy R,
Rudant JP, et al. Geographical and environmental approaches to urban malaria in
Antananarivo (Madagascar). BMC Infectious Diseases. 2010; 10, 173.

[198] Mushinzimana E, Munga S, Minakawa N, Li L, Feng CC, Bian L, et al. Landscape de‐
terminants and remote sensing of anopheline mosquito larval habitats in the western
Kenya highlands. Malaria Journal. 2006; 5, 13.

[199] Jacob BG, Muturi EJ, Mwangangi JM, Funes J, Caamano EX, Muriu S, et al. Remote
and field level quantification of vegetation covariates for malaria mapping in three
rice agro-village complexes in Central Kenya. International Journal of Health Geo‐
graphics. 2007; 6 21.

[200] Munga S, Yakob L, Mushinzimana E, Zhou GF, Ouna T, Minakawa N, et al. Land use
and land cover changes and spatiotemporal dynamics of anopheline larval habitats
during a four-year period in a highland community of Africa. American Journal of
Tropical Medicine and Hygiene. 2009; 81(6) 1079-84.

[201] Mutuku FM, Bayoh MN, Hightower AW, Vulule JM, Gimnig JE, Mueke JM, et al. A
supervised land cover classification of a western Kenya lowland endemic for human
malaria: associations of land cover with larval Anopheles habitats. International Jour‐
nal of Health Geographics. 2009; 8, 19.

[202] Clennon JA, Kamanga A, Musapa M, Shiff C, Glass GE. Identifying malaria vector
breeding habitats with remote sensing data and terrain-based landscape indices in
Zambia. International Journal of Health Geographics. 2010; 9, 58.

[203] Ahmad R, Ali WN, Nor ZM, Ismail Z, Hadi AA, Ibrahim MN, et al. Mapping of mos‐
quito breeding sites in malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang,
Malaysia. Malaria Journal. 2011; 10, 361.

[204] Achee NL, Grieco JP, Masuoka P, Andre RG, Roberts DR, Thomas J, et al. Use of re‐
mote sensing and geographic information systems to predict locations of Anopheles
darlingi-positive breeding sites within the Sibun River in Belize, central America.
Journal of Medical Entomology. 2006; 43(2) 382-92.

[205] Roberts DR, Paris JF, Manguin S, Harbach RE, Woodruff R, Rejmankova E, et al. Pre‐
dictions of malaria vector distribution in Belize based on multispectral satellite data.
American Journal of Tropical Medicine and Hygiene. 1996; 54(3) 304-8.

[206] Peterson AT. Biogeography of diseases: a framework for analysis. Naturwissenschaf‐
ten. 2008; 95(6) 483-91.

[207] Peterson AT, Martinez-Campos C, Nakazawa Y, Martinez-Meyer E. Time-specific
ecological niche modeling predicts spatial dynamics of vector insects and human

Anopheles mosquitoes - New insights into malaria vectors440



dengue cases. Transactions of the Royal Society of Tropical Medicine and Hygiene.
2005; 99(9) 647-55.

[208] Levine RS, Peterson AT, Benedict MQ. Geographic and ecologic distributions of the
Anopheles gambiae complex predicted using a genetic algorithm. American Journal of
Tropical Medicine and Hygiene. 2004; 70(2) 105-9.

[209] Patz JA, Olson SH, Uejio CK, Gibbs HK. Disease emergence from global climate and
land use change. Medical Clinics of North America. 2008; 92(6) 1473-91.

[210] Myers SS, Patz JA. Emerging threats to human health from global environmental
change. Annual Review of Environment and Resources. 2009; 34 223-52.

[211] IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change. Cambridge and New York 2007.

[212] McMichael AJ, Friel S, Nyong A, Corvalan C. Global environmental change and
health: impacts, inequalities, and the health sector. British Medical Journal. 2008;
336(7637) 191-4.

[213] Carpenter SR, Stanley EH, Vander Zanden MJ. State of the world's freshwater eco‐
systems: Physical, chemical, and biological changes. Annual Review of Environment
and Resources, Vol 36. 2011; 36 75-99.

[214] Tran A, Poncon N, Toty C, Linard C, Guis H, Ferre JB, et al. Using remote sensing to
map larval and adult populations of Anopheles hyrcanus (Diptera: Culicidae) a poten‐
tial malaria vector in Southern France. International Journal of Health Geographics.
2008; 7, 9.

[215] Martens P, Kovats RS, Nijhof S, de Vries P, Livermore MTJ, Bradley DJ, et al. Climate
change and future populations at risk of malaria. Global Environmental Change-Hu‐
man and Policy Dimensions. 1999; 9 S89-S107.

[216] Molyneux DH. Vectorborne parasitic diseases - an overview of recent changes. Inter‐
national Journal for Parasitology. 1998; 28(6) 927-34.

[217] Molyneux DH. Common themes in changing vector-borne disease scenarios. Trans‐
actions of the Royal Society of Tropical Medicine and Hygiene. 2003; 97(2) 129-32.

[218] Afrane YA, Githeko AK, Yan GY. The ecology of Anopheles mosquitoes under climate
change: Case studies from the effects of deforestation in East African highlands. Year
in Ecology and Conservation Biology. 2012; 1249 204-10.

[219] Berger F, Flamand C, Musset L, Djossou F, Rosine J, Sanquer MA, et al. Investigation
of a sudden malaria outbreak in the isolated Amazonian village of Saul, French Gui‐
ana, January-April 2009. American Journal of Tropical Medicine and Hygiene. 2012;
86(4) 591-7.

Ecology of Larval Habitats
http://dx.doi.org/10.5772/55229

441



[220] Hackett LW. Distribution of Malaria. In: Boyd MF, editor. Malariology. Philadelphia:
Saunders; 1949. p. 722-35.

[221] Fontenille D, Simard F. Unravelling complexities in human malaria transmission dy‐
namics in Africa through a comprehensive knowledge of vector populations. Com‐
parative Immunology Microbiology and Infectious Diseases. 2004; 27(5) 357-75.

[222] Gimonneau G, Pombi M, Choisy M, Morand S, Dabire RK, Simard F. Larval habitat
segregation between the molecular forms of the mosquito Anopheles gambiae in a rice
field area of Burkina Faso, West Africa. Medical and Veterinary Entomology. 2012;
26(1) 9-17.

[223] Laporta GZ, Ramos DG, Ribeiro MC, Sallum MAM. Habitat suitability of Anopheles
vector species and association with human malaria in the Atlantic Forest in south-
eastern Brazil. Memorias Do Instituto Oswaldo Cruz. 2011; 106 239-49.

[224] Yasuoka J, Levins R. Impact of deforestation and agricultural development on ano‐
pheline ecology and malaria epidemiology. American Journal of Tropical Medicine
and Hygiene. 2007; 76(3) 450-60.

[225] Vittor AY, Pan W, Gilman RH, Tielsch J, Glass G, Shields T, et al. Linking deforesta‐
tion to malaria in the Amazon: Characterization of the breeding habitat of the princi‐
pal malaria vector, Anopheles darlingi. American Journal of Tropical Medicine and
Hygiene. 2009; 81(1) 5-12.

[226] Conn JE, Wilkerson RC, Segura MNO, De Souza RTL, Schlichting CD, Wirtz RA, et
al. Emergence of a new neotropical malaria vector facilitated by human migration
and changes in land use. American Journal of Tropical Medicine and Hygiene. 2002;
66(1) 18-22.

[227] Tadei WP, Thatcher BD, Santos JMH, Scarpassa VM, Rodrigues IB, Rafael MS. Eco‐
logic observations on anopheline vectors of malaria in the Brazilian Amazon. Ameri‐
can Journal of Tropical Medicine and Hygiene. 1998; 59(2) 325-35.

[228] Lerer LB, Scudder T. Health impacts of large dams. Environmental Impact Assess‐
ment Review. 1999; 19(2) 113-23.

[229] Jobin WR. Dams and Disease: Ecological Design and Health Impacts of Large Dams,
Canals and Irrigation Systems. London: Routledge; 1999.

[230] Hunter JM. Inherited burden of disease: agricultural dams and the persistence of
bloody urine (Schistosomiasis hematobium) in the Upper East Region of Ghana,
1959-1997. Social Science & Medicine. 2003; 56(2) 219-34.

[231] Keiser J, De Castro MC, Maltese MF, Bos R, Tanner M, Singer BH, et al. Effect of irri‐
gation and large dams on the burden of malaria on a global and regional scale.
American Journal of Tropical Medicine and Hygiene. 2005; 72(4) 392-406.

Anopheles mosquitoes - New insights into malaria vectors442



[232] Kibret S, Lautze J, Boelee E, McCartney M. How does an Ethiopian dam increase ma‐
laria? Entomological determinants around the Koka reservoir. Tropical Medicine &
International Health. 2012; 17(11), 1320-8.

[233] Zeilhofer P, dos Santos ES, Ribeiro ALM, Miyazaki RD, dos Santos MA. Habitat suit‐
ability mapping of Anopheles darlingi in the surroundings of the Manso hydropower
plant reservoir, Mato Grosso, Central Brazil. International Journal of Health Geo‐
graphics. 2007; 6, 7.

[234] Willott E. Restoring nature, without mosquitoes? Restoration Ecology. 2004; 12(2)
147-53.

[235] Goma LKH. The influence of man's activities on swamp-mosquito breeding in Ugan‐
da (Diptera: Culicidae). Journal of the Entomological Society of South Africa. 1961; 24
231-47.

[236] Malan HL, Appleton CC, Day JA, Dini J. Wetlands and invertebrate disease hosts:
Are we asking for trouble? Water Sa. 2009; 35(5) 753-67.

[237] Carlson JC, Byrd BD, Omlin FX. Field assessments in western Kenya link malaria
vectors to environmentally disturbed habitats during the dry season. BMC Public
Health. 2004; 4, 33.

[238] Thullen JS, Sartoris JJ, Walton WE. Effects of vegetation management in constructed
wetland treatment cells on water quality and mosquito production. Ecological Engi‐
neering. 2002; 18(4) 441-57.

[239] Walton WE, Popko DA, Van Dam AR, Merrill A, Lythgoe J, Hess B. Width of plant‐
ing beds for emergent vegetation influences mosquito production from a constructed
wetland in California (USA). Ecological Engineering. 2012; 42 150-9.

[240] Knight RL, Walton WE, O'Meara GF, Reisen WK, Wass R. Strategies for effective
mosquito control in constructed treatment wetlands. Ecological Engineering. 2003;
21(4-5) 211-32.

[241] Sanford MR, Chan K, Walton WE. Effects of inorganic nitrogen enrichment on mos‐
quitoes (Diptera : Culicidae) and the associated aquatic community in constructed
treatment wetlands. Journal of Medical Entomology. 2005; 42(5) 766-76.

[242] Yadav P, Foster WA, Mitsch WJ, Grewal PS. Factors affecting mosquito populations
in created wetlands in urban landscapes. Urban Ecosystems. 2012; 15(2) 499-511.

[243] Greenway M. The role of constructed wetlands in secondary effluent treatment and
water reuse in subtropical and arid Australia. Ecological Engineering. 2005; 25(5)
501-9.

[244] Carlson DB, Knight RL. Mosquito production and hydrological capacity of southeast
Florida impoundments used for waste-water retention. Journal of the American Mos‐
quito Control Association. 1987; 3(1) 74-83.

Ecology of Larval Habitats
http://dx.doi.org/10.5772/55229

443



[245] Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, et al.
Human alteration of the global nitrogen cycle: Sources and consequences. Ecological
Applications. 1997; 7(3) 737-50.

[246] Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. Non‐
point pollution of surface waters with phosphorus and nitrogen. Ecological Applica‐
tions. 1998; 8(3) 559-68.

[247] Howarth RW, Anderson D, Cloern J, Elfring C, Hopkinson C, Lapointe B, et al. Nu‐
trient pollution of coastal rivers, bays, and seas. Issues in Ecology. 2000; 7 1-15.

[248] Galloway JN, Cowling EB. Reactive nitrogen and the world: 200 years of change.
Ambio. 2002; 31(2) 64-71.

[249] Camargo JA, Alonso A. Ecological and toxicological effects of inorganic nitrogen pol‐
lution in aquatic ecosystems: A global assessment. Environment International. 2006;
32(6) 831-49.

[250] Townsend AR, Howarth RW, Bazzaz FA, Booth MS, Cleveland CC, Collinge SK, et
al. Human health effects of a changing global nitrogen cycle. Frontiers in Ecology
and the Environment. 2003; 1(5) 240-6.

[251] Teng HJ, Wu YL, Wang SJ, Lin C. Effects of environmental factors on abundance of
Anopheles minimus (Diptera : Culicidae) larvae and their seasonal fluctuation in Tai‐
wan. Environmental Entomology. 1998; 27(2) 324-8.

[252] Minakawa N, Dida GO, Sonye GO, Futami K, Njenga SM. Malaria vectors in Lake
Victoria and adjacent habitats in western Kenya. Plos One. 2012; 7(3) e32725.

[253] Patz JA, Olson SH. Malaria risk and temperature: Influences from global climate
change and local land use practices. Proceedings of the National Academy of Scien‐
ces of the United States of America. 2006; 103(15) 5635-6.

[254] Reiter P, Thomas CJ, Atkinson PM, Hay SI, Randolph SE, Rogers DJ, et al. Global
warming and malaria: a call for accuracy. Lancet Infectious Diseases. 2004; 4(6) 323-4.

[255] Chaves LF, Koenraadt CJM. Climate change and highland malaria: Fresh air for a hot
debate. Quarterly Review of Biology. 2010; 85(1) 27-55.

[256] Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M. Malaria resurgence in the
East African highlands: Temperature trends revisited. Proceedings of the National
Academy of Sciences of the United States of America. 2006; 103(15) 5829-34.

[257] Chaves LF, Hashizume M, Satake A, Minakawa N. Regime shifts and heterogeneous
trends in malaria time series from Western Kenya Highlands. Parasitology. 2012;
139(1) 14-25.

[258] Bomblies A. Modeling the role of rainfall patterns in seasonal malaria transmission.
Climatic Change. 2012; 112(3-4) 673-85.

Anopheles mosquitoes - New insights into malaria vectors444



[259] Trung HD, Van Bortel W, Sochantha T, Keokenchanh K, Quang NT, Cong LD, et al.
Malaria transmission and major malaria vectors in different geographical areas of
Southeast Asia. Tropical Medicine & International Health. 2004; 9(2) 230-7.

[260] Gunasekaran K, Jambulingam P, Srinivasan R, Sadanandane C, Doss PSB, Sabesan S,
et al. Malaria receptivity in the tsunami-hit coastal villages of southern India. Lancet
Infectious Diseases. 2005; 5(9) 531-2.

[261] Jude PJ, Dharshini S, Vinobaba M, Surendran SN, Ramasamy R. Anopheles culicifacies
breeding in brackish waters in Sri Lanka and implications for malaria control. Malar‐
ia Journal. 2010; 9, 106.

[262] Reinbold-Wasson DD, Sardelis MR, Jones JW, Watts DM, Fernandez R, Carbajal F, et
al. Determinants of Anopheles seasonal distribution patterns across a forest to periur‐
ban gradient near Iquitos, Peru. American Journal of Tropical Medicine and Hy‐
giene. 2012; 86(3) 459-63.

[263] Charlwood JD. Biological variation in Anopheles darlingi root. Memorias Do Instituto
Oswaldo Cruz. 1996; 91(4) 391-8.

[264] Keiser J, Singer BH, Utzinger J. Reducing the burden of malaria in different eco-epi‐
demiological settings with environmental management: a systematic review. Lancet
Infectious Diseases. 2005; 5(11) 695-708.

[265] Lambrechts L, Knox TB, Wong J, Liebman KA, Albright RG, Stoddard ST. Shifting
priorities in vector biology to improve control of vector-borne disease. Tropical Med‐
icine & International Health. 2009; 14(12) 1505-14.

[266] Raghavendra K, Barik TK, Reddy BPN, Sharma P, Dash AP. Malaria vector control:
from past to future. Parasitology Research. 2011; 108(4) 757-79.

[267] Najera JA, Gonzalez-Silva M, Alonso PL. Some lessons for the future from the Global
Malaria Eradication Programme (1955-1969). Plos Medicine. 2011; 8(1) e1000412.

[268] Worrall E, Fillinger U. Large-scale use of mosquito larval source management for
malaria control in Africa: A cost analysis. Malaria Journal. 2011; 10 338.

[269] McKenzie FE, Baird JK, Beier JC, Lal AA, Bossert WH. A biologic basis for integrated
malaria control. American Journal of Tropical Medicine and Hygiene. 2002; 67(6)
571-7.

[270] Gu WD, Novak RJ. Habitat-based modeling of impacts of mosquito larval interven‐
tions on entomological inoculation rates, incidence, and prevalence of malaria.
American Journal of Tropical Medicine and Hygiene. 2005; 73(3) 546-52.

[271] Fillinger U, Lindsay SW. Larval source management for malaria control in Africa:
myths and reality. Malaria Journal. 2011; 10 353.

Ecology of Larval Habitats
http://dx.doi.org/10.5772/55229

445



[272] Minakawa N, Mutero CM, Githure JI, Beier JC, Yan GY. Spatial distribution and hab‐
itat characterization of anopheline mosquito larvae in western Kenya. American
Journal of Tropical Medicine and Hygiene. 1999; 61(6) 1010-6.

[273] Abdul-Ghani R, Al-Mekhlafi AM, Alabsi MS. Microbial control of malaria: Biological
warfare against the parasite and its vector. Acta Tropica. 2012; 121(2) 71-84.

[274] Mittal PK. Biolarvicides in vector control: challenges and prospects. Journal of Vector
Borne Diseases. 2003; 40 20-32.

[275] Favia G, Ricci I, Damiani C, Raddadi N, Crotti E, Marzorati M, et al. Bacteria of the
genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito
vector. Proceedings of the National Academy of Sciences of the United States of
America. 2007; 104(21) 9047-51.

[276] Cirimotich CM, Ramirez JL, Dimopoulos G. Native microbiota shape insect vector
competence for human pathogens. Cell Host & Microbe. 2011; 10(4) 307-10.

[277] Chouaia B, Rossi P, Epis S, Mosca M, Ricci I, Damiani C, et al. Delayed larval devel‐
opment in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Micro‐
biology. 2012; 12, suppl. 1, S2.

[278] Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK. Bacterial diversity analysis
of larvae and adult midgut microflora using culture-dependent and culture-inde‐
pendent methods in lab-reared and field-collected Anopheles stephensi-an Asian ma‐
larial vector. BMC Microbiology. 2009; 9, 96.

[279] Peterson AT. Shifting suitability for malaria vectors across Africa with warming cli‐
mates. BMC Infectious Diseases. 2009; 9, 59.

Anopheles mosquitoes - New insights into malaria vectors446


