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1. Introduction

Radar sensors offer in general the capability to measure extremely accurately target range,
radial velocity, and azimuth angle for all objects inside the observation area. These target
parameters can be measured simultaneously even in multiple target situations, which is a
technical challenge for the waveform design and signal processing procedure. Furthermore,
radar systems fulfil these requirements in all weather conditions, even in rain and fog, which
is important for all automotive applications, [1], [2]. Advanced driver assistant systems
(ADAS) are currently under investigation to increase comfort and safety in general. For
Adaptive Cruise Control (ACC) applications a single 77 GHz radar sensor is used, which has
a maximum range of 200 m and covers a narrow azimuth angle area of 15 degree for example.
Many other and additional automotive applications, like Stop & Go, Pre-Crash or Parking
Aid, consider a completely different observation area [3]. In this case a maximum range of
50m, but a wide azimuth angle area of 120 degrees is required. For these applications 24 GHz
radar sensors are used. Besides the range and velocity parameters, additional information
concerning the target type are of great interest, as one of the main objectives of future safety
systems will be the increased protection of all pedestrians and other vulnerable road users.

By extending the radar signal processing part of a 24 GHz radar sensor with a pedestrian
recognition scheme, the same radar sensor which is used for the mentioned applications can
be applied additionally for pedestrian recognition and allows the design of pedestrian safety
systems. Therefore, the radar signal processing part has to be adapted to the assumption of
extended targets with a characteristic range profile and a velocity profile (e.g. based on the
Doppler Spectrum) in general [4]. The detailed analysis of the resulting range profile and
target’s velocities is possible and can be used to recognize pedestrians in urban areas with
conventional 24 GHz radar sensors.

2. Radar sensor and measurements

Several proposals for pedestrian recognition schemes have been described, which are based
on video cameras and computer vision systems [7], [8]. But automotive radar sensors in the
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242 Ultra-Wideband Radio Technologies for Communications, Localization and Sensor Applications

24 and 77 GHz band are also strong candidates for automotive safety systems. Compared
with vision systems, they have some additional important advantages of robustness in all
weather conditions, simultaneous target range and radial velocity measurement and a high
update rate. These properties are especially important for pedestrian recognition, as the object
classification should be available immediately and at any time.
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Figure 1. Daily traffic situation in an urban area with an oncoming vehicle and pedestrians walking on
the sidewalk.

This chapter presents the modulation scheme of an automotive radar sensor and explains the
features of pedestrians and vehicles by which a robust classification is possible in an urban
area from a moving vehicle with a mounted 24 GHz radar sensor, see Figure 1.

2.1. Modulation scheme

The automotive 24 GHz radar sensor allows a simultaneous and unambiguous measurement
of target range R and radial velocity v; even in multiple target situations. This is achieved by
combining the advantages of the Frequency Shift Keying (FSK) waveform and the Frequency
Modulated Continuous Waveform (FMCW) in a so called Multi Frequency Shift Keying
(MFSK) waveform [19], which is already used in commercial automotive radar sensors to
enable Adaptive Cruise Control (ACC) or Blindspot Detection (BSD) [20], [21]. Applying an
FSK waveform, the target range R and radial velocity vy can be measured. However, there
is no range resolution. Multiple objects measured at the same spectral line in the Doppler
spectrum result in an unusable range information, as the determination procedure assumes
a single target. To mitigate this drawback, the FMCW waveform resolves targets in range R
and velocity v;. Limitations will occur in this case in multi target situations due to ambiguous
measurements. The specific MFSK waveform is applied in the 24 GHz Radar sensor for a
range and Doppler frequency measurement even in multi target situations with a bandwidth
of fsweep = 150 MHz and a resulting range resolution of AR = 1.0m. It is a classical step-wise
frequency modulated signal with a second linear frequency modulated signal in the same
slope but with a certain frequency shift fstep integrated into this waveform in an intertwined
way. The chirp duration is denoted by Tcp; = 39 ms which results in a velocity resolution of
Av = 0.6km/h.

It is important to notice that this waveform is not processed by a matched filter or analyzed
by an ambiguity function. Instead it is processed in a non-matched filter form to get an
unambiguous and simultaneous target range and Doppler frequency measurement with
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high resolution and accuracy. The echo signal of the stepwise and intertwined waveform
is downconverted by the corresponding instantaneous transmit frequency into baseband
and sampled at the end of each short frequency step. This time discrete signal is Fourier
transformed separately for the two intertwined signals to measure the beat frequency fg
which is simultaneously influenced by the target range R and radial velocity v;.
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Figure 2. MFSK waveform principle with two intertwined transmit signals.
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In any case, a single target will be measured and will be detected on the same spectral line
at position fp for the two intertwined signals. Therefore, after the detection procedure the
phase difference AP between the two complex-valued signals on the spectral line fg will be
calculated. The step frequency fstep between the intertwined transmit signals determines the
unambiguous phase measurement A® in the interval [—77; 77). This phase difference A® again

is influenced by the target range R and radial velocity v, described in Equation (2).

2 20y A7R - frep )

AP = —
f sample A ¢

The target range R and radial velocity v, can be determined by solving the linear equation
described in Equation (1) and (2) in an unambiguous way. In this case, ghost targets are
completely avoided since this waveform and signal processing combines the benefits of linear
FMCW and FSK technology. The system design and the sensor parameters can be determined
like in a linear FMCW radar system. The range and velocity resolution AR and Av are
determined by the bandwidth fsweep of the radar sensor and the chirp duration Tcpy as
described in Equation (3) and (4), respectively.
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c 1
AR = — - 3
2 fsweep @)
A 1
No=-2. )
2 Tcpr

The table below shows the system parameters of the automotive radar sensor in detail.

Carrier Frequency || fr =24 GHz
Sweep Bandwdith || fsweep = 150 MHz
Maximum Range ||Rmax = 200 m
Range Resolution [|[AR =1m

Chirp Length Tcpr = 39ms
Maximum Velocity ||Umax = 250 km/h
Velocity Resolution||Av = 0.6 km/h

Table 1. 24 GHz Radar Sensor Parameters.

Classical UWB-Radar Sensors have a sweep bandwidth of fsweep = 2GHz. Using
such a bandwidth, a high range resolution is determined, which allows also pedestrian
classification. The technical challenge in this chapter is to realize pedestrian recognition
based on a 24 GHz radar sensor with a bandwidth of only 150 MHz. This sensor is used in
automotive applications, therefore an extension of the signal processing in terms of pedestrian
classification is desirable.

2.2. Radar echo signal measurements

The possibility to recognize pedestrians with a static radar sensor using the Doppler effect has
been shown in [15]. A moving vehicle is equipped with an automotive radar sensor with a
built-in feature extraction and classification to recognize pedestrians. The feature extraction
in the backscattered radar echo signals resulting from superposition of the reflection points
of an object is done automatically in the radar sensor signal processing. Detected targets are
therefore tracked in the environment and an additional feature extraction and classification is
performed.

To distinguish between the echo signal characteristics of pedestrians and vehicles, a target
recognition model is described which is based on the specific velocity profile and range
profile for each object separately [4]. The velocity profile describes the extension of the
different velocities of an object measured by the radar sensor, while the range profile shows
the physical expansion of a target.

In case of a longitudinally moving pedestrian, different reflection points at the trunk, arms
and legs with different velocities are characteristic in radar propagation. Therefore an extended
velocity profile will be observed in a single radar measurement of a pedestrian as the velocity
resolution Av of the radar sensor is higher than the occuring velocities. Carrying out several
measurements with a time duration of 39ms each, a sinusoidal spreading and contraction
of the velocity profile can be observed in the case of a pedestrian, due to the movement of
arms and legs for example in the swing and stand-phase of the legs. For a laterally moving
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pedestrian, the velocity profile is less extended due to the moving direction of the pedestrian.
Furthermore, the extension depends mainly on the azimuth angle under which the pedestrian
is measured. In contrast, the radar echo signal in case of a vehicle shows a very narrow (point
shaped) velocity profile due to a uniform motion.

Additionally, a point shaped range profile will occur in the case of a longitudinally or laterally
moving pedestrian as the physical expansion is small compared to the range resolution of
AR = 1.0m. In contrast, a vehicle shows an extended range profile, due to several reflection
points spaced in several range cells. The measurement result of a single observation is shown
in the range Doppler diagram in Figure 4.
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Figure 3. Range profile and velocity profile of a single measurement.

Under the use of an MFSK modulation signal, a range profile and the velocity profile can
be extracted from a series of received signals as shown in Figure 4. As an example, four
consecutive range and velocity measurements are depicted in a range Doppler diagram.
The red dots show a longitudinally walking pedestrian, the blue crosses an in front moving
vehicle. The figures depicted are based on radar measurements taken in an urban area with
an ego speed of 50 km/h. It can be observed that neither velocity profile nor a range profile
can be seen in the first measurement, consequently, those feature values are zero. In the
second measurement, however, several range and velocity measurements allow to calculate
an extended range profile for the vehicle and an extended velocity profile for the pedestrian.
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(a) Measurement 1

(b) Measurement 2

(c) Measurement 3

Figure 4. Sequence of range and velocity measurements.

(d) Measurement 4
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The range profile and velocity profile features do not depend on the modulation signal. Solely,
the range and velocity resolution must be smaller than the expected extension. For example,
in the case of a continous wave modulation signal, the range profile can be read directly from
the Fourier transformed radar echo signal and the velocity profile can be evaluated from
the Doppler spectrum. Also, instead of these spectra or the frequency spectrum and phase
difference analysis, it is possible to calculate the extension of an object in range and velocity
on the basis of target lists by applying a detection algorithm. On this basis, an extended
range profile with a point-shaped velocity profile can also be measured for a vehicle. For a
pedestrian, the profiles remain vice versa. Figure 5 depicts this context.

Rprofile

Vprofilé

Figure 5. Range profile and velocity profile of a pedestrian and a vehicle.

The longitudinally and laterally moving pedestrians are classified as pedestrians,
longitudinally and laterally moving vehicles as vehicles, all other signals received from
objects such as parked cars, poles, trees and traffic signs are classified as other objects.

3. Classification

Target recognition is a challenge for each radar engineer. A reliable feature extraction and
classification process has to be implemented. To describe the characteristics of pedestrians
and vehicles, the velocity profile and range profile signal features have been introduced.
These are the basis in the feature extraction and target recognition system based on a single
radar measurement (single look of 39ms duration) as described in subsection 3.1. An
extended extraction based on the spreading and contraction of the spectra by observing
several measurements is considered in subsection 3.2. Finally in subsection 3.3, a tracker
feedback is calculated where additional features based on the Kalman gain and innovation are
extracted. In the next step, the classification process is performed, which maps the extracted
features into classes. An evaluation of the classification results is shown by means of a
confusion matrix for the case of a single measurement- and multiple measurements-feature
extraction.
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3.1. Classification based on a single radar measurement

Radar sensors provide continuously available measurement results in an interval of a few
milliseconds. This interval is determined by the duration of the transmission signal Tcp; =
39 ms in which a single MFSK signal is transmitted. The echo signal is downconverted and
Fourier-transformed, which allows the described features to be extracted continuously. Rather
than examinating a received sequence of radar echoes, this subchapter will initially focus on
a single radar measurement of Tcp; = 39 ms.

3.1.1. Feature extraction

Automotive radar sensors are an important source of information for security and comfort
systems. The information is measured in terms of range, radial velocity and signal level.
However, information about the object types do not exist. To fill this gap, features from the
available information are extracted, which describe the object types and allow a decision
of the related class on the basis of measured sensor data. To describe a detected object,
this signal processing step calculates a number of features, which are discriminant for
measurements containing different object types and match for objects from the same type.
Thereby, moderately separated features achieve even in a perfect classification algorithm only
moderate or even poor results ([16], [17]). An ideal feature extractor on the other hand shows
good classification performance by using simple linear classifiers. This is why the feature
extraction is so important. For a distinct classification, transformation-invariant features are
sought. Still, there is no recipe to determine a feature set and since each sensor type describes
an object specifically and each task is different, the feature set for pedestrian recognition based
on an automotive radar sensor is explained shortly. Figure 6 shows the feature extraction with
the specific object description in the context of the signal processing chain.
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Figure 6. Context of the feature extraction in the signal processing chain and the object description using
the range profile and velocity profile.
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The basis for feature extraction are the velocity profile and the range profile of a detected
object which has been described previously. The term of the profile describes the physical and
kinematic dimensions of an object in the distance, angle and velocity. This can be measured in
the case of multiple reflection points with different velocities greater than zero for any object.
It can involve an extended or a point-shaped profile for the range and velocity depending on
the type of expansion. On this basis, a number 7 of features can be calculated which describe
the object in terms of a radar measurement. All n calculated real valued features x, ..., x,, are
saved in a feature vector ¥ and build the basis for further signal processing steps.

X=(x1,xp,..,xp) n € N,x; €R (5)
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Exemplarily, the calculation of the range profile Ry, ofile is given in Equation (6). Analogously,
the velocity profile vpofile Of the spectrum can be calculated, Equation (7).

X1 = Rproﬁle = Rmax - Rmin (6)

X5 = Uprofile — Umax — Umin @)
The approach in feature extraction, using stochastic features, assumes that the measured data
are random variables with independent and identical distribution. From this data within a
single measurement cycle the variance and the standard deviation is estimated. To support
the classification process, the number of scatterers is extracted, which describes the number
of detected reflection points of an object. This approach allows a classification of the object
type within a single measurement. The entire feature set for n = 8 features is shown in Table

2 below.
Feature || Annotation || Description
X1 Rprofile Extension in range
X2 std(R) Standard deviation in range
X3 var(R) Variance in range
X4 Uy Radial Velocity
X5 Uprofile Extension in velocity
X std(vr) Standard deviation in velocity
X7 var(vy) Variance in velocity
Xg scatterer Number of scatterers

Table 2. Feature Set of each object in a single measurement.

To determine the quality of a feature, the common area index (CAI) of two histograms is
considered. While a common area index of 0 describes a complete overlapping of the feature
space, a CAI of 1 describes an absolutely separable feature.

Several urban measurement scenarios of longitudinally moving vehicles and pedestrians were
measured with an automotive radar sensor. From the detections of each single measurement
cycle the features are extracted. Exemplarily, the velocity profile of a vehicle and a pedestrian
is depicted in Figure 7 as a histogram. It shows a strong overlap of the area with a point
shaped extension. This results directly from the model. A pedestrian is not extended at all
times, because the arms and legs move sinusoidally. In addition, the echo signal fluctuates
which causes fewer detections in a measurement. The vehicle equipped with the radar sensor
moves also. The quality of the feature is calculated to CAI = 0.57.

3.1.2. Classification

The assignment of a measured object to a class is performed by a subjective decision
algorithm based on the extracted characteristics. This process is called classification. The
features therefore have been described previously, and are extracted within a single radar
measurement of Tcp; = 39 ms. In supervised classifiers, the model of the classifier is generated
in a training phase by using a training data set. The verification is performed in an evaluation
phase with a test data set. The training data and test data consist of randomly selected feature
vectors X of the radar measurements and corresponding assigned class labels. In the training
and evaluation phase the classification result can be compared to the class labels and make a
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Figure 7. Feature histogram of the velocity profile using single radar measurements as a basis for feature
extraction. The common area index is calculated to 0.57.

statement about the performance of the algorithm and designed model. Figure 8 depicts this
process.

measurements extraction
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Figure 8. Signal flow graph of the classification process. Using a training data-set a model can be
evaluated which performance is measured by a labelled test data set. This model is used for the
classification process.

A classifier based on statistical learning theory is the support vector machine (SVM),
introduced by Boser et al. in 1992 [24]. The SVM became very famous as studies about
classification algorithms show good performance [25]. The classification process has low
complexity and is very effective for high dimensional feature vectors. An SVM separates a
set of training data by calculating a hyperplane i(x) with maximum margin between the two
classes &1 in a higher dimensional space in order to find the best classification function.

In this classification process, the SVM is able to map the extracted feature set into three
different classes by using a majority voting algorithm. The verification of the previous training
is conducted with the help of test data sets recorded from real urban measurements.

Table 3 shows the classification results. A trained and tested SVM was applied to different
data sets of the extracted features from single measurements. All measurements were taken
in an urban area with an ego velocity of 50 km/h. Applying new test data results in 71.32%
true positive for a vehicle and 45.20% true positive for a pedestrian.

These quantitative results show already a possibility to distinguish between vehicles,
pedestrians and other objects. However the performance is not good enough. Therefore
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| |[Vehicle|Pedestrian|Other |

Vehicle 71.32 |5.87 22.81
Pedestrian||10.29 45.20 44.52
Other 23.56 |26.65 49.78

Table 3. Confusion matrix: classification applied to a single measurement test data set containing 8000
data samples.

multiple radar measurements are considered to extract a more significant features set for the
classification process.

3.2. Classification based on multiple radar measurements

From the continuously available radar measurements, a single measurement can be used to
extract a feature set on the basis of range profile and velocity profile and estimated stochastic
features. In this section, several range and velocity measurements are buffered and build
the basis for the additional extraction process. From these buffered measurements a second
multiple measurement feature set is extracted. This extends the classification process, which
was previously based on a single measurement only.

3.2.1. Feature extraction

To gain performance, the choice of the measurement buffer dimension is cruical. A long
measurement buffer builds the basis for a more successful feature extraction, however results
in a long classification time, as the classifier has to wait for the buffer to be filled. A short
buffer, on the other hand is not always able to build the basis for separable features, as shown
in the previous section where a single measurement is used. In this section, the dimension
of the buffer is explained by means of "probability of maximum velocity profile" and fast
availability deduced from the step frequency of a moving pedestrian.

An ideal measurement of a moving pedestrian allows to extract the step frequency from
the spreading and contraction of the velocity profile [9]. This step frequency of fpeq =
14 — 1.8Hz can be used to determine a necessary buffer dimension. Every 1.4Hz the
maximum velocity profile can be observed considering a moving pedestrian, which allows
to extract the maximum velocity profile and range profile. At all other times, the expansion
in velocity is lower or even zero. To detect at least one expansion in velocity, the number of
measurements should therefore span a period of Tpeq = f::. However, it can be assumed
that all measurements are independent of each another, due to the ego motion of the radar,
vibrations and fewer detections. Applying the feature extraction process using a single
measurement, the probability P to extract an extended velocity is then given by:

Tcpr
Pvpmfﬂe,single = 1/ fped (8)

Assuming an equal distribution, multiple measurements increase the probability to extract a
velocity profile by the factor %.

TBuffer' TCPI (9)
Terr 1/ fped

P, Vprofile,multiple =
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It can be seen that a long measurement buffer increases the probability to detect the
maximum velocity profile. But even a smaller velocity profile can be detected and fulfils the
requirements. In these measurements, a buffer of Ty o, = 150 ms is applied.

Using current and time delayed range measurements leads to incorrect range profiles, due to
the movement of the objects during the elapsed buffer time. To cope this, the corresponding
range measurements inside the buffer must therefore be predicted in range. Each stored
measurement is predicted in range by the elapsed time ATgyfer and the velocity 7 = (vy, vy)

during the measurements to compensate the movement. A new estimated range R = |R*| can
be calculated by a cartesian representation using velocity and elapsed time:

R*=R + ATgugfer - U with R= (X, Y) and 7 = (Ux; Uy) (10)

The multiple measurement feature set is shown in Table 4. It consists of the same
characteristics as the single measurement feature set, but is calculated from a basis of several
buffered velocity and predicted range measurements.

Feature|| Annotation ||Description

X9 Rproﬁle,buf Extension in range

X10 std(R,buf) ||Standard deviation in range
X11 var(R,buf) || Variance in range

X12 Urbuf Radial Velocity

X13 Uprofilebuf || EXtension in velocity

X14 std(v.pys)  ||Standard deviation in velocity
X15 var(vypys) || Variance in velocity

X16 scatterer,buf||Number of scatterers

Table 4. An additional feature set extracted from multiple measurements. To cover multiple
measurements, each single measurement R, v; is stored in a buffer of several milliseconds. This ensures a
quick availability of an additional feature set for pedestrian classification.

In the previous section the characteristic velocity profile of a vehicle and a pedestrian was
depicted as a histogram. On the basis of a single radar measurement a quality of CAI = 0.57
was determined. Using multiple radar measurements the feature extraction is based on a
larger number of measurement values. This leads to a higher separability of the features as
shown exemplarily in Figures 9(a), 9(b). The common area index has a value of CAI = (.88
and thus increases by 31% compared to the single measurement feature extraction.

3.2.2. Classification

In the single measurement it is described how range and velocity measurements build the
basis for the feature vector and the classification process. In the multiple measurement, the
basis is an extended feature vector based on several range and velocity measurements of an
object stored inside a buffer. Instead of using 8 features from a single measurement, additional
8 features are available for the first time with a filled buffer. For a successful classification
using a SVM, a new model is built, which is also trained/tested with in total 16 features and
is a basis for the following classification process. As shown in the confusion matrix in Table 5
by the additional features, the correct classification and the overall performance achieved,
increases by using a total number of 16 features from single and multiple measurements.
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Figure 9. Feature histogram of the velocity profile using multiple radar measurements as a basis for
feature extraction. The common area index is calculated to 0.88.

Additionally, classifying feature vectors from single and multiple measurements results in
fewer false positives.

‘ || Vehicle|Pedestrian|Other |

Vehicle 90.71 |0.58 8.71
Pedestrian||4.94 53.94 41.12
Other 16.28 |16.64 67.08

Table 5. Confusion matrix: classification applied to a single and multiple measurement test data set
containing 8000 data samples.

Due to additionally multiple measurements as a basis for feature extraction, an improvement
in the classification result is shown. Especially in terms of correct classification of a pedestrian
and false alarms in which a pedestrian was classified as a vehicle, a significant enhancement
is seen.

3.3. Classification based on the tracker feedback

A single radar measurement and multiple radar measurements were considered for feature
extraction. These features are already a good basis for the classification process. In this
subchapter, a third, additional feature set is described. This set can be extracted from the
tracking algorithm. In this adaptive algorithm, different process noise of pedestrian radar
measurements and vehicle radar measurements result in different gains for the track. On this
basis, the process noise Q and the calculated gain K are additional features and are added to
single and multiple radar measurement features in the classification process.

3.3.1. Feature extraction

Tracking is defined by a state estimation of moving targets. This state estimation is determined
from the state parameters such as position, velocity and acceleration from a detected target.
Known tracking methods are for example the alpha-beta filter or Kalman filter [26] which
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estimate a new state using a well-known prior state (e.g. position, velocity, acceleration). This
reduces false alarms and smoothes movements of the objects.

The Kalman filter is a linear, recursive filter, whose goal is to determine an optimal estimate
of the state parameters. The optimal estimate is based on available measurements and the
models which describe the observed objects. In the equation of the motion model and
observation model, the measurement noise is assumed to be average free, white Gaussian
noise with the known covariance Qj_1 and Ry respectively. Under the given conditions, i.e.,
linear models and Gaussian statistics, the Kalman filter provides the optimal solution for the
estimation of the state in the sense of minimizing the mean squared error, as described in [26].

The tracking for the object described by the motion model of the Kalman filter works fine
as long as the motion models fit to the object. Pedestrians, vehicles, and static objects have
different motion, which makes the tracking more difficult. Instead of creating a different
motion and observation model for each object, it is proposed to determine the covariance
of process noise Q; and the measurement noise Ry adaptively. The process noise considers
a non-modeled behavior in the motion model, while the measurement noise consideres
uncertainty in the measurement. The original Kalman filter is not adaptive, which is why
deviations from the model can not be handled. The gain matrix K, which is calculated from
the process and measurement noise, reaches a stable condition after a short measurement time.
An increase in the covariance Qy leads to a larger value for K, so that the measured values are
weighted more strongly, a decrease in Qj relies more on the estimation.

In addition to an improved tracking effect, additional features can be extracted from the
adaptive adjustment of the process noise, as pedestrian measurements in range and velocity
differ from those of vehicles. Next to the process noise Qy ,, of the velocity, the Kalman gain
Ky (velocity component of the matrix K) is a good feature as measurements show. Anyhow,
in an adaptive adjustment of the process noise, a compromise between the compensation of
non-modeled movements and the filtering effect to reduce noise must be found, even though
features are extracted.

The process noise matrix Q describes object-specific measurement properties that are initially
set and are readjusted during operation of the tracker. For example, the readjustment of a
single coefficient Qy , in the Q matrix at the measurement k in respect to the velocity v is
based on the actual target range R, the velocity v, the parameters 2 and b in an alpha-beta filter.
Equation (11) shows the relation. The velocity of a pedestrian deviates between consecutive
measurements, while the velocity deviation of a car within consecutive measurements is small
or even zero. Consequently, the velocity v can be used to update the matrix Q.

|2k,0 — vk|k—1|

Qko=(1=p)Qk-10+B Reja+b (11)

The predicted covariance matrix Py;_y in the tracking process depends on the motion model
Fi—1, the currently measured covariance P;_;_; and the process noise Q1 as shown in
Equation (12).

Peje—1 = Fe1Peopee1Fy1 Qi1 (12)
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Under the use of this covariance matrix Py, _; and the innovation covariance S, the gain Kj
can be calculated.

Ky = Pej—15; " (13)

Both, matrix Qj and gain K} are used as additional features in the classification process. The
separation of the feature space is depicted in Figure 10. These histograms show that a vehicle
(Figure 10(c), 10(d)) has lower process noise Q, and thus results in a smaller gain K compared
to a pedestrian (Figure 10(a), 10(b)). This is due to a mostly linear trajectory of a vehicle with
one main reflection point. A pedestrian echo fluctuates, which is reflected in a greater process
noise and thus larger gain K.
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Figure 10. Feature Histogram of Process Noise Q, and Gain K.

The additional features Q and K are available for a created and active track. For each detected
object a track is created, which is however not activated until several measurements can be
associated with the track. A track must be confirmed by subsequent measurements, otherwise
the track remains semi-active. In any case, additional features are available for classification.

Feature|| Annotation || Description
X17 Qu Velocity component of the process noise matrix Q
x18 Ky Veleocity component of the Kalman gain matrix K

Table 6. Additional Feature Set extracted from the tracker using an adaptive process noise.

3.3.2. Classification

An additional feature extraction based on the process noise and Kalman gain has been
described. These features are added to the prior feature set. Table 7 shows the results of
the classifier using all proposed features, single measurement, multiple measurements and
tracker feedback. Even in an urban area with a high density of static targets pedestrians could
be detected, tracked and classified with a true positive rate of 61.22% in the test data set. These
results outperform prior outcomes using single- and the multiple measurements as a feature
basis.

The classification results show an increasing performance in terms of correct classification and
misclassification of pedestrians.
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| |[Vehicle|Pedestrian|Other |

Vehicle 92.84 |0.50 6.66
Pedestrian||5.71 61.22 33.07
Other 10.06 [13.30 76.64

Table 7. Confusion matrix: classification applied to a single, multiple and tracker feedback measurement
test data set containing 8000 data samples.

4. Summary and conclusions

This chapter described a pedestrian classification algorithm for automotive applications using
an automotive 24 GHz radar sensor with a bandwidth of 150 MHz as a measuring device.
Three different systems for pedestrian recognition have been considered. The first system
was based on a single radar measurement. The second system extracted a feature set on the
basis of multiple radar measurements. Finally a tracking procedure was adapted to extract
an additional feature set. The results show an increasing performance in the classification
accuracy by using single-, multiple- and tracker feedback features. It is also pointed out that
is not necessary to equip radar sensors with large bandwidths in order to classify pedestrians
in urban areas.
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