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1. Introduction 

The exploitation of electromagnetic interaction with matter specifically with organic tissues 

is a powerful method to extract information about the state of biological objects in a fast, 

continuous and non-destructive (i.e. painless) way. These interactions are mainly based on 

two groups of phenomena.  

One proceeds on an atomic and molecular level, which is typically described by the 

macroscopic quantities permittivity  , permeability   and conductivity  . The physical 

reasons of possible interactions may be quite manifold. Here, in connection with ultra-

wideband sounding, we restrict ourselves to pure electric interactions which affect the 

permittivity and conductivity via the motion of free charge carriers (free electrons and ions), 

the Maxwell-Wagner polarization (also Maxwell-Wagner-Sillars polarization) at boundaries, 

reordering of dipolar molecules or oscillations on an atomic or nuclear level. We assume that 

all involved substances have the permeability of vacuum 0  . An overview of relevant 

interaction mechanisms for biological tissue is given in [1], and sub-chapter 3 deals with some 

selected examples. The related effects are scattered over a huge frequency band covering 

15…18 decades. In this paper, we limit ourselves to RF and lower microwave frequencies. 

Water – the key building block of life –shows dipole relaxation within the considered 

frequency band. Additionally, it has a very high permittivity in comparison with other natural 

substances. Hence, water will play an important role for UWB-sounding of biological tissue or 

human and animal subjects. Examples exploiting this fact are discussed in sub-chapter 5 

dealing with breast cancer detection or in [2], which refers to lung edema. The frequency 

bands of our experiments were selected depending on physical requirements (propagation 

attenuation, relaxation time) and implementation issues of the sensor electrodes (e.g. antennas).  
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The second group of phenomena refers to macroscopic effects like reflection and refraction 

of electromagnetic waves. These effects appear at boundaries between substances of 

different permittivity or conductivity. Thus, a human body illuminated by radio waves will 

generate new waves which may be registered by an UWB radar sensor. The strongest waves 

are provoked by the skin reflection due to the large contrast between air and skin. But also 

inner organs will leave a trace in the scattered waves since firstly, electromagnetic waves 

within the lower GHz range may penetrate the body, and secondly, the various organs have 

different permittivity (e.g. due to different water content) leading to reflections at the organ 

boundaries. These waves can be used to reconstruct high resolution 3D microwave images 

of external or internal body structures and also to track their shape variation and motion. 

It should be emphasized that motion is a strong indicator of vital activities like breathing, 

heartbeat or walking which can be registered remotely via UWB-radar sensing. This opens 

up new approaches of medical supervision as exemplified in sub-chapter 4, rescue of people 

in dangerous situation [3], [4] or supervision of people in need [5], [6]. 

In what follows, we like to review first some important requirements and technical solutions 

of high-resolution short-range UWB-sensor aimed at medical applications before we discuss 

a couple of selected aspects of medical ultra-wideband sensing in greater detail as for 

example: 

a. Impedance (or dielectric) spectroscopy: It is performed to quantify and qualify 

biological tissue and cells. Here, we have to deal with reflection measurements at an 

open ended coaxial probe which is in direct contact to the material under test. 

b. Organ motion tracking: It is aimed to observe temporal shape variations of the heart 

and the lung in order to trigger a magnetic resonance (MRI)-tomography. This task 

requires a remotely operating MIMO-antenna array with an up-date rate which is 

sufficiently high to follow mechanical motions up to 200 Hz. 

c. Remote microwave imaging for surface reconstruction: It may be used as first step in a 

chain of further UWB-investigations based on remote sensing for inner organ 

evaluation. In the scope of this work, the data capture was implemented by scanning a 

torso. Under real conditions, such measurements must be made in real time using a 

large MIMO array (large in the sense of the number of antennas) in order to avoid 

artifacts due to body motions during the scan time. 

d. Contact-based microwave imaging: In this case, the antennas are placed onto the skin 

either directly or through a thin dielectric layer in order to emphasize the radiation into 

the body. Applications are cancer detection or organ supervision and monitoring 

requiring densely occupied MIMO-arrays based on small radiators. 

2. ultraMedis sensing devices 

2.1. Requirements 

The following overview summarizes some technical key features and requirements to be 

satisfied by the sensor electronics corresponding to the application types a) – d). 
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Bandwidth: UWB sensing is an indirect measurement method. As a general rule of thumb, 

one can state that the quantity respectively the reliability of the gathered information 

increases with the bandwidth of the sounding signal. It is predetermined and limited by the 

physical effects involved as well as technical implementation issues. In the case of 

impedance spectroscopy (application type a)), we applied Network Analyzers or M-

sequence devices (see below) whose operational band was spanned from several hundred 

KHz to some GHz. For UWB-radar experiments, the frequency band was typically limited to 

1-13 GHz or to 1-4…8 GHz. The lower cut-off frequency is typically determined by the size 

of the antennas while wave penetration into the body limits the upper frequencies. 

Correspondingly, the first frequency band was applied for application type c) which 

involves only propagation in air. The sensor device was a modified M-Sequence radar [7], 

[8]. If the sounding field must penetrate the body (applications b) and d)), the upper 

frequency may be reduced since wave attenuation dominates the other effects. Some details 

concerning the sensor structure are summarized in the next sub-chapter. 

Field exposition: The strength of field exposition appearing in connection with UWB-sensing 

is usually harmless for biological tissue. Nevertheless, one should distinguish between an 

average charge and a short impact. A certain average charge of the test objects is required in 

order to achieve a given quality (in terms of signal-to-noise ratio) of the captured signals. 

The strength of the maximum impact is related to the type of sounding signals applied by 

the sensor. Sine waves and M-sequences cause maximum impacts of about the same 

strength as their average exposition is. In contrast, pulse systems lead to high-peak impacts 

even if their average charge keeps the same value as for sine waves or M-sequences. Hence, 

some attention should be paid to the selection of the sensor principle if applicators in direct 

contact with tissue and short electrode distances are involved (applications of type a) and 

d)) since this may lead to high field strengths within the test objects causing non-linear 

effects or even local damages.  

Time stability: Here, the term ‘time stability’ refers to a summary of several facets of sensor 

performance like precision of equidistant sampling (i.e. linearity of time axis), long-term 

stability (drift), and short-term stability (jitter). These aspects pertain to all applications. 

They strongly affect the quality of the captured signals and, hence, the achievable results of 

the signal processing. In detail, the following items are concerned: 

 the quality of time-frequency conversions via FFT, which is an important tool for signal 

processing 

 the quality and durability of sensor calibration (3- or 8-term calibration), 

 the limits of super-resolution techniques and the quality of background removal,  

 the capability to detect weak targets in the neighborhood of strong ones, and 

 the micro-Doppler sensitivity with respect to weak target detection and slow motions 

tracking. 

Some additional aspects of this topic are summarized in Chapter 14. A thorough discussion 

of related problems and their linkage to the sensor principles is given in [9]. 
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Measurement rate, channel number, data handling: Except for impedance spectroscopy, the 

applications mentioned above require MIMO-sensor arrays which have to run at a 

reasonable update rate. On the one hand, this assumes cascadable sensors in order to build 

multi-channel systems, and on the other it poses some challenges for the data handling 

resulting from the large number of measurement channels and the high measurement rate. 

Chapter 14 (section 2.1) adverts to some measures which avoid redundant and inefficient 

data. Irrespective of these measures, the data throughput will be still quite high so that 

standard PCs and interfaces quickly reach their capacity limits.  

Radiators: The radiators represent the interface between sensor electronics and test object for 

applications b) – d). They have to convert guided signals into free waves and vice versa. As 

they are linear and time-invariant devices, they may be operated with any type of signals. 

Certainly, their major features are the bandwidth and the beam width which should be as 

large as possible if they are applied for UWB imaging. However, these characteristics 

describe their performance only insufficiently particularly for UWB short-range 

applications. Ideal UWB antennas for our purposes should provide a short and angular 

independent impulse response (time shape and wave front), they should convert the 

incoming signal completely into a free wave, and the incident fields should be converted 

into voltage signals avoiding any re-radiation or scattering by the antenna. These conditions 

are contradictory and cannot be met by a physically realizable antenna. 

A short impulse response is needed for high range and image resolution as well as the 

ability to recover weak targets closely behind surfaces. Otherwise, we risk the loss of the 

target since a slowly decaying surface reflex distorts the target response. If that signal is too 

abundant, even sophisticated background removal strategies will not be able to dig it out. 

The angular independent impulse response is important for the imaging algorithm. For 

every image pixel or voxel, it has to coherently integrate signals which are captured from 

different positions. In order to ensure the coherence of this integration, the propagation time 

to the considered pixel (voxel) must exactly be known. This involves the knowledge of the 

propagation speed as well as the knowledge of the deviation from a spherical wave front 

created by the antennas. In order to achieve a simple and manageable imaging algorithms, 

the involved antennas should avoid such distortions, hence they should be (electrically) 

small [9].  

However, this contradicts the physical conditions for an efficient conversion between 

guided signals and freely propagating waves (see Bode-Fano limit and Chu-Wheeler limit 

[10]). Additionally, efficient antennas backscatter (re-radiate) half of the incident power in 

the ideal case. For targets in close proximity of the antennas, this leads to multiple 

reflections which are hardly to remove by signal processing. As we saw for the impulse 

behavior, the inefficient antennas behave again best regarding their re-radiations (structural 

antenna reflections are omitted here for shortness). Hence, one has to find a reasonable 

compromise between efficiency and impulse as well as scattering performance. Antenna 

efficiency is an important issue in connection with noise suppression and high path losses. 

For imaging at very close distances, noise induced measurement errors are falling below 



 
ultraMEDIS – Ultra-Wideband Sensing in Medicine 261 

the strength of clutter and systematic deviations. Here, efficiency should take a back seat 

in antenna design in favor of a clear impulse response and low self-reflections. The 

sensitivity of the sensor electronics should compensate for the efficiency degradation of 

the antennas. 

Furthermore, radiator related items concern array aspects such as the geometric shape of the 

array, radiator density (depending on antenna size and acceptable cross talk) and 

distribution within the array as well as polarimetric issues. 

In the context of this chapter, we distinguish two types of antenna modes. For the first one, 

the antenna radiates in air, whereas the other mode refers to interfacial antennas which are 

in contact with the test object. In both cases, due to the short target distance, we have to deal 

with spherical waves and their specific reflection and refraction behavior which are 

accompanied by wave front deformations as well as the generation of evanescent and head 

waves [9]. 

Device miniaturization: The application of unusual radiators and the operation of dense 

MIMO-arrays require new sensor concepts avoiding long RF-cables (which have to be 

matched at both sides) as well as large and heavy measurement devices as network 

analyzers. Future MIMO-array implementations for medical microwave imaging should 

have jointly integrated radiator and sensor electronics in order to permit the operation of 

mismatched antennas, to increase the stability of the system, to reduce its susceptibility to 

environmental conditions (e.g. temperature variation or strong magnetic fields) and to 

simplify its handling. The project HaLos (Chapter 14) was addressing related questions of 

sensor integration. 

2.2. ultraMEDIS sensor electronics 

In view of the previous discussion, we mostly abstain from the use of network analyzers 

since they will not meet the requirements of future developments of the sensing technology 

even if they best fulfill the demands with respect to sensitivity, bandwidth and reliability of 

measurement data. A new sensor concept with comparable performance but higher 

measurement speed, better MIMO capability and integration friendly device layout exploits 

ultra-wideband pseudo-noise sequences (namely M-sequences) for the target stimulation 

instead of the sine waves of a network analyzer. This measurement approach was favored 

for our investigations. Device concepts applying sub-nanosecond pulses were rejected due 

to their inherent weakness concerning noise and jitter robustness. The interested reader is 

referred to Chapter 14 and [9] for further discussions of the pros and cons of various sensor 

principles. 

The block schematics of the M-sequence prototype devices applied by ultraMEDIS are 

depicted in Figs. 4 and 6 in Chapter 14. The integrated RF key components were provided 

by the project HaloS while the implementation of prototype devices was performed by 

MEODAT GmbH and later on by ILMSENS. A special issue of an M-sequence device 

provides 12 GHz bandwidth. Its implementation is based on [8]. 
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Figure 1. M-sequence based impedance spectroscopy (bandwidth 17 MHz – 4 GHz; 9th order M-

sequence). Left: Device implementation with external coupler. Right: M-sequence device with internal 

coupler and rigid probe connection to improve measurement reliability. 

Figure 4 of Chapter 14 (HaLoS-project) relates to the basic structure which can be found in 

all device modifications. Such device configurations were applied in an early project state 

for microwave imaging and organ motion tracking experiments. Involving a directional 

coupler, it is further used for impedance spectroscopy as exemplified in Fig. 1. Multi-

channel systems and MIMO-arrays are based on the device philosophy as illustrated in Fig. 

6 of Chapter 14. Implemented examples are depicted in Fig. 2 to Fig. 4. 

 
 

 
 

Figure 2. M-sequence two-port network analyzer (operational band 40 MHz – 8 GHz, 9th order M-

sequence, USB2 interface). It can be extended by an RF-switch matrix for MIMO-radar imaging. 
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Figure 3. 4Tx-8 Rx MIMO device for organ motion tracking in MRI tomographs. (operational band 17 

MHz – 4.5 GHz; 9th order M-sequence; maximum up data rate 530.4 Hz, Ethernet data link, data 

acquisition on Linux PC) 

 

Figure 4. 8 Tx-16 Rx MIMO radar for microwave breast imaging (operational band 20 MHz – 6 GHz; 9th 

order M-sequence, USB2 interface). M-sequence units (as shown in Fig. 6 of Chapter 14) and RF-front 

ends are separated to get more flexibility for experimental purposes. 

2.3. Antennas and sensor elements 

2.3.1. Introduction 

The exploitation of UWB microwave technologies for biomedical diagnostics requires the 

development of antennas and sensors tailored to this application. The integration of the 

antennas as a part of a complex system leads to serious compatibility and functionality 

constraints, which must be properly addressed for high system performance. Within 

ultraMEDIS, two goals were pursued: Firstly, the detection of early stage breast cancer and 

secondly, the development of a magnetic resonance imaging (MRI) compatible navigator 
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system (Section 4). These two goals provide different challenges in terms of antenna design, 

implementation, and experimental evaluation, both with respect to mechanical and electrical 

constraints [10]. As both applications involve different approaches, they will be treated 

separately. 

2.3.2. Dielectrically scaled antennas 

For the process of detecting early stage breast cancer by means of microwave imaging 

(Section 5), the antenna size, the effective radiation of electromagnetic energy into the body, 

and the operational bandwidth turn out to be the main constraints regarding the design of 

the antenna.  

The miniaturization of the antenna is of main concern to meet the requirements of the 

devised imaging technique (Section 5) of placing an array of many antennas surrounding 

the target under investigation (i.e. the human breast), considering also the small anatomic 

dimensions on the scale of the wavelengths of operation. In general, electrically small 

antennas are mismatched or narrowband [10], [11]. One possibility to overcome these 

obstacles is to use the antenna in contact mode, i.e., placing the antennas in contact with the 

target under investigation (e.g., the human body). With this modus operandi the antenna will 

radiate into a dielectric material (the human body), and it can be geometrically scaled by a 

factor of about √ε, where ε represents the dielectric permittivity of the target, without 

changing its electrical dimensions and, therefore, its radiative properties [12]. 

The contact mode presents advantages also with respect to the constraint of the effective 

radiation of electromagnetic energy into the body. In fact, it will not suffer from reflections 

occurring at the air-skin interface, due to the dielectric mismatch between the two grossly 

different media. This will also simplify the imaging processing since it prevents the need of 

surface reconstruction [10], [12]. Though, for practical and hygienic reasons, it is less 

convenient to put the array of antennas in direct contact with the patient’s skin. However, 

the addition of a further layer, e.g. a disposable thin dielectric film, could spoil the effective 

radiation into the body1. Electromagnetic simulations (confirmed by measurements, Section 

5.4) have shown that even the addition of a thin layer (~ 0.5 mm) can reduce the radiated 

power to less than half compared to the direct contact case. The implementation of a 

matching layer (with similar permittivity to human body tissues) can cure this effect (Fig. 5). 

Eventually, particular attention has to be paid to the operational bandwidth of the antenna, 

especially to the lower cut-off frequency, which limits the penetration depth into the target. 

Based on a specific 14-layer model mimicking a trans-thoratic slice from the visual human 

data set, we have computed the penetration of electromagnetic waves into a human body, as 

shown in Fig. 6 [13], [14] and [15]. A strong increase of the signal attenuation with increasing 

frequency is clearly seen. Therefore, the lower cut-off frequency has to be set between 1 GHz 

and 2 GHz. 

                                                                 
1 The relevance of this phenomenon depends also on the antenna type used 
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Figure 5. Simulated scenarios to investigate the effective radiation of electromagnetic energy into the 

body (on the left). The antenna used is a bow-tie excited by a Gaussian pulse of a duration of around 

80 ps FWHM. The Phantom material is a homogenous dispersive material simulating the dielectric 

behavior of the human body tissues. The results (on the right) represent the time-dependent co-polar 

component of the electric field evaluated at a distance of 44.5 mm from the phantom interface (the green 

spot in the figure). The examined cases are, from top to bottom: the antenna in direct contact with the 

phantom; with the implementation of a thin dielectric layer; with the implementation of a matching 

layer plus a thin dielectric layer, respectively. 

ε = 4
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d = 44.5 mm
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2 mm0.5 mm
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Figure 6. Penetration depth into a 14-layer model computed for different frequencies (see legend) [13]. 

The dielectric scaling of traveling-wave antennas, like tapered slot antennas and horn 

antennas, has to consider all three factors - the phase constant, the wave impedance, and the 

feeding structure [16]. Accordingly, extended iterative full-wave simulations were 

performed. The key parameters of the wideband radiation properties of double-ridged horn 

(DRH) antennas turned out to be the curvature of the ridges, the spacing between them, and 

the geometry of the pyramidal casing itself. Traveling-wave antennas have the benefit that 

the dielectric medium used to scale the antenna will serve as an embedded matching medium.  

Our initial design was based on the immersion of dielectric liquids into the sinkhole of a 

dielectrically scaled DRH antenna [15]. The antenna could successfully be manufactured, 

using acetone as dielectric medium, with a scaling factor of about 4, but it was still 

insufficient to obtain a sufficiently compact antenna. The straight-forward approach to solve 

this problem was to replace the acetone by alternative high-permittivity dielectric materials, 

like a solid sintered ceramic. The ceramic powder is the commercial product LF-085 

manufactured by MRA Laboratories based on neodymium titanate [17].  

As the complex permittivity ε of the ceramic body of the antenna plays an important role 

not only in terms of antenna design but also in terms of matching medium, we performed 

measurements to access the complex permittivity following two different strategies: 

employing a split-post dielectric resonator (SPDR, [18]) and a dielectric resonator (DR) 

technique [19][20]. Both techniques are resonant methods and, hence, limit the experimental 

studies to a small set of discrete frequencies, because specific sample geometries are 

required for each measured frequency. The results showed that the sintered ceramic 

presents low frequency dispersion with a mean value of the real part of the permittivity 

ε'  72 [21], offering the potential for a scale factor of around 8. 

The exploitation of the full potential of dielectric scaling leads to an aperture size of only 

11 mm × 16 mm, but also to the reduction of the input impedance by the same scaling factor 

as by which the geometrical dimensions are scaled, resulting in a low value below 10 . This 

value implies a large mismatch in terms of standard electronic equipment, which is usually 

designed for a characteristic impedance of 50 Ω. In order to maintain the compatibility with 

standard electronic equipment, the antenna retains an aperture size of 24 mm × 24 mm, and 

a frequency bandwidth ranging from 1.5 to 5.5 GHz (Fig. 7). 
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Figure 7. The left-hand panel shows the completely processed ceramic body of the antenna. The center 

panel depicts the final antenna including metallization, feed line and dimensions. The right-hand panel 

displays the profile of the ridges. 

In order to properly manufacture the antenna and obtain good yield (of around 75 %) and 

reproducibility, specific manufacturing steps have to be devised, as indicated in the right 

image of Fig. 8 [22]. First, the white-colored ceramic powder (Fig. 8a) is pressed into the 

specific pyramidal shape; a cubic base accommodates the asymmetric feed (Fig. 8b). The 

dimensions of the raw body are slightly enlarged in order to respect the shrinkage upon 

sintering. The sintered body is complemented by grooves, which form the ridges (Fig. 8c), 

and is subsequently galvanically metalized with copper or gold (Fig. 8d). Due to the high 

permittivity of the ceramic body and a feed impedance of 50 Ω, the ridges are nearly linear 

in geometry, in contrast to the markedly curved shapes found in antennas for operation in 

air [12][15]. The feed is provided by a coaxial cable whose center conductor is fed through a 

small bore to the narrow end (diameter about 1.2 mm) of the ridged waveguide. A plastic 

housing and epoxy fixture provide a compact and mechanically rigid construction, to 

protect the ceramic body and the coaxial feed against torque and damages due to improper 

handling. It also provides a mechanical fixture to mount the antennas in an array of complex 

geometry (Fig. 8e). Further details of the manufacturing processes are given in [23]. 

 

Figure 8. The left-top picture shows a dry pressed green body of the antenna with some lubricant on it 

inside the dismantled mold. The left-bottom picture depicts the milling process to work in the ridges 

into the sintered ceramic body. The right picture illustrates the manufacturing steps for the sintered 

horn antenna: powder raw material (a), pressed raw (b), sintered (c), metallized (d), and fully packaged 

versions (e).  

(b)

(a)

(c) (d)
(e)

1 cm 
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A further issue of dielectrically scaled antennas is related to their measurement and 

characterization. As common measurement techniques and equipment cannot be applied, 

we followed three different strategies: measurements made in the frequency domain, 

measurements made in the time domain, and basic tests with volunteers. 

In order to provide dielectrically matched surrounding conditions for the antenna body, the 

antennas were tested in de-ionized water. The results were then compared with data 

obtained in a more realistic environment, i.e. with the antenna put into contact with 

phantoms mimicking human tissues. The phantoms consisted of oil, water and some 

additives [24]. The dielectric permittivity ε' and the loss tangent ε''/ε' of the phantoms can be 

controlled by changing the percentage of oil [24], [25] (Section 5.2). 

The frequency behavior of the reflection coefficient is shown in Fig. 9. It can be observed 

that while the reflection coefficient for the test against the phantom (with 40% oil, 

Section 5.2) approaches levels around –8 dB, the antenna is even better matched in water, 

leading to a further decrease of the reflection coefficient by 4 dB in the frequency range of 

interest. The compromise between input matching to a certain medium and the geometrical 

dimensions of the antenna denotes the key trade-off exploited for our design. In order to 

study the reflection occurring at the aperture plane, which is influenced by the permittivity 

matching between the dielectric medium composing the antenna body and the human skin, 

we performed time domain reflectometry (TDR) measurements by having the antenna 

radiate into different media [22].  
 

 

Figure 9. Reflection coefficient measured in water (left) and on a skin mimicking phantom (right). 

The results for water and skin (in-vivo) are shown in Fig. 10. The amplitude of the reflected 

signal with the antenna operating in water is significantly smaller than the one with the 

antenna operating on skin. This result indicates, in agreement with the frequency domain 

measurements, that the antenna is better matched to water than to skin. We note from Fig. 

10 that the reflection occurring at the aperture due to impedance mismatch results in a 

signal with a longer decaying time. The larger the impedance mismatch is the longer the 

decaying time is. This feature is due to the fact that part of the reflected energy does not 

leave the antenna through the well-matched feed towards the signal source but remains 

within the antenna body. 
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Figure 10. Time domain reflections caused by the aperture plane due to dielectric mismatch between 

the antenna and water and skin, respectively (top and bottom). 

The measurement of the radiating behavior is more complicated. To evaluate standard 

antenna parameters (e.g. gain, radiation pattern, etc.), the antennas should be placed in the 

Fraunhofer region. However, due to the high dielectric losses of water, the antenna could be 

placed at a maximum distance of 10 cm, which is not sufficient to meet the Fraunhofer 

region (starting from around 35 cm), but still is large enough to let the antennas operate in 

the Fresnel region. Near-field measurements are of main concern since the antennas are 

designed to be used in contact mode for biomedical imaging applications. The results show 

that the antennas present a flat frequency response (measured along the boresight 

direction), after the compensation of the frequency dispersion of the water (left diagram in 

Fig. 11), and 3 dB beam widths of nearly 20° for the E-Plane, and nearly 28° for the H-Plane 

(right diagram in Fig. 11). 

 

 

Figure 11. Transmission behavior between two identical antennas operating in de-ionized water at a 

distance of 10 cm. The frequency response, compensated for water frequency dispersion is shown in the 

left diagram, while the near-field pattern is represented on the right. The blue and red curves illustrate a 

cut along the E-Plane and the H-Plane, respectively. 
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Eventually, in order to demonstrate the functionality of the ceramic antennas under realistic 

conditions, we have performed preliminary transmission measurements through a breast of 

a female volunteer, and the monitoring of the heartbeat, as illustrated in Figs. 12 and 13. The 

dynamic range of the achievable signal can be determined from Fig. 12 in comparison with 

the ideal transmission through a 4 cm path inside distilled water by a face-to-face 

arrangement of the antennas. The monitoring of the heartbeat was performed on a 35 years 

old healthy male volunteer. During measurement, the volunteer was sitting still and was 

holding breath in the state of maximal breathing in. The measurement was performed with 

an M-sequence radar in a bi-static configuration [Section 2.2]. Figure 13 shows the heartbeat 

signals as monitored. Upon Fourier transformation, we extracted a beat rate of nearly 75 

beats per minute, which is considered normal for an adult. The results display very clearly 

the characteristic feature of heartbeat, thus manifesting a favorable dynamic range. This 

opens up promising applications for realistic monitoring and imaging tasks. Further details 

of these tests can be found in [26] and [22]. 

The full dielectric scaling, as previously stated, offers the potential for a further size 

reduction of the antenna. Accordingly, we continued our research and succeeded in 

developing a ceramic DRH antenna with an aperture of only 16 mm × 11 mm and a lower 

cut-off frequency around 1.5 GHz. Due to the input impedance of the antenna below 10 , 

active receive and transmit versions are under development in the framework of HALOS 

(Chapter 14), employing an UWB low-noise subtraction circuitry and power amplification 

[27]. The manufacture of the tiny antenna followed similar production steps as for the 

previous version. It proved quite challenging because of the reduced size, requiring 

additional specific production steps and iterative testing procedures [28]. 

 

Figure 12. Transmission measurements through a female breast performed with the ceramic double-

ridged horn antennas in comparison with a reference measurement of 4 cm distilled water  

(upper curve).  
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Figure 13. Monitored heartbeat signal of a 35 years old healthy male volunteer. Upon Fourier 

transformation, we extracted a beat rate of nearly 75 beats per minute. 

2.3.3. MRI compatible antennas 

Magnetic resonance imaging (MRI) systems are among the most sensitive diagnostic 

methods in medicine for the visualization of soft tissue [10]. At present, more than ten 

million MRI examinations of patients are performed per year worldwide. Given such a 

progressive development, further improvements of this diagnostic technique are under way. 

However, MRI systems are not per se capable of creating focused images of moving objects 

like the human heart or the thorax of the patient while breathing. Instead, additional 

techniques like breath holding, ECG triggering, or MR navigation methods are required. 

Such techniques either cause some inconvenience for the patient, or they are even not 

applicable for upcoming generations of MR scanners. A novel approach which overcomes 

these obstacles is the use of low-power multi-static UWB radar as a contactless navigator 

technology for MR tomography [29], [30]. To devise such navigators, the design of antennas 

compatible with MRI systems, i.e. antennas which do not interact neither electrically nor 

mechanically with the operation of the MR scan, is needed. The strategy to follow when 

designing an MRI compatible antenna is the minimization of mutual interaction between the 

metallized antennas and the strong static and gradient magnetic fields. Several experiments 

with conventional wideband antennas showed strong mechanical interactions, pointing out 

the need for special antenna designs [31]. The operational conditions inside an MR scanner 

are determined by three different types of fields. First, a static magnetic field Bstat = 1.5 to 7 T 

provides a reference orientation of the nuclear spins of the regions under inspection. 

Furthermore, gradient magnetic fields with a slope of dBgrad/dt = 50 T/s at the rising edge are 

switched during diagnostic measurements to allow for spatial (depth) information of the 

acquired molecular information. Finally, the nuclear spins are set into precession by a strong 

(KW range) RF signal at 42.58 MHz/T. The gradient fields induce eddy currents in the 

metallized sections of the antenna which, in turn, interact with the static magnetic field by 

exerting a mechanical torque on the antenna structure. The torque can reach peak values of 

the order of 0.045 Nm for a contiguous metallized area of 20 mm × 30 mm. This value is high 

enough to result in mechanical amplitudes of several millimeters, deforming or moving the 

antenna structure, especially in the case of mechanical resonances. Furthermore, the 

magnetic fields of the eddy currents can lead to artifacts of the MR-image. These interactions 

inhibit the beneficial application of UWB navigation for magnetic resonance imaging and, 
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therefore, must be avoided. We used a 3-T MR scanner with the resulting RF frequency of 

127.8 MHz, which is ten times smaller than the lower cut-off frequency of the UWB antennas 

employed. As the frequency response of a typical antenna corresponds to a high-pass filter 

of first order, the stop-band attenuation amounts to 20 dB per decade, indicating the risk of 

collecting RF power even in the presence of path-loss and shadowing. 

The minimization of contiguous metallized area and, hence, eddy currents, is therefore the 

main issue to be addressed by the antenna design. Additional constraints arise from the 

intended applications in biomedical diagnostics: weakly frequency-dependent radiation 

patterns over the entire operational bandwidth, good decoupling between neighboring 

antennas, and a lower cut-off frequency around 1 GHz. The DRH antenna was identified to 

be a suitable UWB antenna type to accomplish these requirements. Due to the functional 

principle of DRH antennas, the minimization of contiguous metallized areas and the 

realization of a weakly frequency-dependent radiation pattern are in conflict with each 

other. Horn antennas are typically made entirely out of metallic parts of high electrical 

conductivity σ, thus suffering from the induction of eddy currents under MR-scanner 

conditions. Therefore, the major challenge was to modify the double-ridged horn antenna to 

achieve MR-compatibility, without compromising the favorable radiation properties.  

Inspired by commercial counterparts of DRH antennas, we removed the H-plane sidewalls 

of the pyramidal horn, leaving just a thin wire in the plane of the aperture, as illustrated by 

the left picture in Fig. 14. As a result, the lower cut-off frequency could be reduced from 

2.6 GHz to 1.5 GHz for otherwise unchanged dimensions and operation in air. The 

comparison with a conventional double-ridged horn antenna with a similar bandwidth 

revealed that this improvement was achieved at the expense of increased beam width, side-

lobes and backward radiation, predominantly at frequencies below 3 GHz, due to the 

modified aperture distribution and diffraction at the edges of the open construction. The 

increased beam width led to a slightly increased crosstalk [32]. It can easily be compensated 

for by re-orienting the antennas relative to each other. While the crosstalk for conventional 

DRH antennas becomes small for an H-plane alignment, the MR-compatible versions have 

to be aligned along the E-plane due to the removed H-plane sidewalls and, thus, reduced 

shielding. 

The thickness of the metallization was also reduced in order to exploit the skin effect for a 

decoupling of the low-frequency eddy current paths. The metal planes were replaced by 

metallized dielectric boards with a metallization thickness of 12 μm (Fig. 14). This value 

corresponds to about twice the skin depth at the lowest frequency used. The high-frequency 

currents determining the radiation of the antenna remain essentially undisturbed while the 

eddy currents in the KHz range are strongly attenuated by the high sheet resistance. For 

further optimization of the remaining metallized areas, the distribution of surface currents 

in the UWB frequency range was inspected by electromagnetic simulations (right image of 

Fig. 14). Typical results for the normalized surface current are illustrated at 5 GHz (left-

most). The surface current is concentrated near the position of the ridge and the edges of the 

pyramidal frame. According to our expectations, the number of current loops was found to 

increase with frequency; in contrast, the current distribution across the backward cubical 
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part of the antenna showed little frequency dependence. Based on these observations, a 

compromise was sought to reduce the plane metallization with the minimal possible 

distortion of the broadband current distribution. As a result, the conductor faces of the horn 

sections were separated into strip lines, straight and elliptically shaped, separated by 1 mm, 

and oriented parallel to the most common current paths, with plain connections at the face 

edges only. The central part of the right image of Fig. 14 illustrates the resulting geometric 

arrangement of the slots, while the normalized surface current of the modified antenna at 

5 GHz is shown in the right-most part. The main features of the current distribution could 

be sustained qualitatively both on the pyramidal faces and the backward cubical part of the 

antenna. Differences occurred mainly for the currents oriented perpendicular to the slots. It 

is this minor change in current distribution which causes the modified radiation properties 

discussed above. The ridges themselves required special attention. A grid of holes was 

eventually identified as the proper solution to reduce the metallization area of the ridges 

without disturbing the high-frequency current distribution too much. In order to reduce the 

maximal loop size for low-frequency currents, the outer contour of the horn section was cut 

and shortened by standard surface-mounted device capacitors. 

 

Figure 14. MR-compatible double-ridged horn antenna for a lower cut-off frequency of 1.5 GHz (top). 

The lower image shows the simulated, normalized current distribution of an unmodified DRH antenna 

at 5 GHz (left-hand part), the layout of the resulting MR-compatible DRH antenna (center part), and the 

current distribution of the modified DRH antenna at 5 GHz (right-hand part). 
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Figure 15. Measured reflection coefficient of the MR-compatible double-ridged horn antenna (lower 

curve) and the measured antenna gain (upper curve) versus frequency. 

Fig. 15 displays measured results for the reflection coefficient and the gain of the modified 

DRH antenna. A return loss above 10 dB was achieved over the frequency range from 1.5 to 

12 GHz. Radiation measurements in an anechoic chamber yielded the radiation patterns 

illustrated in Fig. 16 for two orthogonal cuts with respect to the plane of the ridges. The half-

power beam width, indicated as the black contour line in Fig. 16, was found to vary between 

30 and 50 degrees, thus covering a range suitable for the envisaged applications. Except for 

frequencies around 2 GHz, the main lobe showed little spectral variation. The 

corresponding frequency variation of the antenna gain is displayed in Fig. 16. These results 

were found in good agreement with the numerical simulations.  

 

Figure 16. Two-dimensional representation of the measured radiation pattern of the MR-compatible 

double-ridged horn antenna for the E-plane (left) and the H-plane (right) through the main beam. The 

scales indicate the antenna gain in dBi. The black and white contour lines illustrate the corresponding 

beam widths at 3 and 10 dB below the frequency-dependent maximum gain, respectively. 

The transient response of the antenna is shown in Fig. 17. Despite the open geometry of the 

MR-compatible antenna, a low signal distortion could be sustained. The slight angular 

dependence of the time responses can be attributed to an offset between the phase centers of 

the antennas and the center of rotation of the antenna positioning system.  
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The MRI compatible DRH antennas were implemented as part of a UWB MR navigator, by 

means of which it was possible to take images of the myocardium for the first time without 

using an ECG as navigator. The quality achieved was comparable with the one achievable 

with the ECG navigator (see Section 4). 

 

Figure 17. Two-dimensional representation of the measured time domain response of the MR-

compatible DRH antenna for the E-plane (left) and the H-plane (right) through the main beam. The 

scales indicate the normalized impulse response of the antenna. 

3. Weak electromagnetic fields and biological tissue 

3.1. Impact on living cells 

The electrical properties of biological tissues and cell suspensions have been of interest for 

over a century for many reasons. They determine the pathways of current flow through the 

body and are very important for the analysis of a wide range of biomedical applications 

such as functional electrical stimulation and the diagnosis and treatment of various 

physiological conditions with weak electric currents, radio-frequency hyperthermia, 

electrocardiography, and body composition. On a more fundamental level, the knowledge 

of these electrical properties can lead to an understanding of the underlying basic biological 

processes. Indeed, biological impedance studies have long been an important issue in 

electrophysiology and biophysics; interestingly, one of the first demonstrations of the 

existence of the cell membrane was based on dielectric studies on cell suspensions [33]. 

Biological tissues are a mixture of water, ions, and organic molecules organized in cells, sub-

cellular structures, and membranes, and its dielectric properties are highly frequency-

dependent in the range from Hz to GHz. The spectrum is characterized by three main 

dispersion regions referred to as α, β, and γ regions at low, intermediate, and high 

frequencies [34]. Biological materials can show large dispersions, especially at low 

frequencies (Fig. 18). Low frequencies are mainly caused by interfacial polarizations at the 

surfaces between the different materials of which a cell is composed [35]. Reviews of the 

dielectric properties of cells and the different dispersions are given in the literature [36], [37]. 
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Figure 18. Spectrum of the dielectric properties of cell suspensions and tissues.  

The step changes in r  are called dispersions and are due to the loss of particular 

polarization processes as frequency increases. The α-dispersion is due to the flow of ions 

across cell surfaces, the β-dispersion results from the charge at cell membranes, the δ-

dispersion is produced by the rotation of macromolecular side-chains and bound water, and 

the γ-dispersion is due to the dipolar rotation of small molecules particularly water [35] 

(figure reproduced with permission from Elsevier). 

When exposed to electric fields, living cells behave as tiny capacitors, accumulating charges 

on the cell surface. The permittivity of living cell suspensions is dependent on the 

frequency, and falls in a series of the dispersions described above, as frequency increases. 

The β-dispersion, between 0.1 and 100 MHz, results from the build-up of charges at cell 

membranes. The difference between permittivity measurements made at two frequencies, 

on either side of the β-dispersion range, is proportional to the viable biomass concentration. 

With spherical cells, the permittivity increment is given by equation [38].  

 
9

4
mP r C

   (1) 

As long as there is no change in the cell radius r  or the membrane capacitance mC , the 

permittivity increment   is proportional to the cell volume fraction P  [39]. 

As a starting point for developing new applications, it is critical to characterize differences 

in the dielectric properties of the cells, for example human leukocyte subpopulations [40]. 

Even though, a comparative analysis of the dielectric properties of the cells is  necessary, 

and  the UWB radiation on cells itself has to be characterized, too. For this reason,  

experiments with two different cell lines (tumor cell line BT474 and fibroblasts BJ) were 

performed. Cell suspensions of these cell lines were disseminated, and the growth rate was 

determined. Afterwards, the cells were seeded on 96-well plates, cultivated for 24 h and 

exposed to UWB radiation via UWB-M-sequence radar with double-ridged horn antennas of 

about 10 dBi average gain for 5, 30 or 60 min. As non-treated control, for the same time, 
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plates were placed in a Faraday cage (to avoid any irradiation). After continued incubation 

for 24, 48 and 72 h, the vitality of cells was determined by colorimetric identification (MTT 

assay for measuring the activity of enzymes that reduce MTT [3-(4.5-Dimethylthiazol-2-yl)-

2.5-diphenyltetrazolium bromide, yellow tetrazole] to formazan, giving a purple color). The 

measured vitality of control cells was normalized to 100%, and the vitality of exposed cells 

was put into relation. The vitality of exposed cells was related to non-exposed cells. Due to 

biological fluctuations, data between 70% and 120% vitality were assessed as not influenced. 

As depicted in Fig. 19, none of the determined cells was influenced by ultra-wideband 

electromagnetic waves. 

 

Figure 19. Impact of ultra-wideband electromagnetic waves on the vitality of living cells. The upper 

part of the figure shows light images of the fibroblast cell line BJ and the cancerous cell line BT474. The 

lower figure depicts the vitality of the fibroblasts BJ and the cancerous cells BT474 after UWB exposition 

with 4 mW for 5, 30 or 60 min. The vitality was observed 0, 24, 48 or 72 h after exposure. The depicted 

vitality of exposed cells is related to non-exposed cells. Due to biological fluctuations, data between 80% 

and 120% vitality was not considered to be cytotoxic [25]. 

3.2. Animal tissue 

The electrical properties of tissues and cell suspensions are most unusual. They change with 

frequency in three distinct steps (dispersions as described above) and their dielectric 

constants reach enormous values at low frequencies. Extensive measurements were carried 

out over a broad frequency range extending from less than 1 Hz to many GHz. The 

observed frequency changes of these properties obey causality, i.e., the Kramers-Kronig 

relationships which relate changes of dielectric constants with conductivity changes. A 

number of mechanisms were identified which explain the observed data. These mechanisms 

reflect the various compartments of the biological material. These include membranes and 
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their properties, biological macromolecules and fluid compartments inside and outside 

membranes [41]. Special topics include a summary of the significant advances in theories on 

counter ion polarization effects, dielectric properties of cancer vs. normal tissues, properties 

of low-water-content tissues [42], and macroscopic field-coupling considerations. The 

dielectric properties of tissues are often summarized as empirical correlations with tissue 

water contents in other compositional variables. The bulk electrical properties of tissues are 

needed for many bioengineering applications of electric fields or currents, and they provide 

insight into the basic mechanisms that govern the interaction of electric fields with tissue 

[43]. 

Using devices with our own configurations, the dielectric properties of different porcine and 

bovine tissues were determined [25]. Different measuring points were defined on the 

surface of udder, fat, liver, muscle, and kidney of porcine and bovine tissue (homogenous 

structure) and the permittivity of these points was measured three times (selected tissues in 

Fig. 20, left panel). Afterwards, the tissue under these measuring points was excised and 

dried to calculate the water content. Water content and permittivity ε´ were related to each 

other, so we could clearly differentiate between fat, low-water-content tissue, with a low 

permittivity ( 8   ) and liver, muscle or kidney ( 40   ) as high-water-content tissues. The 

high-water-content tissues show similar permittivity    values whereas fat of porcine and 

bovine origin can be distinguished (Fig. 20, right panel). 

 

Figure 20. Determination of the dielectric properties of different porcine and bovine tissues at defined 

measuring points (left panel). Real and imaginary part of permittivity    at 2 GHz of porcine and 

bovine tissue in relation to the water content (right panel). The standard error represents six 

independent measurements [25]. 

3.3. Bacterial cell wall identification based on their dielectric properties 

The identification of bacterial strains in biological media is a matter of interest in very 

different fields of modern life. Examples are in food hygiene and food industry, catering and 

gastronomy [44], [45], in environmental research activities, fermentation processes for the 

production of medical drugs, such as insulin, antibiotics, and other [46]-[48], and in the 

diagnosis of infections in clinical and veterinarian applications [49]. Depending on the 
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respective research and application field, bacterial strains are currently detected by complex 

methods, for example: polymerase chain reaction (technique to amplify a single or a few 

copies of a piece of DNA), fluorescent in situ hybridization, DNA microarray and Raman-

spectroscopy, etc. 

Different studies have shed some light into the biomass determination of different microbial 

suspensions via dielectric spectroscopy. Mishima et al. investigated growth kinetics of 

bacterial, yeast and animal cells by dielectric monitoring in the frequency range of 10 kHz - 

10 MHz [50]. The determination of bacterial growth by dielectric measurements was also 

shown by Harris et al. [51]. Jonsson et al. measured the concentration of bacterial cells via 

indirect methods based on the dielectric determination of ions in the suspension, which are 

released by killed cells [52]. Benoit et al. showed that it is possible to discriminate the 

hydrophobic or hydrophilic features of bacterial suspensions by determining the dielectric 

permittivity [53]. Nevertheless, no data are available for discrimination on the basis of 

bacterial structures per se, such as the presence of Gram-positive or Gram-negative bacterial 

strains in biological samples [54]. 

Therefore, two different Gram-positive bacterial strains (Micrococcus luteus and Bacillus 

subtilis) and two Gram-negative bacterial strains (Escherichia coli and Serratia marcescens) 

were cultivated under standard conditions using Standard I media and shaking flasks. 

Bacterial strains were incubated for 24 h at 37°C in an incubation shaker. To assess whether 

the Gram-status of bacteria could be determined by dielectric spectroscopy, bacterial 

suspensions were transferred to 50 ml tubes and centrifuged. The supernatant (liquid above 

precipitate) was removed, the pellet was washed in 0.9% sodium chloride solution and, 

finally, the dielectric properties of the bacterial biomass (pellet of 10 ml) were determined. 

Dielectric spectroscopy of bacterial strains and suspensions was performed using a network 

analyzer in a frequency range from 30 kHz to 6 GHz (HP 8753D) and a coaxial probe (High 

temperature probe). The real    and imaginary    part of permittivity was determined in a 

frequency range from 50 MHz to 300 MHz [54]. 

In the frequency range between 50 and 300 MHz, dielectric spectroscopy revealed higher 

values of the real part of permittivity (   160    Gram-positive) of the Gram-positive 

bacterial strains Micrococcus luteus and Bacillus subtilis compared to the Gram-negative 

strains Escherichia coli and Serratia marcescens (   100 
   Gram-negative). From each strain 

the same cell count and volume was measured. Particularly at a frequency of 50 MHz 

(maximum of discrimination), the real part of permittivity    of both Gram-positive strains 

was about 60 units higher than of the Gram-negative strains (Fig. 21) 

The clear discrimination between the Gram-positive strains Micrococcus luteus and Bacillus 

subtilis as well as the Gram-negative strains Escherichia coli and Serratia marcescens at a 

frequency up to 100 MHz can be attributed to the β-dispersion. At these frequencies, 

proteins and other macromolecules of the bacterial cells polarize according to Markx et al. 

[35]. This effect decreases at frequencies above 100 MHz. With increasing frequency the 

influence of water becomes more prominent. 
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Figure 21. Discrimination of Gram-positive and –negative bacterial strains via dielectric spectroscopy. 

The diagram shows the real part of the permittivity    of the biomass of Gram-positive bacterial strains 

(Micrococcus luteus and Bacillus subtilis [upper curves]) and Gram-negative bacterial strains (Escherichia 

coli and Serratia marcescens [lower curves]) in a frequency range between 50 and 300 MHz. The 

highlighted area shows the most obvious region of differentiation between Gram-positive and Gram-

negative bacterial strains [54]. 

 

Figure 22. Monitoring of growth kinetics of four bacterial strains (growth phase). Red squares show the 

area under the curve (AUC) of the real part of permittivity    in a frequency range between 50 MHz 

and 100 MHz derived from measurements during the bacterial growth phase. The permittivity of the 

cell suspension was taken hourly for 240 or 300 min. Black lines show the cell count per ml taken at the 

same time as permittivity was measured [54]. 



 
ultraMEDIS – Ultra-Wideband Sensing in Medicine 281 

All bacterial strains investigated in the present study revealed a characteristic time-

dependent correlation between cell counts (black lines in Fig. 22) and    (red dots in Fig. 

22). The growth kinetics was not influenced by the presence of accumulated metabolites in 

the culture medium since supernatants (liquid above precipitate) of every bacterial culture 

showed the same permittivity as the Standard I culture media (Fig. 22; 85 78     and 

600 100 @ 50 300 MHz     ) [54]. 

3.4. Temperature influence on tissue permittivity 

In therapeutic or diagnostic applications or biological effects of the electromagnetic field, 

dosimetric evaluations are greatly dependent on the precise knowledge of the dielectric 

parameters of biological tissues (relative permittivity ε and electrical conductivity σ). These 

parameters are sensitive to many influencing factors, which include the temperature of the 

target organ [55]. During radio-frequency or microwave radiation exposure, the internal 

temperature of tissue can change, thus influencing the electrical field distribution. For 

example, the evaluation of the lesion obtained by thermal ablation is a function of the 

relative permittivity and conductivity at 37°C and also of their evolution during heating. 

The influence of temperature in dielectric spectroscopy has been studied by several authors 

[56]-[58]. However, these effects remain misunderstood and the measured values are sparse 

at various frequencies and exist only for some organs.  

To find out in how far temperature-dependent changes in permittivity can result in a 

parameter identified by ultra-wideband technology, water and different tissues were 

examined. To assess the basic capability of UWB radar for monitoring local temperatures, 

dedicated phantom and in vivo experiments were performed. Dielectric spectroscopy of 

water at different temperatures (25 – 80°C in steps of 5°C) and corresponding experiments 

using porcine and bovine tissue, such as udder, liver, muscle, and kidney revealed a distinct 

decrease of permittivity with increasing temperature. Nevertheless, heating of tissues to 

more than 60 °C might also reduce permittivity due to the reduction of water content. No 

distinct organ-specific differences in the temperature-dependent dielectric properties have 

been found so far (Fig. 23). Only fat, as low-water-content tissue, exhibited no influence on 

permittivity at different temperatures [59]. 

In addition to further studies with improved probes, corresponding analysis were 

performed using clinically approved temperature-based methods for tumor eradication, 

such as radio frequency ablation (RFA) or magnetic thermo ablation. For this experiment, a 

bovine liver was positioned onto a neutral electrode. The second, active electrode was 

launched into the liver tissue. Both electrodes together create a stress field, and the tissue 

around the active electrode becomes heated up to 60°C. Bi-static UWB antennas were first 

positioned in a distance to the region where RFA was thought to detect the signals of liver 

tissue itself. Then, the antennas were positioned above the region of radio frequency 

ablation, and changes in impulse response before, while and after radio frequency ablation 

were detected.  The signal analysis displayed an increase of the impulse response during 

radio frequency ablation (data not shown) [59]. 
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Figure 23. Real part (   ) and imaginary part (   ) of the permittivity of water, liver, fat, and udder 

tissue at a frequency of 2 GHz is depicted. Water showed a constant decrease of permittivity in relation 

to the increase of the temperature. Liver and udder tissue showed a diminished deviation, and in 

contrast fat showed no change of the permittivity [59] at all. 

The applicability of UWB for temperature monitoring was also assessed in vivo in mice. 

Prior to the start of experiments, mice were shaved at the abdominal region. Dielectric 

spectroscopy of the skin at the animal´s liver region before and after euthanasia showed a 

time-dependent increase of permittivity as a result of decreasing temperature with on-going 

time after euthanasia. The data provide a good basis for further development of UWB as a 

non-invasive temperature measurement technology. 

3.5. Permittivity variations by contrast media 

Microwave-frequency dielectric contrast between malignant and normal tissue in the breast 

serves as the physical basis for emerging microwave methods of detecting and treating 

breast cancer. The effective dielectric properties of breast tissue are influenced at microwave 

frequencies by endogenous polar molecules, such as free and bound water, peptides, and 

proteins. Consequently, the dielectric properties depend on the type and physiological state 

of the tissue. The effective dielectric properties - both the dielectric constant and effective 

conductivity - can also be influenced by exogenous molecules introduced as contrast agents 

[60]. 

Detection of dielectric properties of structures and tissues with similar characteristics (such 

as breast and breast tumor) pose challenges for imaging by ultra-wideband technologies. 

Therefore, a phantom serving as a model for blood vessels with a constant flow of ethanol 

(infusion fluid) was created (Fig. 24 left panel) for first trials to test the sensitivity of the 

measurement apparatus. Additions of contrast agents (in this case a mixture of ethanol and 

water) were determined [25]. Such basic search is useful for finding suitable contrast agents 

including feasibilities and limitations regarding the detectability of, for example, 
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concentration variations. The practice of clinical diagnostic radiology has been made 

possible by advances not only in diagnostic equipment and investigative techniques, but 

also in the contrast media that permit the visualization of the details of the internal structure 

of organs, which would not be possible without them. .The remarkably high tolerance of 

modern contrast media has been achieved through successive developments in chemical 

pharmacological technology.  

The phantom serving as a model for blood vessels with a constant flow of ethanol was 

arranged. In the first step, the signals of this ethanol flow were received. By using a syringe 

via three-way cock 3 ml of the selected contrast agent (mixture of ethanol and water) were 

added, and the relative signal change was detected. The results show that with a decrease of 

water the signals become weaker (Fig. 24, right panel). 

 

Figure 24. Depiction of the assembly of a phantom serving as a model for blood vessels with a constant 

flow of ethanol (left panel). The right panel depicts the relative signal variation (change of reflection 

coefficient) through adding 3 ml of contrast agent in relation to the virgin signal with constant flow of 

ethanol [43]. 

Even though dielectric spectroscopy of our group showed promising permittivity values of 

potential contrast agents such as physiological sodium chloride, the encountered 

permittivity increases in vivo are still to be enhanced to allow for a specific detection via 

UWB radar. One possibility to increase the capability of breast tumor imaging is the 

application of different clinically approved contrast agents such as ultrasound micro 

bubbles or iron oxide nanoparticles. Moreover, we expanded our investigations to the 

assessment of non-clinically approved agents (for example BaSO4) in order to discover 

potential advantageous mechanistic conditions leading to local signal increase in terms of 

UWB diagnosis. Experiments will be systematically analyzed using dedicated phantoms, 

mimicking human tissues and blood flow.  

Another challenge is the achievement of a selective accumulation of contrast agents in the 

target region to be detected by our UWB system. In this regard, a dynamic and transient 

accumulation via the tumor vascularization has been already postulated. 
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4. Remote organ motion tracking and its application in magnetic 

resonance imaging 

4.1. Cardiac magnetic resonance imaging 

Magnetic resonance imaging (MRI) is arguably the most innovative imaging modality in 

cardiology and neuroscience. It is based on the detection of precessing nuclear spins, mostly 

from protons of tissue water, in a strong static magnetic field. Using two additional kinds of 

magnetic fields, the position of the spins inside the human body can be encoded. To this 

end, the nuclear spin system is excited by resonant RF pulses at the precession frequency of 

the spin system. After excitation a macroscopic RF signal can be detected by an RF coil 

providing amplitude and phase information of the precessing nuclear magnetization. 

Applying additional magnetic field gradients the spin positions can be encoded by 

generating a well-defined spatial variation of the precession frequencies. Proper sequencing 

of spin excitation and gradient switching allows the reconstruction of 2D and 3D images 

from the acquired complex valued MR signals. 

MRI data depend crucially on a multitude of physical parameters, e.g. moving spins will 

cause an additional phase modulation of the signal. One consequence is that MR images of 

the moving heart or of large vessels with pulsatile blood flow are severely distorted in the 

whole field of view. Hence, cardiac MRI (CMR) is seriously impaired by cardiac and 

respiratory motion when no proper gating with respect to both relevant motion types, 

cardiac and respiratory motion, is applied (Fig. 25). In clinically approved CMR procedures, 

electrocardiography (ECG) or pulse oximetry are used for cardiac gating and breath holding 

is applied for freezing respiratory motion [61],[62]. 

 

Figure 25. MR image (short axis view) of a human heart. a) Cardiac gating by pulse oximetry and 

breath hold; b) cardiac gating only, due to free breathing during image acquisition severe image 

artifacts occur 

However, there are unmet needs of clinical CMR, particularly for high (≥ 3 T) and ultra-high 

(≥ 7 T) field MRI. Higher magnetic fields offer the chance to acquire images of better spatial 

resolution [63], but on the downside the ECG signal is increasingly perturbed by the 

magneto-hydrodynamic effect [64] until it becomes effectively useless for cardiac gating at 
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7 T. Furthermore, ECG electrodes are directly attached to the patient’s skin, which may 

result in local RF burns. In addition, ECG and alternative approaches like pulse oximetric or 

acoustic cardiac triggering [65] do not provide any information about the respiratory state. 

As a cardiac patient’s breath hold is typically limited to about 15 s, a 3D whole heart 

coverage or imaging of the coronaries [66] would require proper respiration gating to 

acquire MR data under free breathing conditions. A well-established approach for 

respiration gating is the so-called MR navigator [67]. By means of some extra MR 

excitations, the momentary position of the diaphragm can be tracked over the respiratory. 

Unfortunately, these extra excitations interfere with the cardiac imaging sequence itself, 

making this technique complex and less reliable.  

On this background, we propose the simultaneous use of multi-channel UWB radar and 

MRI to gain complementary information in particular for improving cardiac MRI. The 

anticipated potentials of this technique are (i) a contactless measuring principle for better 

patient safety and comfort, thus streamlining the clinical workflow, (ii) concurrent 

monitoring of a variety of body movements, (iii) direct relation to tissue mechanics [68], (iv) 

direct tracking of the temporal evolution of inner body landmarks, and (v) absence of any 

interferences of the UWB radar signals with the MR measurement if MR compatible 

designed UWB antennas are applied, (s. Section 2.3.3). The decomposition of physiological 

signatures in UWB radar data is the main challenge of this approach and a prerequisite for a 

reliable tracking of landmarks within the human body suitable for MRI gating. 

Beyond MRI, there are a variety of other possible applications of in vivo UWB radar 

navigation systems in medical imaging or therapy. Examples are X-ray Computed 

Tomography (CT), Positron Emission Tomography (PET), Medical Ultrasonography (US), 

and Radiotherapy using photons or particles, or High Intensity Focused Ultrasound (HIFU). 

Lessons learned from all these approaches will foster medical applications of standalone 

UWB radar systems for intensive care monitoring, emergency medical aid, and home-based 

patient care [70]. 

4.2. Analytical and numerical modeling of the scenario 

4.2.1. Channel-model 

For modeling purposes, the human body can be approximated as a multilayered dielectric 

structure with characteristic reflection coefficients (f) (s. Fig. 26) [29], [71], [72]. The UWB 

signal, which can be a pulse or a pseudo-noise sequence [71] of up to 10 GHz bandwidth, is 

transmitted utilizing appropriate pulse-radiating antennas Tx (e.g., Double Ridged Horn or 

Vivaldi antennas). The reflected signal is detected by Rx, and the first step in further signal-

processing usually is to calculate the correlation signal RXY() between received signal SRx 

and transmitted signal pulse STx is [71], [72]. This represents the impulse response function 

(IRF) including the transfer functions of the antennas. By UWB measurement of the motion 

of a multi-layered dielectric phantom [29], the changes of reflections on the single interfaces 

can be found. Therefore, the signal variance M() of the correlation signal RXY() is 

calculated. 
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Figure 26. a) 14-layer arrangement to mimic the reflective properties of the human thorax (not to scale). 

Ei/Er, Hi/Hr: incident/reflected electric/magnetic field component. ki: wave vector of incident wave. b) 

Top: calculated magnitude of the reflection response |(f)|, which is proportional to the frequency 

response function (FRF) of the object. Middle: unwrapped phase (f) of the reflection response (f). 

Bottom: normalized time domain representation (t) of (f) impulse response function (IRF) of the 

reflection response. 

 

Figure 27. Physiological signatures received by the algorithm described in Ref. [29]. Top: Signal 

variance M().Bottom: Physiological signatures corresponding to the label local maxima of M().Top 

right: Measured and simulated correlation signal Rxy().  
Bottom right: Radargram of the measured and simulated correlation signal Rxy(). 

The maxima in M() correspond to the interfaces containing a considerable difference in the 

permittivity or are close to the illumination side if the transfer functions of the antennas are 

removed by de-convolution. By these maxima, the time signals corresponding to the 

interfaces can be extracted [29]. An example of simulated and measured correlation signal 

Rxy() is given in Fig. 27, top right. 

4.2.2. Analytical simulation of the intracranial pulsation detection 

It is well known that simultaneously to the head’s vibrations intracranial oscillations with 

spatial varying amplitude occur, induced by physiological sources [73]. Thus, it is only 
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logical to ask whether these oscillations are detectable by UWB radar. Due to the 

simultaneous occurrence of the intracranial displacement and the vibration of the whole 

head, decomposing both signals requires sophisticated methods. As an initial step towards 

the solution to this problem, we need to get a feeling for the change in the acquired UWB 

reflection signal due to an intracranial oscillation. An analytical approach [71], [72] was 

applied which models the signal path and the oscillating stratified arrangement of the brain 

to get signals free of any interfering compositions. Figure 28 schematically depicts the set-up 

used to probe the human body with a UWB device, where STx symbolizes the excitation 

signal and STx its temporal derivative representing the free space signal Ei in the channel. By 

the convolution of the impulse response function  of the multilayered dielectric structure 

with STx, the reflected electric field component  * STx = Er is archived and, accordingly, the 

received current signal SRx = ( * STx). The * symbol represents the convolution operator. 

 

Figure 28. Signal path model for the current transfer function SRx/STx.  

Therefore, the spectral response of a dielectric medium is appropriately described in terms 

of a multiple Cole-Cole dispersion, which – by choosing parameters appropriate to each 

constituent - can be used to predict the dielectric behavior over the desired frequency range 

[71]. For such a layered arrangement, the reflection coefficient () can be calculated 

recursively. In this manner, the response of (, t) to the variation of a certain internal 

interface can be analyzed [68], [73]. We simulated the physiological event by variations of 

(, t), which is done by a sinusoidal oscillation of the white matter. Accordingly, the 

cerebro spinal fluid varies antipodally [76]. The correlation result Rxy(, t) was calculated just 

as its variation after a certain propagation time. The reconstruction of the intracranial 

motion applying the reconstruction algorithm proposed in [72] gave us a maximum 

deviation from the reference oscillation of about 4%. We conclude that the detection of 

intracranial oscillations using non-contact UWB is indeed feasible [72], [73]. It must be noted 

that for all real medical applications of this broadband technique trying to monitor 

variations of the body’s interior, sophisticated signal processing techniques must be applied 

to decompose signals originating from the body’s surface and signals originating from 

deeper sources [74]. The influence of the antenna’s transfer function, in contrast, is less of an 
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issue for real applications. For simplicity, we had assumed an ideal transfer function in the 

above simulation but non-ideal antenna behavior can be extracted from the received signal 

by using proper de-convolution techniques. Furthermore, the time courses of the ideal 

channel can be regained [72]. 

4.2.3. Full simulation of the electromagnetic field distribution 

Beside the analytical approach, we are interested in the detailed temporal evolution of the 

electromagnetic fields inside and outside the human thorax. To this end, we investigated 

complex arrangements mimicking the illumination of a realistic human torso [75] model 

incorporating the geometry of the antennas by finite-difference time-domain method 

(FDTD) simulations. By FDTD simulation, we studied, e.g., the dependence of the 

illumination and detection angles of the transmission and receiving antennas on the quality 

of the received signal, i.e. the correlation result. In this way, an estimate of the optimized 

antenna placement can be found. Furthermore, by varying organs’ boundaries by changing 

their thickness or/and placement of one or more tissue layers, different functional states can 

be investigated, e.g. the end-systolic and end-diastolic phase of the myocardium, which 

consequently determines a characteristic change of the received signals. 

 

Figure 29. Extra- and intra-corporal electrical field distribution in an axial cross-section of the upper 

human body a) with tissue mesh; b) without the mesh showing the wave propagation intra-corporal. 

The thorax’s contour is highlighted by the white line. 

An example of the complex wave propagation inside the human torso is shown in Fig. 29. 

Due to the higher permittivity  inside the body, the propagation velocity is slowed down 

according to c = c0/ . Hence, a bending of the extra- and intra-corporal wave fronts results. 

The transmitted spherical wave fronts are refracted towards the center of the thorax, which 

is beneficial for the illumination of the myocardial section lying deeper inside the thorax. By 

these simulations, we achieve an in-depth understanding of the complex electromagnetic 

field distribution and the dependencies of the resulting output signal of the receiving 

antenna [73]. Therefore, the results of these simulations are helpful to increase the accuracy 
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of reconstructed physiological signatures from deep sources by finding the optimized 

antenna position regarding the better penetrability of selected body areas. This, of course, 

requires the adaptation of the model to the actual thorax geometry of the patient as obtained 

by MRI scans. 

4.3. Detection of motion by UWB radar 

4.3.1. Motion detection for a multilayered phantom 

We compared the motion detection by variance calculation in a combined MRI/UWB 

measurement using appropriate MR-compatible phantoms [29]. The dielectric phantoms 

were arranged in a sandwich structure to mimic the sequence of biological tissue layers of 

the human thorax. 

 

Figure 30. a) Set-up of the combined MRI/UWB measurement; b) Comparison of the reference profile 

with the data obtained simultaneously from MR and UWB radar measurements. The profiles are offset 

for clarity. 

Such a sandwich was placed in a moveable sledge-like fixture inside a birdcage MR head 

coil. The motion profile of the sandwich structure was shaped to approximate respiratory 

motion of the thorax superimposed by cardiac oscillations (Fig. 30). An M-sequence UWB-

Radar system (up to 5 GHz) [76] and MR compatible UWB antennas [10], [32] were utilized 

to detect the motion of the phantom inside a 3-T MR scanner (Bruker MEDSPEC 30/100). A 

flow-compensated gradient echo CINE (time resolution 50 ms) sequence was used to reduce 

artifacts generated by the phantom movements.  

Additionally, the physiological signatures monitored by UWB-radar were validated by 

comparison to simultaneously acquired MR measurements on the same subject [13], [29], 

[77] (cf. Section 4.5.2 and 4.6). 

4.3.2. Detection of micro motion 

Subject motion appears to be a limiting factor in numerous MR imaging applications 

especially in the case of high and ultra-high fields, e.g. high-resolution functional MRI 

(fMRI). For head imaging the subject’s ability to maintain the same head position is limiting 

the total acquisition time. This period typically does not exceed several minutes and may be 
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considerably reduced in the case of pathologies. Several navigator techniques have been 

proposed to circumvent the subject motion problem [73]. MR navigators, however, do not 

only extend the scan because of the time necessary for acquiring the position information, 

but also require additional excitation pulses affecting the steady-state magnetization. 

Furthermore, if the very high spatial resolution offered by ultra-high-field MR scanners shall 

be exploited, the displacements caused by respiration and cardiac activity have to be 

considered. Thus, we propose to apply an UWB radar technique to monitor such micro 

motions. 

 

Figure 31. Motion reconstructed from a measured time interval of 350 s. The right inset at the top 

displays the four nodding events (~1 mm amplitude, episode [t = 10 s,…, t = 18 s]) to localize the surface 

of the head. Respiratory displacements are clearly visible (right inset bottom, episode 

[t = 110 s,…, t = 160 s]) and spontaneous twitches are highlighted. 

First in-vivo motions reconstructed from a measured time interval of 350 s are shown in Fig. 

31. By applying appropriate filters in a selected time interval even the cardiac induced 

displacements were detected with an amplitude of about 40 m. Thus, we could detect all 

kinds of involuntary motions (respiratory, cardiac), but also doze-off-events are visible, 

demonstrating the feasibility of interfacing an MR scanner with an external UWB radar 

based motion tracking system. Our system is capable of determining the position of interest 

with sub-millimeter accuracy and an update rate of 44.2 Hz. Using the UWB tracking data of 

the volunteer’s head, the motion artifacts can be compensated for in real time or by post-

processing enhancing the actual resolution of the MR scan [73]. 

4.3.3. Separation of motion components by blind source separation 

Monitoring the motion inside the human body, the correlation functions of transmitted and 

received signals (i.e. the IRF) contain a mixture of all simultaneously occurring motions. 
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Especially for the human torso where - due to higher harmonics from the highly nonlinear 

respiratory cycle - the separation of the cardiac cycle by common signal filtering in the 

frequency domain is limited, another separation of motion components is necessary. For this 

reason, the separation of motion components based on blind source separation (BSS) was 

developed. 

The IRF from a single UWB shot is a time series of 511 data points with a dwell time of 112 

ps. This defines an IRF time scale of 57 ns but is still instantaneous compared to anatomical 

motions. These shots are then repeated for instance 2000 times at a rate of 44 Hz covering a 

total time span of 45 s. For further analysis, only the most interesting regime of the IRF data 

is considered. These are the 100 data points, i.e. a window of 11.2 ns, right after the IRF 

maximum due to direct cross-talk between Tx and Rx antenna. Following the temporal 

evolution of each selected data point over the 2000 repetitions, 100 virtual channels are 

obtained and subjected to BSS decomposition (ROI, see Fig. 32.a). By removing the mean 

values in these virtual channels, the changes of the radar signal on the anatomical time scale 

become visible, see Fig. 32.b. The motion pattern is dominated by respiration; cardiac 

motion is considerably smaller and not immediately visible in the raw data.  

 

Figure 32. a) Single IRF and b) radargram of one channel with region of interest and c) selected 100 

virtual channels, mean value removed 

The data analysis is based on the BSS and assumes a measured signal x(t) to be a linear 

combination of unknown zero-mean source signals s(t) with an unknown mixing matrix A: 

 
1( ) ( ) ( ,..., )T

mx t s t x x x A .
.
 (2) 

The original sources s(t) can be estimated by the components y(t) which can be calculated 

from the estimation of the de-mixing matrix A* ≈ A-1: 

 )()()( ** tstxty AAA   (3) 

In our analysis, a second-order time-domain algorithm (TDSEP, Temporal Decorrelation 

source SEParation) was applied which is described in detail in [78]. In TDSEP the unknown 
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mixing matrix A is calculated by simultaneous diagonalization of a set of correlation 

matrices R(x) for different choices of  . 
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where the angular brackets denote time averaging. The quality of signal separation depends 

strongly on the choice of . However, solving R(x) = AR(s) AT for several  by simultaneous 

diagonalization eliminates this obstacle. It is recommended by biomagnetic research to 

choose the number of time shifts  larger than 40 and to include the time constant of those 

components which are known a priori, e.g. the range of possible cardiac frequencies 

1/cardiac [79]. Additionally, Principal-Component Analysis (PCA) compression was applied 

to reduce the number of channels used for generating the correlation matrices R(x) and 

reduce computation time for the BSS. The components of the resulting sources are calculated 

using eq. (3). Automatic identification of the cardiac component was provided by a 

frequency-domain selection criterion because for non-pathological conditions the main 

spectral power density of the heart motion falls in a frequency range of 0.5 Hz to 7 Hz. The 

algorithm searches for the highest ratio between a single narrowband signal (fundamental 

mode and first harmonic) within this frequency range and the maximum signal outside this 

range. A high-order zero-phase digital band pass filter of 0.5–5 Hz was applied to the 

cardiac component of the UWB signal. In a similar way, respiration can be identified by the 

BSS component with the maximum L2 norm in the frequency range of 0.05 Hz to 0.5 Hz. 

4.4. Analyses of cardiac mechanics by multi-channel UWB radar 

4.4.1. Compatibility of MRI and UWB radar 

Compatibility is the most challenging issue when combining MRI with other modalities. 

Therefore, the UWB antennas employed are important parts. Eddy currents due to the 

switching magnetic gradient fields as well as the interference with the powerful RF pulses 

from the MRI scanner, see Section 2.3.3, were minimized by proper antenna design. The cut-

off frequency of the MR-compatible double ridged horn antennas at 1.5 GHz [32] marks the 

lower limit of the transmitted and received signal frequencies. Coupling to the narrowband 

MRI frequencies (300 MHz at 7 T, 125MHz at 3T) is thus minimized in both directions. 

Additionally, the inputs of both our UWB radar systems (MEODAT GmbH, Ilmenau, 

Germany), one single-module: 1Tx-2Rx-device and one four-module multi-input-multi-output: 

4Tx-8Rx-MIMO device, were protected by 1.2 GHz high pass filters. In both UWB systems, the 

transmitted radar signals were generated by a pseudo-random M-sequence. With m = 9 it has a 

length of 2m-1 = 511 clock signals at f0 = 8.95 GHz [76]. The equivalent UWB power spectrum 

extends up to f0/2. The impulse response function (IRF) is obtained as mentioned before by 

correlation of the received signal of the investigated object with the M-sequence [76]. By means 

of this technique, the signal-to-noise ratio is improved due to the removal of the uncorrelated 

noise by the correlation of the received signals with the transmitted signal pattern. In this way, 

even smallest parts of the RF pulses of the MRI were avoided. 
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4.4.2. Multi-channel UWB radar applying two receiver channels for cardiac trigger events 

We started our multi-channel UWB radar development with the single module device 

enabling us to add a second receiver (Rx) antenna, oriented towards the left-anterior oblique 

direction [68] (Fig. 33.a), to the existing Rx and Tx antennas facing the antero-posterior 

direction. The UWB data were recorded at 44.2 Hz. Corresponding to the data selection in 

Section 4.3.3, we obtained 200 virtual data channels from the IRFs of two UWB 

measurement channels for the decomposition by blind source separation (BSS). 

 

Figure 33. a) Scheme of the UWB radar with one transmitter (Tx) and two receiver (Rx) antennas and 

measurement set-up; b) Cardiac UWB signal applying both Rx channels and the calculated trigger 

events in the signal by combination of low peak and slew rate calculation. 

In the cardiac UWB signal, we chose the points of maximum myocardial contraction during 

the heart cycle. These points are related to the minima of the UWB signal (Fig. 33.b: squares). 

To increase the robustness of this detection scheme, we combined it with a simple difference 

calculation at the trailing edge of the minima. Additional consistency checks on the 

oscillation amplitude were used to suppress double triggering. 

By employing two Rx channels (Fig. 33.a) the UWB radar detection of the cardiac cycle 

worked reliably, even in the free breathing mode. In simple cases, e.g. under breath-holding 

conditions, it is possible to detect cardiac motion with just one Rx channel. However, this 

will not work in general, more complicated situations. 

4.4.3. Application of up to 32 receiver channels 

By using two Rx channels, it was still necessary to align the antennas properly towards the 

heart. This becomes more critical for measurements during cardiac MRI where the MR coil 

is placed on the chest of the subject, partly blocking the free line of sight between radar 

antenna and the heart, see Fig. 38. With our development of a multiple-antenna set-up it is 

much easier to handle this adjustment by just choosing the ‘good channels’ in a pool of 

available channels.   
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By integration of a MIMO UWB device (MEODAT GmbH, Ilmenau, Germany) containing 

four modules, each with one Tx and two Rx channels [76], up to 32 channels became 

available. In a 1 Tx * 8 Rx configuration a sampling frequency up to 530.4 Hz can be realized. 

Using sequentially activated transmitters the set-up can be extended to 32 channels (4 Tx * 8 

Rx) at a reduced sampling frequency of up to 132.6 Hz. For cardiac motion detection, the 

four Tx and eight RX antennas are placed over the chest as depicted in Fig. 34 and adjusted 

to aim for one central point at a distance of 100 cm.  

 

Figure 34. a) Scheme of the UWB radar set-up with 8 Rx and 4 Tx antennas b) MR compatible 

measurement set-up. 

 

Figure 35. Cardiac signal and detected trigger events for a) two hand-picked best channels, b) all 32 

channels, c) the 24 “good channels”. 

The procedure to identify the most useful channels for triggering starts with a short 

preparatory measurement, where each channel is analyzed by the BSS to decompose the 

complex UWB signals [80], extracts the relevant cardiac component and calculates the 

trigger events as described in Section 4.4.2. The quality of each measurement channel is 

assessed by calculating the variation of the time interval between trigger events. For 

comparison, Fig. 35.a depicts the result of the BSS analysis by the best two channels, 

manually selected for the smallest variation between the trigger events. The cardiac signal 

based on these two hand-picked channels represents the best achievable result for a set-up 

like in the section before. By utilizing all 32 channels for the BSS, a smoother cardiac signal is 

detected, and the motion amplitude shows less variation over the time. However, the 

sharpness of the trailing slopes is also reduced. Due to this fact, the third trigger event 

escaped detection (s. Fig. 35.b). Some of the 32 channels contained much noise resulting in a 
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jitter of their trigger contributions and smearing out the sharpness in the combined signal 

determined by the BSS. By the preparatory check those channels with the highest variation 

in their 'cardiac' signals were excluded as they were likely contaminated with noise or other 

motion components. By rejecting the eight noisiest channels and recalculating the BSS with 

the remaining channels, a cardiac signal is obtained with sharp trailing slopes and well-

defined trigger events (s. Fig. 35.c). 

The primary goal of this development was to simplify the system handling during cardiac 

navigation for high-resolution MRI. In addition, the capability of monitoring non-invasively 

the cardiac activity of a person in an unknown position, e.g. in a patient bed, can be important 

for a variety of novel medical applications in clinical medicine and biomedical research. As 

multi-channel UWB radar is unimpeded by bedding or clothing, it is applicable not only in 

conjunction with MRI. It would also be a valuable stand-alone modality for intensive care 

monitoring of patient groups not permitting the use of skin contact sensors. Neonates, children 

at risk of sudden infant death syndrome or burn victims are just a few examples. 

4.4.4. Illumination of human thorax by multiple antenna groups 

Stand-alone UWB radar enables the detection of cardiac activities by different illumination 

conditions as shown in [68] for the radiographic standard position. The illumination of the 

heart from only one side at a time, like the frontal direction for motion detection as depicted 

in Fig. 33, was extended to the simultaneous illumination of two sides. No averaging was 

performed to enable the comparison of single heart beats [30]. This approach can open the 

field for new diagnostic applications by detecting differences and disturbances in 

comparative measurements of the left and right ventricle, thus recognizing potentially 

pathological patterns [69]. Two groups of four Rx and one Tx antennas were applied for this 

purpose. The first was placed in the left lateral and the second in the right anterior oblique 

position.  

Each antenna group consisted of a single Tx antenna surrounded by four Rx antennas. All 

antennas were directed towards the estimated center position of the heart. The challenge 

was to measure the cardiac motion even from the lateral position, where the attenuation of 

the reflected signals from the heart is much higher due to the prolonged propagation path in 

tissue. The data analysis by BSS was applied for both antenna groups separately. For 

comparison, the data of only two or all four Rx channel per group were analyzed.   

For lateral position, the UWB signal from the cardiac motion is considerably weaker and 

much more affected by noise. However, by increasing the number of Rx- channels, the 

signal quality improved substantially, effectively compensating the strong signal 

attenuation (s. Fig. 36.b). Only healthy volunteers were examined in this particular study 

but even among them characteristic peculiarities can be found. In both ventricles, the 

contraction velocity (trailing edge of the UWB motion curve) is higher than the velocity of 

ventricle dilatation. The duration of the dilation period, on the other hand, is longer for the 

right ventricle compared to its counterpart on the left. More characteristic features are 

expected to be visible in patients with cardiac diseases or malfunctions. 
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4.5. Simultaneous cardiac UWB/ECG, UWB/MRI measurements 

4.5.1. UWB radar and high resolution ECG 

UWB and ECG were simultaneously acquired. The radar system was equivalent to 

Section 4.4.2 with one Tx and two Rx channels. The ECG was recorded with two channels 

(left arm and left leg against right arm) at a sampling frequency of 8 kHz. For the UWB 

signals sampled at 44.2 Hz, the same data analysis (see Section 4.4.2) was applied to extract 

the cardiac signal and determine the trigger events. The usual R-peak detection was applied 

to trigger on the ECG signal. Cardiac UWB and ECG signals were both re-sampled at 1 kHz 

to retain more detailed information of the ECG.  

The point of maximum mechanical contraction of the heart in the cardiac UWB signals (s. 

Fig. 37.a) is delayed to the ECG R-peak, indicating the point of the myocardium’s peak 

electrical activity. Therefore, we have to be aware of the difference between detecting 

cardiac mechanics by UWB radar and the heart’s electrical activity by ECG. For the goal of 

MRI gating, however, the important thing is the existence of a fixed temporal relationship 

between ECG and UWB signals with as little jitter as possible. For the time lag between ECG 

and UWB trigger events, we obtained a standard deviation of less than 20 ms which is 

already smaller than the UWB sampling time of 22.6 ms. This result proves the consistency 

and robustness of our procedure. 

 

Figure 36. a) Measurement set-up with two antenna groups for separate monitoring of the heart’s left 

and right ventricle; b) Cardiac signal for left and right ventricle applying four Rx channels. 

 

Figure 37. a) ECG signal with R-peak trigger events and UWB signal with trigger events located at the 

maximum of mechanical contraction; b) Measurement with an extra-systole. 
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Another measurement example depicted in Fig. 37.b shows a cardiac sequence containing 

an extra-systole at 45.5 s. In the ECG signal, this appears as a spontaneous change in the R-

R-duration. In the cardiac UWB signal, we observe an incomplete contraction of the 

myocardium due to the “erroneous” electric excitation. Consequently, no trigger event was 

generated by this extra-systole. This ability to analyze cardiac mechanics by stand-alone 

UWB radar or in conjunction with ECG can be exploited, e.g., for infarction detection, as 

ischemic tissue shows a modified contraction pattern. 

4.5.2. Comparison of cardiac UWB Signal and one dimensional MRI 

For better understanding the relationship between actual cardiac mechanics and UWB 

motion-detection signals, a fast MR-sequence was developed with the aim to monitor 

myocardial landmarks inside the human body in real time. We implemented a very fast 1D 

gradient echo sequence for low RF power deposition in tissue and high scan repetition 

frequency on our MR scanner [77]. One dimensional MR profiles and motion sensitive UWB 

data were acquired simultaneously allowing the comparison of both techniques and hence a 

verification of the UWB radar navigator. MR compatible UWB antennas [32] mounted above 

the chest were directed towards the heart (s. Fig. 38). A flexible RF coil with large openings 

was used to detect the MRI signal. The UWB data were sampled at 132.6 Hz. Using one Tx 

and five Rx UWB antennas 500 virtual channels could be constructed from the IRFs.  

 

Figure 38. a) Scheme of the antenna configuration; b) Set-up of simultaneous UWB and MRI 

measurement. 

In the MRI sequence, the one-dimensional ‘pencil-like’ imaging region is selected by the 

intersecting volume of two perpendicular slices (s. Fig. 39.a). Both slices are excited in short 

succession resulting in a saturation effect in the region of the intersection. When the 

experiment is repeated with a different delay time between both excitation pulses, the two 

images differ only in the strength of this saturation effect, and subtraction yields the desired 

1D image. Placed through the heart in antero-posterior direction, this ‘pencil’ was scanned 

at a repetition frequency of 25.4 Hz. The motion components in both data sets, the 500 

virtual UWB channels and the MR pencil, were once again separated by applying BSS 

decomposition. 
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Figure 39. a) Selection of the ‘pencil’ by two crossing slices in antero-posterior direction through the 

heart; b) Detected cardiac motion component by UWB radar and MR “pencil”. 

The trigger events (squares in Fig. 39.b) in the UWB cardiac motion data - representing the 

point of maximum contraction of the myocardium - were determined by applying the 

algorithm proposed by us. This did not work with the cardiac components of the MR signal 

due to the pronounced double peaks in this data set. Comparing the cardiac components 

simultaneously gained by UWB and MR data, we observe perfectly matching slopes of both 

signals. However, in contrast to UWB radar the MR signal is affected by the blood velocity 

in the heart producing the double peaks. Keeping this in mind, we can conclude that both 

modalities render the same motion. Thus, we can assume the cardiac motion detection by 

UWB radar to be verified. 

4.6. Advances for respiratory motions 

To establish a UWB navigator for cardiac MRI in free-breathing mode, a landmark tracking 

of the heart due to the respiration motion is necessary [66]. The time-dependent UWB radar 

signal contains mainly respiratory motion of the chest, as in Fig. 32.b, which is not 

necessarily identical to the mechanical displacement of the heart. Therefore, we compared 

the UWB detected respiratory motion to simultaneously measured 1D MRI as described in 

Section 4.5.2. Resulting from that comparison, we extended the UWB configuration to allow 

for the detection of abdominal respiration, too (Fig. 40.a). The antenna configuration applied 

in the comparison made in Section 4.5.2 was extended by two additional channels above the 

chest and a second group with one Tx and one Rx antenna over the abdominal region. 

In MR-based navigator techniques [67], the position of the diaphragm is monitored because 

the shift of the diaphragm is the dominant motion component of the heart due to 

respiration. The displacement of the diaphragm is mainly orientated in head-foot direction. 

Hence, the pencil-like one dimensional MRI was placed in head-foot direction across the 

heart. The UWB data of the first antenna group were decomposed by BSS for detection of 

breast respiration and cardiac cycle and the second group for the abdominal respiration. In 

the same way, the motion components were decomposed for “pencil-like” MRI. 

The UWB detected breast respiration is not suitable to monitor the mechanical heart shift in 

head-foot direction. In Fig. 41, a delay between the breast respiration and the heart shift is 
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depicted, and especially in Fig. 41.b it becomes obvious that these are different processes. 

However, the UWB detected abdominal respiration correlates well with heart motion due to 

respiration. The correlation factor in measurement a) is 0.932 and 0.81 in measurement b). 

 

Figure 40. a) Extended antenna configuration with second group over the abdominal region;   b) 

Placement of the two slices for the ‘pencil-like’ MRI (Head  Foot). 

  

Figure 41. Breast and abdominal respiration by UWB radar and mechanical heart shift in head  foot 

direction monitored by MR pencil a) with changed breast and abdominal respiration b) with fading 

breast but changed abdominal component. 

4.7. UWB triggered cardiac MRI 

CMR and UWB signals were acquired simultaneously and synchronously to enable UWB 

triggering [81]. The UWB antennas were mounted in the same frontal position related to the 

subject as in Section 4.4.1. Simultaneous pulse oximetry (PO) was applied to compare our 

approach with another established triggering technique for cardiac MRI. 

After acquiring a series of CMR images using a clinical sequence with conventional PO 

gating, we retrospectively reconstructed the k-space data a second time but now using 

trigger points derived from the simultaneously acquired UWB radar signals [81]. Figure 42.b 



 

Ultra-Wideband Radio Technologies for Communications, Localization and Sensor Applications 300 

shows that both methods give virtually undistinguishable results, thus establishing the 

feasibility of CMR imaging utilizing non-contact UWB radar for triggering. In contrast to 

established techniques like ECG or PO, however, contact-less UWB-sensing provides cardiac 

and respiratory information simultaneously and, thus, a sequence-independent external 

navigator signal. 

 

 

Figure 42. a) Cardiac UWB signal with selected trigger events; b) Top: Reconstructed images utilizing 

PO trigger, Bottom: Image reconstruction by UWB trigger events applied. 

5. Microwave imaging in medicine 

5.1. Introduction 

Microwave ultra-wideband (UWB) sensing and imaging represents a promising alternative 

for the early-stage screening diagnostics of breast cancer. This perspective results from 

advantageous properties of microwaves: sensitivity of the dielectric properties of human 

tissue to physiological signatures of clinical interest in this frequency range, especially water 

content, their non-ionizing nature (compared to X-rays), and the potential of a cost-efficient 

imaging technology (compared to MRI) [82]. 

Numerous research groups have been working in this field since the end of the 1990s. Many 

studies deal with simulations, several groups perform phantom measurements, but only 

very few have already started some first clinical measurements. The challenges which have 

to be met concerning real in vivo measurements are multifaceted and depend on the 

conditions of the measurement scenario. The developed strategies and measurement 

principles of microwave breast imaging can be classified according to various 

characteristics: active vs. passive vs. heterogeneous microwave imaging systems [83]; 

microwave tomography (or spectroscopy) imaging [84] vs. UWB radar imaging [85]; 

examination in prone vs. supine position [83] and some further differentiations. This chapter 

deals exclusively with active microwave imaging based on the UWB radar principle which 

can be applied in general in both examination positions.  

Figure 43 shows two basic antenna arrangements for the prone examination position. They 

differ in the antenna-skin distance. 
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Non-contact breast imaging: The most significant reason for non-contact breast measurements 

is the size of the antennas compared with the breast size. Thereby, it is impossible to mount 

a sufficient number of antennas on the breast surface in order to achieve an adequate image 

quality. The displacement of the antennas from the breast increases the area where 

additional antennas can be localized. Besides that, it allows mechanical scanning where the 

antennas can be rotated around the breast in order to create a synthetic aperture. On the 

other hand, this non-contact strategy is accompanied by a lot of other problems and 

challenges.  

 

Figure 43. Schematization of non-contact breast imaging using a liquid contact medium (left side) and 

contact-based breast imaging (right side) in the prone examination position  

Depending on the dielectric contrast between the medium surrounding the antennas and 

the breast tissue, only a fraction of the radiated signal energy will penetrate the breast. The 

major part will be reflected at the breast surface. It provides clutter which has to be eliminated 

since it perturbs the signals of interest. In order to reduce the reflection coefficient, several 

approaches use a liquid coupling medium in which the breast has to be immersed and in 

which the antennas can surround the breast. The same energy reduction effect appears for 

reflected components from inside of the breast passing the dielectric boundary in the opposite 

direction. Furthermore, in the opposite direction (from dielectric dense medium into a less 

dense medium) waves can only leave the breast below the angle of total reflection which 

implies an additional reduction of the detectable signal energy outside the breast.  

The individual breast shape plays an important role in connection with these effects as well 

as for image processing. In section 5.3, we describe a method for breast and whole body 

surface reconstruction based on the reflected UWB signals. 

Contact-mode breast imaging: Contact-based breast imaging avoids the disadvantages 

described above. The antennas are localized directly at the breast surface. Understandably, 

they have to be small enough in order to arrange a sufficient number of antennas around the 

breast. The corresponding number of signal channels will be obtained by electronic 

scanning, that means sequential feeding of all transmitter antennas with simultaneous signal 

acquisition of all receiving antennas. This strategy involves the problem of individual breast 

shapes and sizes which influences the contact pressure of the breast skin onto the antenna 

aperture and, thus, the signal quality [86].  

BreastBreast

Liquid tank Antennas Antennas

Tumor Tumor

Mold
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However, we prefer this measurement scenario for our current investigations, and intend to 

weaken the contact problem in the future by 2 or 3 different array sizes and an additional 

gentle suction of the breast into the antenna array by a slight underpressure. In section 5.4, 

we present an experimental measuring set-up where we pursue a strategy of nearly direct 

contact imaging in order to conjoin the advantages of contact-based imaging with the 

possibility of mechanical scanning. 

5.2. Breast and body phantoms 

In the context of UWB tissue sensing, the water content plays a key role as it determines the 

inherent dielectric properties (´ and ´´) [43]. Moreover, the water content is known to vary 

among the different human tissues as well as between specific normal and pathologic ones, 

thus offering a potentially broad spectrum of UWB applications for biomedical diagnostics. 

Oil-in-gelatin phantoms, mimicking the dielectric properties of human tissues, were 

manufactured according to a protocol from [24]. The water concentration varied between 19 

and 95% (v/v; ~ 10% water graduation steps), to obtain a set of materials with different 

permittivity values (´ ranging from 8 to 59 and ´´ ranging from 0.5 to 11, both averaged over 

frequencies from 1 to 4 GHz). The measurements were carried out by means of the M-sequence 

devices [76], [87] with HaLoS chipsets and a frequency bandwidth of 4.5 GHz, as well as the 

radar data acquisition and analysis software “ultraANALYSER” developed for this purpose.  

The variation of the oil-water-concentration led to the identification of distinct permittivity 

values ´ (Fig. 44, insert) of the different oil-in-gelatin phantoms. The phantom, which was 

manufactured without oil (95% water), showed values between 53 and 59 for the real part ε´ 
and between 11 and 10 for the imaginary part ´´ of the permittivity in the frequency range 

between 1 and 3.5 GHz (Fig. 44, insert). The results for pure distilled water are also 

displayed. The real part of permittivity agrees well with literature data [88]. 

 

Figure 44. Dielectric properties of nine oil-in-gelatin phantoms with varying percentage of water (from 

19% to 95% water (v/v)) and porcine muscle tissue. Depicted is the correlation of the real part    and 

the imaginary part    of the phantoms. Both parts increase with an increasing water-concentration. 

Error bars represent the standard deviation from an average of three individual measurements on the 

phantom surface (insert).  
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5.3. Breast and body surface reconstruction 

5.3.1. Method 

The benefits of the exact knowledge of the breast surface for non-contact microwave breast 

imaging are manifold and can improve the results significantly. The inclusion of the breast 

shape information is essential to calculate the wave traveling path in order to image the 

interior of the breast based on radar beam-forming techniques. Some approaches use the 

surface information for initial estimations. Other non-contact measurement approaches 

strive to illuminate the breast from a specific distance which requires a very fast online 

surface identification in order to adapt the antenna position during measurement. 

Furthermore, in the case of varying distances between antenna and breast, the exact 

knowledge of the breast surface can improve the estimation of the skin reflection component 

for a better early time artifact removal. In order to reduce the calculation time, the region of 

interest (i.e. the region for which the image has to be processed) can be restricted based on 

known surface geometry [89], [90].  

Additionally to the significance for breast imaging, UWB microwave radar is suitable for 

whole body surface reconstruction which can be used in other medical microwave 

applications as well as in safety-relevant tasks, e.g. under-dress weapon detection. 

The Boundary Scattering Transform (BST) represents a powerful approach for surface 

detection problems. BST and its inverse transform (IBST) were introduced 2004 by Sakamoto 

and Sato [91] as basic algorithms for high-speed ultra wideband imaging, called SEABED 

(Shape Estimation Algorithm based on BST and Extraction of Directly scattered waves). 

Since then, this idea has been extended from mono-static 2D-imaging to the point of bi-static 

3D-imaging (IBBST) [92]. The SEABED algorithm represents a high–speed, high-resolution 

microwave imaging procedure. It does not include the entire radar signal; it uses only wave 

fronts instead. Furthermore, changes (derivatives) of the propagation time (transmitter  

object surface  receiver) depending on the antenna position during the scan process play 

an important role. SEABED consists of three steps: 1. Detection of the wave fronts and 

calculation of their derivatives with respect to the coordinates of the scan plane. 2. Inverse 

Boundary Scattering Transform, which yields spatially distributed points representing the 

surface of the object. 3. Reconstruction of the surface based on these points.  

The practical applicability of the original algorithm to the identification of complex shaped 

surfaces is limited because of the inherent planar scanning scheme and, therefore, the 

disadvantage of illuminating only one side of the object. For this reason, we extended the bi-

static approach of [92] toward non-planar scanning and a fully three-dimensional antenna 

movement based on the idea that in the case of arbitrary non-planar scan schemes the 

current scan plane can be approximated by the tangential plane at each antenna position 

[93]. An antenna position dependent coordinate transform which ensures that the antenna 

axis is parallel to the x -axis and the current scan plane is parallel to one plane of the 

coordinate system allows the application of the IBBST for nearly arbitrary scan surfaces. 

More precisely, this generalized approach is limited to scenarios where the antennas will be 
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moved orthogonally or parallel to the antenna axis, which is fulfilled in most practical cases. 

First results of breast shape identification were published in [94], [95]. 

Based on the following transform equation, the coordinate of the specular point can be 

calculated 
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where , ,x y z
 
are the coordinates of the reflective surface point (specular point), , ,X Y Z are 

the coordinates of the center between the two antennas, D is the half distance transmitter  

reflection point  receiver, d is the half distance between the two antennas, and  

X

dD
D

dX
 , 

Y

dD
D

dY
  symbolizes the derivatives of the distance with respect to the denoted 

direction of antenna movement. The bars above the symbols mark the coordinates of the 

transformed coordinate system [93]. 

 

Figure 45. Ray geometry of the inverse bi-static boundary scattering transform (IBBST) 
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The main challenge is the exact detection of the wave fronts and their proper derivative. For 

the purpose of wave front detection, we use an iterative correlation-based detection 

algorithm similar to [96]. In this connection, a short antenna impulse response over a 

sufficiently wide angular range plays an important role. The difficulties of obtaining 

appropriate wave front derivatives result from the three-dimensional nature of the problem. 

The antennas are moved and the transmitted waves are reflected in the three-dimensional 

space. Especially in the case of wave front crossing and impulse overlapping as well as 

sparsely detected wave fronts, it is very complicated to recognize which identified wave 

front at one scan position is related to which wave front at the previous scan position and 

vice versa. So, it may happen that derivative values are wrongly calculated, which can lead 

to a spatially false projection of the surface points. In order to avoid such errors, we establish 

thresholds of feasible derivative values dependent on the antenna beam width.  

5.3.2. Detection and elimination of improper wavefronts 

General limit values: The range of values of the distance derivatives 
,X Y

D is theoretically 

bounded between 0 and 1 depending on the slope of the reflection plane (tangent plane of 

the object surface at the specular point). In the case of parallelism between reflection plane 

and antenna axis, 0
X
D , whereas in the case of orthogonality, 1 

X
D . Thus, calculated 

values 1
X
D  are definitely caused by incorrect wave front detection. Consideration of 

these general boundaries and exclusion of wave fronts exceeding them yields a significant 

improvement.  

Customized plausibility limit values: The boundary 1 
X

D  assumes an antenna radiation 

angle of 90° or more, which is not given using directive radiators, e.g. horn antennas. In that 

case, the range of plausible derivative values can further be restricted. Assuming a 

maximum antenna radiation angle   and a distance between transmitter and receiving 

antenna of 2d the minimum reasonable value 
minD  can easily be defined by  

 
min

sin


d
D


 (6) 

Wave fronts with lower D values would imply specular points which are located outside the 

antenna beam and, therefore, can be ignored [98]. 

Furthermore, a maximum distance derivative 
X

D  depending on  , d  and D  can be 

established:  

       2 22 2

max

cos cos cos 2 cos cos cos 2

2

              




   
X

L x L x d d L x L x d d
D

x

     
 (7) 

with the perpendicular from the reflection plane to the distant antenna 
 2 2

cos
sin


 



D d
L

D d



, 

its perpendicular angle β and the reflection angle γ as depicted in Fig. 45. This value yields 
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max
sin

X
D

 
for mono-static arrangements ( 0)d  and approaches to this value in the case 

of L d , respectively. For further details of the derivation of these thresholds and 

reconstruction examples illustrating the accuracy enhancement due to the application of 

these thresholds, we refer to [98]. 

5.3.3. Reconstruction results 

For repeatable measurements, we applied a female dressmaker torso which is filled with 

tissue-equivalent phantom material (Fig. 46). Based on linear and rotational scanners which 

can move or rotate the object and/or the antennas, several non-planar scan schemes can be 

realized in order to scan this torso efficiently. In the following, the results of breast shape 

identification based on a toroidal scan will be shown. The M-sequence radar device used has 

a bandwidth of 12 GHz [97].  

   

Figure 46. Female torso filled with human tissue mimicking phantom material and delineation of the 

toroidal scan scheme to reconstruct the chest surface 

Numerical problems may arise in the calculation of derivatives from discrete data (discrete 

time intervals; discrete antenna positions in the space) which have to be considered for 

setting measurement and processing parameters. The resolutions of spatial scanning and 

radar signal sampling have to be harmonized carefully with each other in order to avoid 

derivative artifacts. The maximum possible error of the derivative is   0ˆ
2




x

t v
e D

x
 

where 

t  is the time resolution of the wave front detection, x  is the antenna displacement 

applied for the calculation of 
xD

 

and 
0v  is the propagation velocity of the electromagnetic 

wave. Hence, it will be obvious to meet the requirement of for example  ˆ 0.05xe D  (0.05 is 

more than 5 percent relative error with respect to 
maxxD  

for antenna beam widths < 90°!) 

with an antenna displacement such as 2.5 cmx  in air 
0 0( )v c

 

the wave front detection 

has to be realized with a time accuracy of 8.33 ps which has to be provided by interpolation 

within the wave front detection algorithm. Higher performance requirements presuppose 
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an even more precise wave front identification. Naturally, this is only possible if the radar 

device fulfills such high time stability requirements.  

Figure 47 shows the UWB reconstruction results of the mentioned torso in comparison to a 

laser reference measurement. In order to quantify the accuracy, the distances between each 

calculated UWB surface point and the laser-based detected surface is calculated. The 

resulting mean aberration lower than 1.4 mm underlines the potential of this method. 

Nevertheless, it is obvious that a further enhancement of the wave front detection represents 

a residual challenge in order to fill in increasingly the areas of sparsely distributed surface 

points.  

 

Figure 47. Exact UWB chest surface reconstruction (black) and appraisal of performance values by 

means of a laser reference measurement (gray) showing a mean aberration lower than 1.4 mm. 

Furthermore, the applicability of a 3D-IBBST-based UWB surface reconstruction method for 

medical applications other than breast imaging as well as for security scenarios (under dress 

weapon detection) is demonstrated in [98]. 

5.4. Contact based breast imaging 

5.4.1. UWB breast imaging in time domain 

The main parts of UWB time domain imaging are the removal of clutter (also referred to as 

early time artifact removal) and beam-forming (also referred to as migration or back 

projection). Because the tumor reflections are overlapped by antenna cross-talk and skin 

reflection, clutter removal is a very important and critical component of signal 
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preprocessing before beam-forming can be carried out. Most clutter removal approaches 

assume that the clutter appears very similar in each channel and, thus, its estimation 

improves with increasing channel number. It must be noted that this holds only for channels 

with comparable clutter parameters. That means clutter estimation and removal has to be 

done separately for groups consisting of only associated signals (channels with identical 

antenna distances and boresight angles Tx-Rx), which accomplishes this task. In scientific 

work on simulation, this circumstance is commonly ignored. For practical applications, 

however, it has to be taken into consideration.  

The simplest approach is to estimate the clutter by means of the average value. Tumor 

reflections are assumed to appear uncorrelated in the channels and to be negligible in the 

averaged signal. Even though publications about advanced clutter removal algorithms 

emphasize the weak points of this self-evident approach, it must be noted that it works 

relatively robustly in the case of covering tumor response by clutter when some of the 

proposed alternatives are not applicable.   

Image formation algorithms using time domain beam-forming can be included in the 

following generalized formula: 
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where N  is the number of channels,  nS t is the clutter subtracted signal of channel n , 0r  

symbolizes the coordinates of the focal point (image position vector), 0( )n r is the time delay 

of channel n  related to the focal point at 0r and  0I r  is the back scattered energy which 

has to be mapped over the region of interest inside the breast. Based on two FIR filters, the 

different extensions of the common delay-and-sum beam former can be expressed. Path-

dependent dispersion and attenuation [99], [100] can be equalized by means of  0,n ww  r  

which – in the simplest case - can be only a weight coefficient. Other improvements can also 

be included by convolution in the time domain, e.g. the cross-correlated back projection 

algorithm [101].  0,hh  r  represents a smoothing window at the energy level or a scalar 

weight coefficient [102]. 

5.4.2. Measurement setup based on small antennas 

The efficient penetration of the electromagnetic waves into the tissue and the spatial high-

resolution registration of the reflected signals are crucial tasks of the antenna array design. 

In this regard, efficiency is not only a matter of radiation efficiency or antenna return loss, 

respectively. An efficient antenna array design concerning biomedical UWB imaging 

purposes comprises also the shape and duration of signal impulses, angle dependence of the 

impulse characteristics (fidelity), and the physical dimensions of the antenna. These 

interacting parameters are hardly to accommodate to each other within one antenna design. 

Generally, compromise solutions have to be found considering basic conditions of scanning, 
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tissue properties and image processing. Here, we pursue the objective of very small antenna 

dimensions, short impulses and an application in direct or quasi direct contact mode. 

Therefore, we investigated the usability of small interfacial dipoles. 

 

Figure 48. Small bow-ties on Rogers substrate 

Initially, we used short bow-ties (Fig. 48) with the dimensions of 8 mm x 3 mm implemented 

on Rogers® 4003 substrate (0.5 mm) using PCB technology. Dipoles have to be fed 

differentially. The balanced feeding is realized by differential amplifier circuits [103].  

These antennas cannot be matched over a large bandwidth, which leads to unwanted 

reflections between antenna and amplifier. There are two options concerning the handling 

of this problem: realization of a sufficient line length between antenna and amplifier (in 

order to gate out the reflections) or implementation of the amplifier circuits directly at the 

antenna feed point. On an interim basis, we pursued the first strategy using long cables 

between antenna and amplifier. Assuming a maximum mean tissue permittivity ' 50  , a 

70 cm cable will ensure that any reflections from inside of the breast (diameter ~ 10 cm) and 

unwanted reflections at the amplifier do not overlap.  

As mentioned above, the contact between antennas and breast skin represents a crucial 

aspect for sufficient signal quality. Regarding clinical requirements (e.g. disinfection) we 

plan to place the antennas behind a thin examination mold. But this additional interface 

reduces the signal quality significantly. Therefore, a thin (~2 mm) matching layer consisting 

of tissue mimicking phantom material was inserted between the examination mold and the 

antennas in order to increase the signal energy penetrating the tissue and reduce the 

backward radiation (Fig. 49). The benefit achieved when using a thin contact layer was also 

investigated and verified by simulations (Fig. 5 in section 2.3.2).  

We built up two preliminary array set-ups for phantom measurements, both including eight 

antennas and distributing them around a circular segment (diameter 9.5 cm) in steps of 

22.5°. An array with a horizontal antenna arrangement is shown in Fig. 50. Exemplary 

phantom measurement results achieved with these prototypes are published in [104] and 

[105] and will be summarized in section 5.4.3. 
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Figure 49. Schematic illustration of the contact layer filled with phantom material and mounted 

antennas inside  

 

Figure 50. Antenna array: Assembly stage before casting the contact layer. The connected and affixed 

differential fed antennas and the container for the outer boundary of the contact layer are still visible 

(left panel). Finished antenna array with inserted rotatable breast phantom (right panel) 

After this preliminary development stage, the differential feeding amplifier was relocated 

into the antenna feed point. By this step, reflections due to antenna mismatch will be 

avoided, and the quantity of feeding cables will be bisected, because each active antenna 

element can be fed single-ended (Fig. 51).     

In conjunction with this enhancement, the mechanical part of the antenna array was 

improved. A developed slide-in mounting system (Fig. 51) allows flexible antenna 

application and replacement and, therefore, facilitates investigations of various Rx-Tx-

arrangements without destruction and rebuild of the whole array as it is the case with the 

preliminary set-up shown in Fig. 50 [106]. 

Because the contact layer will not be hermetically sealed in this case, the chemical instable 

oil-gelatin phantom material cannot be used anymore for this task. Thus, investigations of 

alternative materials have to be considered. We propose polymer-powder composites where 
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dielectric powders (e.g. carbon meal or barium titanate powder) will be admixed to silicone 

rubber. This special challenging topic is currently under investigation. 

  

Figure 51. Photographs of an active antenna element (Rx) with 8 mm dipole with amplifier circuit 

board (left panel) and the slide-on mounting system for phantom measurements as well as in vivo 

measurements 

5.4.3. Imaging results of phantom trials 

The breast phantoms are tissue mimicking oil-gelatin phantoms according to [24] and 

described in section 5.2, where the dielectric properties can be adjusted by means of the oil 

content. For our measurements we used two types of material: 40% oil (57% water) content 

material mimics healthy tissue which approximately corresponds to group II of adipose-

defined tissue (31%-84% adipose tissue) [106]. The 10% oil (85.5% water) content material 

simulates tumor tissue. Fig. 52 illustrates permittivity, attenuation losses and reflection 

coefficient between both tissues. In order to realize an optimal contact to the antenna array, 

the phantom material is filled in identical plastic containers (diameter 9.5cm) as used for the 

examination mold. The containers are hermetically sealed and stored in the fridge to avoid 

chemical instability of the phantom material. The phantoms have to be acclimatized at least 

3 hours before starting the measurements. 

 

Figure 52. Dielectric values of the tissue mimicking phantom material: Permittivity (above), 

transmission losses per cm and reflection coefficient between them (below)  
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Figure 53 shows two measured signals of the proposed antennas which illustrate the 

appropriate time domain characteristics. The measurement through 6 cm tissue (mimicked 

by means of phantom material) as well as the cross-talk signal between two antennas show 

relatively short impulse shapes with low ringing, which is essential for UWB imaging. 

Including the dispersive tissue impact the spectral bulk ranges between 1 GHz and 3 GHz 

with a bandwidth greater than 2 GHz for both received impulses. Obviously, because of the 

dielectric scaling due to the direct contact between tissue and antenna, such small antennas 

are capable of radiating waves in a frequency range with acceptable attenuation and 

penetration depth. 

 

Figure 53. Measurement signals based on the described bow-ties: measurement through 6 cm tissue 

mimicking phantom material with 40% oil content (left panel) and cross-talk signal between adjacent 

antennas, separated by 2.5 cm (right panel) 

During the phantom measurements, four antennas acted as receivers and are permanently 

connected with Rx1…Rx4 of the radar device. The transmitter signal was connected to one 

of 4 transmitter antennas by a coaxial switch matrix. Thus, 16 signal channels could be 

achieved without rearrangement. Their angles between the boresight directions of Tx and 

Rx differed in the range 22.5 - 157.5°. Because this amount of signal channels is insufficient 

for high-resolution imaging, we had to consider robust and reproducible mechanical 

scanning to achieve a sufficient number of channels. In order to simulate antenna rotation, 

the phantoms were rotated in steps of 11.25°. This resulted in 512 signals (16 channels x 32 

rotations) which could be included into the imaging process of one phantom.  

Figure 54 shows exemplary imaging results of the described breast phantoms applying the 

presented measuring set-up and time domain beam-forming. Despite the relatively low 

dielectric contrast between both tissue simulations, the tumor inclusions can clearly be 

identified. The highest interferences (side lobes) are about 11dB (15mm tumor) and around 

7dB (10mm tumor) lower than the tumor representation. Additionally, the lower panels of 

Fig. 54 illustrate the capability of localization and differentiation between multiple tumors, 

for example two 15 mm tumors with a distance of 30 mm between them. Despite of the 
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relatively low dielectric contrast between healthy and cancerous tissue mimicking phantom 

material, the tumors can be detected and separated. 

The results underline that small dipoles can be profitably applied for UWB breast imaging. 

The impressive identification of the tumor surrogates promises also the detection of weaker 

dielectric contrasts. On the other hand, it must be noted that the tumor surrounding tissue 

imitation is completely homogeneous which does not correspond to reality. Therefore, our 

breast phantoms must be enhanced in the future toward a better approximation of the breast 

tissue heterogeneity.  

 

Figure 54. UWB images of phantom trials including a 15mm (top) and a 10 mm (middle) tumor 

surrogate as well as two 15 mm tumor surrogates, separated by 30 mm (below). Left: linear energy 

scale; Right: logarithmic scale in dB.  
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6. Conclusions 

In this chapter, we dealt with ultra wideband sensing in medical engineering, i.e. using 

electromagnetic waves of large bandwidth for probing the human body and biological 

tissue. Sufficient penetration of the human body combined with antennas of manageable 

size were our major concern. Also, the frequency band from 1 GHz to 5…8 GHz turned out 

to be best suited for our purposes. By using active or dielectrically scaled antennas for this 

frequency range, they can be built sufficiently small. Wave propagation at these frequencies 

is mostly influenced by water, the most abundant component of biological tissue. The effect 

of salt becomes less detrimental above 1 GHz. Above 5…8 GHz, however, water absorption 

will drastically increase the propagation losses. The given frequency band also provides 

acceptable resolution for microwave imaging and ample micro-Doppler sensitivity. 

For experimental investigations, we exploited ultra-wideband pseudo-noise devices. They 

provide probing signals of very low power, thus avoiding damages to biological tissue. 

Furthermore, they provide sufficient dynamic range, measurement speed and short term 

stability for super resolution techniques of microwave imaging and weak-motion tracking. 

We demonstrated medical applications of ultra-wideband sensing by three distinctive 

examples, each standing for a specific class of applications. 

1. Contact-based measurements (impedance spectroscopy) aimed to estimate tissue 

permittivity. This mainly gives some hints on water concentration and water bonds. At 

lower frequencies, other molecules will also leave their traces in the measured 

impedance value. 

2. Remote motion tracking of organs inside the human body like cardio-pulmonary activity 

for example of motion correction for magnetic resonance imaging. Remote vital sign 

detection is a related topic with relaxed conditions referred to tracking precision but 

increased requirements with respect to area coverage. The analysis of cardiac mechanics 

for separate heart region accessible by stand-alone UWB radar or in conjunction with the 

electrical activity from the ECG contains valuable diagnostic information, e.g. for 

infarction detection, as ischemic tissue shows a modified contraction pattern. 

Remote or contact-based microwave imaging of inner organs or malignant tissue, for 

example the detection of breast tumors.  
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