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1. Introduction 

With more than 1 million annual deaths, among both females and males, lung cancer is the 

world leading cause of cancer-related death (1). The most important risk factor for lung 

cancer is smoking, with smokers presenting a 10 fold risk increase compared to non-

smokers. Lung cancers are usually divided into two categories: small-cell lung cancer 

(SCLC), representing approximately 15% of cases, and non-small cell lung cancer (NSCLC). 

This sub-division represents around 85% of all lung cancer cases and includes the 

histological sub-types adenocarcinoma, large-cell carcinoma and squamous cell carcinoma 

(2). The lung cancer 5-year survival rate is one of the lowest at 10-15% and treatment 

depends on the extent of the disease at the time of diagnosis (3). Approximately 30% of 

patients have early stage lung cancer when diagnosed and those tumours can be surgically 

removed, 20% have local and/or regionally advanced tumours and are treated with chemo 

and radiotherapy, and almost half of the patients have advanced metastatic disease when 

only palliative treatments are available (4). Consequently there is a pressing need for new 

screening and early diagnostic techniques that are specific and non-invasive, and also for 

tools that can predict prognosis, optimize treatments and identify new therapeutic targets. 

Genomic approaches have been used to that end in the last years. Nonetheless, given the 

importance of proteins to a cells’ phenotype, post-translational modifications, and the poor 

correlation between mRNA and protein expression levels (5, 6), proteomic analyses may 

enlighten the pathogenesis of lung cancer. A variety of techniques such as two dimensional 

gel electrophoresis (2D-PAGE, 2D-DIGE), protein arrays, protein labelling and tagging 

(ICAT, iTRAQ, SILAC), are being used in cancer research (7, 8) and have the potential to aid 

clinical practice as a complement to histopathology, as a selection method for individualized 

therapy, and in the assessment of drug efficacy, resistance, and toxicity (9). 
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2. Lung cancer 

In the beginning of the 20th century, lung cancer was a rare disease. Nowadays it has the 

highest incidence and mortality rates in the world with lifestyle and environmental factors 

thought to be the major contributors to the development of this disease (10).  

Epidemiological evidence has shown that two to three decades after a peak in smoking 

prevalence in a given population, there is a peak in lung cancer deaths, making tobacco 

smoking the main cause of lung cancer development. This relationship was established in 

the 1950’s and 60’s (10-12). Other causes include environmental tobacco smoking, air 

pollution, indoor radon, occupational exposure to respiratory carcinogens, asbestos, and 

fumes from cooking stoves and fires (10). Even though smoking is undeniably the major 

cause of lung cancer, making it the leading cause of preventable death in the world, it is 

important to recognize that the majority of smokers will not develop this neoplasia over 

time and that this is probably due to individual variation in the susceptibility to respiratory 

carcinogens and the existence of a previous lung disease (13, 14). Tobacco components can 

induce DNA damage through several mechanisms including gene point mutations, 

deletions, insertions, recombinations, rearrangements, and chromosomal alterations, which 

drive the development of the disease (15). Nonetheless, the current classification of lung 

cancer does not emphasize the important of specific molecular and genetic alterations that 

can differentiate between SCLC and NSCLC. This is also true for the NSCLC subtypes 

adenocarcinoma, large cell carcinoma, and squamous cell carcinoma, that were until 

recently, treated similarly, regardless of their biological heterogeneity (16). Lung cancer is 

characterized by genetic instability of the chromosomes, nucleotides, and the transcriptome. 

These abnormalities are usually targeted to proto-oncogenes, tumour suppressor genes, 

DNA repair genes, among others. The silencing of telomerase is present in normal cells, but 

in almost all SCLC and over 80% of NSCLC, telomerase is activated, promoting cell 

immortalization (17). The epidermal growth factor receptor (EGFR) is overexpressed or 

abnormally activated by mutation in 50-90% of all NSCLC, especially in squamous cell 

carcinomas, leading to increased cell proliferation and survival through the 

RAS/RAF/MEK/MAPK and PI3K/AKT pathways (18). Activating mutations of the KRAS 

gene from the RAS proto-oncogene family are present in 20% of all NSCLS and between 30-

50% of lung adenocarcinomas (19). The fusion of the echinoderm microtubule-associated 

protein-like 4 (EML4) and the anaplastic lymphoma kinase (ALK) genes occurs in 

approximately 7% of NSCLC and is associated with a persistent mitogenic signal. The 

EML4-ALK, EGFR, and KRAS mutations are almost always mutually exclusive (19). Tumour 

suppressor genes are also affected in lung cancer. Mutations in TP53 are the most common 

genetic alterations found in human cancers and occur in approximately 75% of SCLC and in 

50% of NSCLC (17). Alterations in the PI3K/AKT pathway, the CDKN2A/RB1 pathway, 

VEGF, and epigenetic changes are also present in lung cancer (19). Several drugs have been 

developed to target these alterations and improve survival of lung cancer patients, such as 

tyrosine kinase inhibitors and monoclonal antibodies, revealing the importance of the 

molecular characterization of tumours in order to improve detection, diagnosis, treatment 

and prognosis of lung cancer. 
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Proteins are crucial operators in the majority of biological systems and a comprehensive 

knowledge of their expression, modifications, and function in the lung cancer setting, may 

be more informative than DNA and RNA studies alone. New technologies are being 

developed that allow the analysis of thousands of cancer cell proteins, possibly generating 

new therapeutic targets and biomarkers that will have an impact on early detection, therapy 

and prognostic evaluation of lung cancer patients. 

3. Proteomic techniques in lung cancer research 

The proteomic technologies which are being implemented in lung cancer research are 

mainly based on two dimensional gel electrophoresis, as seen on Figure 1 where the 2D-

PAGE and 2D-DIGE workflows are represented, or proteomics based on isotope labelling 

methods as ICAT, iTRAQ, SILAC, followed by mass spectrometry (MS) analysis.  

 

Figure 1. Basic workflow of gel-based proteomic approaches. In 2D-PAGE, protein samples are 

separated according to their isoelectric point in a process termed isoelectric focusing, using gel strips 

with a fixed pH range. Then, the focused strip is placed on top of a polyacrylamide gel to allow proteins 

to separate according to their molecular weight during electrophoresis, generating a gel with protein 

spots. In 2D-DIGE, proteins from up to three samples are labelled with fluorescent dyes prior to their 

isoelectric focusing and subsequent gel electrophoresis. Gels are scanned with different wavelengths 

revealing spots and differences in expression between analysed samples. Protein spots of interest in 

both techniques are then excised, digested, and identified by MS. 
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4. Two dimensional gel electrophoresis 2D-PAGE 

2D-PAGE is the most used proteomic technique for studying the proteome as well as to 

search for cancer biomarkers (20, 21). In this methodology intact proteins are firstly 

separated by their isoelectric point (pI) and then according to their molecular weight. This 

procedure generates protein spots that are separated from the gel and digested into peptides 

for MS identification. Multidimensional separation of peptides may also be required given 

that, although the digestion step facilitates the identification process, it increases sample 

complexity, decreasing the sensitivity and coverage of the technique. Disadvantages of 2D-

PAGE include the separation of low abundant proteins and of membrane proteins. The use 

of fractioning methods or higher protein concentrations for less detectable proteins and the 

use of mild detergents to increase the solubility of membrane proteins may be a solution for 

the aforementioned issues (22, 23). Other problems include co-migration of different 

proteins, the separation of a protein with different post-translational modifications, proteins 

with pI values below 4 or above 9, or the separation of very small or very large proteins. 

Differential gel electrophoresis (2D-DIGE), a modification of 2D-PAGE with fluorescent 

dyes (Cy3, Cy5 and Cy2), is able to increase reproducibility and throughput and also allows 

the accurate quantitation of protein expression difference (24). Differential analysis software 

can recognize the differentially expressed proteins and these can later be trypsin digested 

into peptides generating peptide mass fingerprints (PMF). The absolute masses of these 

peptides can be measured by matrix assisted laser desorption ionization time-of-flight mass 

spectrometry (MALDI-TOF MS), a technique that is both relatively easy to use and 

reasonably sensitive for identifying proteins. Additionally other MS techniques, such as 

electrospray ionization (ESI-MS/MS), are capable of providing amino acid sequence 

information on peptide fragments of the initial protein (25). Liquid chromatography coupled 

to tandem mass spectrometry workflow (LC-MS/MS) has become a standard method to 

identify proteins from complex biological samples. Also, direct MS analysis of tissue, known 

as MALDI imaging, is a method that has been used to elucidate proteome features 

characterizing histological differences in lung cancer between adenocarcinoma and 

squamous- cell carcinoma (26). Another example of a novel way to generate proteomic data 

is presented in the study of dynamic proteome changes on lung cancer cells (H1299) treated 

with the cytotoxic drug camptothecin using single-protein labelling on large scale (27). 

5. Isotope-labelled mass spectrometry 

Isotope-labelling methods, as seen on Figure 2, are gel-free procedures that introduce stable 

isotope tags to proteins through chemical reactions using isotope-coded affinity tags (ICAT) 

(28) and isobaric tag for relative and absolute quantitation (iTRAQ) (29), or through 

metabolic labelling with isotope labelled amino acids in cell culture (SILAC) (30). 

ICAT is used to analyse pairs of protein samples, such as a treated sample and its control. 

Extracted proteins from both samples are labelled with a light or heavy ICAT reagent by 

reacting with a specific amino acid (cysteine). Samples are then mixed, trypsin digested, 

fractioned, and analysed by LC-MS/MS (31). Isotope peak ratios for each peptide determine 
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the differential protein expression. The drawback of this technique is that it can only analyse 

cysteine containing proteins, two samples, and it can only identify 300-400 peptides. 

 

Figure 2. Basic workflow of gel-free quantitative approaches in proteomics. In SILAC, one cellular 

culture is grown in normal medium and the other with a growth medium with heavy labelled amino-

acids. In ICAT, one protein extract is labelled with a light ICAT reagent and the other with a heavy 

ICAT reagent. In both techniques, samples are mixed, digested, separated and analysed by MS to 

determine protein identity and differential expression. In iTRAQ, special isobaric tags are applied in 4 

to 8 samples up for comparison. They are then pooled together, fractionated and analysed by MS, 

allowing protein identification and quantitation among studied samples. 

iTRAQ is another labelling technique first developed by Ross and co-workers (32) which 

uses isobaric tags to label and compare proteins extracted from samples. iTRAQ contains a 

set of four or eight isobaric reagents and therefore can analyse up to four or eight protein 

samples at one time. After trypsin digestion samples are labelled with four or eight (4-plex 

or 8-plex) independent iTRAQ reagents. The reporter groups of the iTRAQ reagents 

separate from the peptides and generate small fragments for each sample with mass-to-

charge (m/z) of 114, 115, 116, and 117 for 4-plex, plus 113, 118, 119, and 121 for 8-plex. The 

intensity of each peak correlates with the quantity of each reporter group and thus with the 

quantity of the peptide. This method allows the analysis of various samples at a time and 

also, given that most peptides are suitable to be labelled by iTRAQ, it minimizes 

information loss and allows the identification of proteins with different post-translational 

modifications. Disadvantages of iTRAQ include a separate lengthy sample processing, that 

increases the chances of experimental errors, and the generation of chemical side products 

during the labelling process that can reduce the sensitivity of the method (33). 

SILAC, first developed by Mann and co-workers, is based on the metabolic incorporation of 

“heavy” and “light” forms of amino acids into the proteins of living cultured cells (34) . 
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Typically, heavy (13C or 15N) arginine or lysine are used in the culture medium of a cell 

culture while the other cell culture is supplied with regular amino acids. After several 

division rounds, these amino acids are incorporated into the newly synthesized proteins. 

Following trypsin digestion, peptides are analysed by MS and the light and heavy peptides 

appear in two distinct peaks and, by comparing the signal intensities differences, relative 

quantitation can be performed. This technique has been widely used for cancer biomarker 

discovery (35), and cell signalling dynamics (36).  

6. Label-free mass spectrometry 

Multidimensional Protein Identification Technology (MudPIT) is a generic label-free LC-MS 

shotgun screening method (36). It separates peptides according to two independent 

physicochemical properties using liquid chromatography (LC/LC) online with the ion 

source of a mass spectrometer, allowing the separation and identification of peptides 

without labelling. The success of this technique depends on the experimental workflow, 

from protein extraction to sample stability, given that the reproducibility of technical 

replicates is better than that of experimental replicates. Drawbacks of this method include 

the fact that not all peptides are equally detectable given the competition between ions, 

dynamic range limitations and MS sensitivity (37). With time and improvements, label-free 

MS could be widely used for biomarker discovery and validation. 

7. Detection of post-translational modifications (PTMs) 

PTMs are the chemical alterations that occur to a protein after translation. They include 

proteolytic cleavage, glycosylation, phosphorylation, acetylation, ubiquitination, 

farnesylation, methylation, sialylation, oxidation, prolyl isomerization and hydroxylation 

(38). Glycosylation and phosphorylation are two of the most biologically relevant PTMs and 

appear to be key processes in tumour progression in many types of cancers including lung 

cancer (39, 40) 

Glycosylation, the process of adding saccharides to proteins, plays a fundamental role in 

protein stabilization, molecular and cellular recognition, growth and cellular 

communication, and can also be a part of immune responses and cancer progression (41). 

The comparative study of the carbohydrate chains of glycoproteins may provide useful 

information for the diagnosis, prognosis, and immunotherapy of tumours (42). The 

proteomic analysis of glycoproteins starts with the enrichment of these molecules from a 

complex protein sample by the use lectins. This step is followed by a separation of 

glycoproteins by procedures such as 2D-PAGE and 2D-DIGE coupled with glycoprotein 

staining methods, for example Pro-Q Emerald 488 glycoprotein stain (43), lectin fluorescence 

stain (44), and isotope labelling (45). Identification of separated glycoproteins and their 

glycan structures can be accomplished by chromatographic methods (nano-LC with 

hydrophilic columns, nano-LC with graphitized carbon packing, anion-exchange 

chromatography), electromigration approaches (capillary electrophoresis, capillary 

electrochromatography), capillary LC/MALDI-TOF/TOF MS & tandem MS (MS/MS), and 
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chip-based approaches (46). Although there are some difficulties when analysing lung 

tumours, one study has identified 34 glycoproteins with significant differences between 

lung adenocarcinomas and healthy controls. The α1,6-fucosylation levels were incremented 

in the lung cancer group in comparison with healthy group (47). 

Phosphorylation is the addition of a phosphate group to a protein and is a key regulatory 

mechanism of cellular signalling processes. Phosphoproteomics and the characterization of 

phosphorylation sites, which less than 2% are currently known, are some of the most 

challenging tasks in current proteomic research (48). To isolate and identify phosphorylated 

proteins one must use immunoaffinity or immunoprecipitation with a specific antibody, 

chromatofocusing, ion exchange chromatography and affinity chromatography, such as 

immobilized metal ion affinity chromatography (IMAC) (49). Separation methods include 

electrophoresis, 2D-PAGE or 2D-DIGE coupled with phosphoprotein staining (Pro-Q 

Diamond phosphoprotein gel stain) or isotope labelling (ICAT, SILAC) (50, 51). Analysis 

and identification methods of phosphoproteins and phosphopeptides are mass 

spectrometry-based approaches, such MALDI-TOF MS, LC-ESI-MS and MS/MS (52). Given 

that the key regulators of signalling cascades are kinases and phosphatases, lung cancer 

phosphoproteomics might reveal the correlation between phosphorylation and cancer 

mechanisms.  

8. Samples in lung cancer proteomics 

The lung is a heterogeneous organ composed by several highly differentiated cells 

(bronchial, alveolar, inflammatory) and vascular structures. Its main function is to 

perform gas exchanges between the atmosphere and the bloodstream. When studying 

lung cancer with proteomic tools, several different samples can be used: tumour tissue, 

blood, pleural effusions, among others (53). The accessibility of blood makes for a great 

sample for oncoproteomic studies. Moreover, it contains many circulating molecules 

secreted by the tumour that can be used as biomarkers. Nonetheless, due to the 

abundance of plasma proteins, depletion of these proteins is necessary to reveal the 

presence of less abundant ones. Tumour tissue samples, fresh-frozen or formalin-fixed 

and paraffin-embedded, are the ideal for any oncoproteomic study. However, adjacent 

normal tissue, inflammatory cells, stromal components, and others might also be present. 

This will result in non-tumour derived protein contamination. To compensate tumour 

heterogeneity careful sample cell content analysis and the increase of sample numbers is 

required to obtain relevant results. The pleura is a thin double-layered tissue that 

surrounds the lung and it is filled with pleural fluid. This liquid is constantly produced 

and reabsorbed, and its main function is to facilitate respiratory movements and reduce 

attrition between the lungs and the thorax wall. Pleural effusion is the pathological 

accumulation of fluid that occurs in inflammatory conditions and lung cancer. In the latter 

case, pleural effusion is often drained to search for cancer cell infiltration. Its protein 

composition is similar to plasma, but its proximity to tumour cells makes it useful for lung 

cancer biomarker detection by proteomic techniques. 



Oncogenomics and Cancer Proteomics –  
Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer 176 

9. Proteomics in the discovery and validation of lung cancer biomarkers 

9.1. Diagnostic biomarkers 

To discover a lung cancer diagnostic biomarker, a molecule that is specific and directly 

correlates with the presence of this disease, the majority of studies perform a comparison 

between the protein profiles of tumour samples and normal lung tissue. The ideal would be 

to study the development of the carcinogenic process from normal tissue, to metaplasia, to 

dysplasia, and finally to invasive cancer, in order to discover early markers of disease before 

the onset of clinical features. 

In response to inflammation, a cancer enabling characteristic, acute-phase reactant proteins 

(APRPs) are produced. Recent proteomic studies have shown that APRPs haptoglobin (Hp) 

β chain (54), serum amyloid A (SAA) (55), and apolipoprotein A-1 (Apo A-1) (56) proteins 

are potential lung cancer diagnostic biomarkers. SAA proteins are involved in the transport 

of cholesterol to the liver, the recruitment of immune cells, and the induction extracellular 

matrix degrading enzymes. SAA1 and SAA2, which are synthesised in response to activated 

monocytes/macrophages, were recently identified, by LC-MS/MS, ELISA and 

immunohistochemistry analyses, as lung cancer biomarkers given their higher expression 

levels in blood and tissue from lung cancer patients when compared to healthy subjects and 

patients with other cancers and respiratory diseases (55). In another related study, serum 

and pleural effusions from NSCLC patients were compared by 2D-DIGE to those from 

patients with benign lung diseases. Gelsolin, possibly involved in cancer invasion, 

metalloproteinase inhibitor 2 (TIMP2), involved in lung parenchyma disorganization, and 

pigment epithelium derived factor (PEDF), an angiogenesis inhibitor, were among the 

candidate biomarkers (57). A study by Patz and co-workers, that aimed to test the diagnostic 

performance of four lung cancer biomarkers (carcinoembryonic antigen and squamous-cell 

carcinoma antigen, and 2D-PAGE and MALDI-MS discovered retinol binding protein – RBP 

- and α-1 antitrypsin), demonstrated that the four markers have inadequate diagnostic 

power when tested independently but proved useful when used in combination (58). A 

glycoproteomic study revealed plasma kallikrein (KLKB1), pleural effusion periostin, 

multimerin-2, CD166 and lysosome-associated membrane glycoprotein-2 (LAMP-2) as 

potential lung cancer biomarkers (59).  

9.2. Prognostic biomarkers 

Prognostic biomarkers, those that have expression levels correlating with the natural history 

of the disease, have the potential to influence survival by identifying high-risk patients and 

thus improve their management. The study of prognostic biomarkers in lung cancer has 

been made by correlating the expression of a molecule to the patient survival. An alternative 

approach is to compare groups of patients with different clinical stages of disease, based on 

the assumption that a more advanced tumour is more aggressive and may express proteins 

that drive the metastatic process. Proteomic studies have aimed at discovering altered 

protein levels and subsequently validating those differences using immunohistochemistry 

on archive samples. Using 2D-PAGE, Chen and co-workers associated 11 components of the 
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glycolysis pathway to poor survival in lung adenocarcinoma (39) and also demonstrated 

their prognostic role in lung cancer at the mRNA level. Nonetheless, glycolysis involved 

enzyme phosphoglycerate kinase 1 was found to limit tumour growth in mice 

subcutaneously injected with the Lewis lung carcinoma cell line, by promoting antitumor 

immunity (60). A study using 2D-DIGE, MS, western blot, and immunohistochemistry 

correlated the up-regulation of annexin A3, a protein associated with cancer metastasis by 

angiogenic promotion, with advanced clinical stage, lymph node metastasis, increased 

relapse time, and overall decreased survival in lung adenocarcinoma, indicating that 

annexin A3 might be a prognostic lung cancer biomarker (61). The involvement of S100A11, 

a small calcium-binding protein implicated in the prognosis and metastasis in several 

tumours, has also been evaluated in lung cancer. Comparative proteomic analysis of two 

NSCLC cell lines, the non-metastatic CL1-0 and highly metastatic CL1-5, revealed that 

S100A11 was up-regulated in metastatic CL1-5 cells (62). Moreover, immunohistochemical 

analyses in NSCLC tissues showed that the up-regulation of S100A11 was significantly 

associated with a higher TNM stage and a positive lymph node status, indicating its 

importance in promoting invasion and metastasis of NSCLC. Altered expression of S100A6 

was also implicated in NSCLC progression: elevated levels of this protein were associated 

with longer survival compared to S100A6-negative cases (63). Cytoskeletal reorganization is 

a central process regulating cell migration and metastasis and cytokeratins (CKs), a family of 

cytoskeletal intermediate filaments, have been suggested to play a role in carcinogenesis, by 

promoting cellular architecture reorganization during tumour development and 

progression. A 2D-PAGE and MS analysis has revealed that isoforms of CK7, 8, 18, and 19 

were found in higher levels in adenocarcinoma samples than in adjacent tissues (64). 

Specific isoforms of the CKs were associated with unfavourable prognosis, CYFRA21-1 was 

a more accurate diagnostic marker, and CK18 was a stronger prognostic factor (65). Other 

cytoskeletal proteins found to be correlated with a poor prognosis in lung adenocarcinoma 

are non-muscle myosin IIA and vimentin proteins, involved in epithelial-mesenchymal 

transition, a process at the basis of invasive and metastatic behaviour (66). Phosphohistidine 

phosphatase (PHP14) was proposed to be another lung cancer prognostic biomarker, 

regulating cell migration and invasion by cytoskeleton rearrangement. Indeed, it has been 

shown that PHP14 knockdown in highly metastatic lung cancer cells (CL1-5) inhibited 

migration and invasion, whereas its over-expression in NCI H1299 cells enhanced these 

processes (67). Calmodulin, a protein implicated in cytoskeletal alterations during cell death, 

thymosin β4, a regulator of actin polymerization whose over-expression seems to stimulate 

lung tumour metastasis, thymosin β10 and cofilin proteins, regulators of actin dynamics,  

were identified and their expression and prognostic role validated on cohort of 188 lung 

cancer cases (68). 

9.3. Predictive biomarkers  

The discovery of predictive biomarkers, those on which the efficacy of a specific treatment 

can be foreseen, has been based on studying clinical samples from responding and non-

responding patients and then validating results on selected cohorts. This type of biomarker 
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aims at individualizing therapies in lung cancer but relies on extremely well characterized 

samples from cohorts of patients receiving a uniform treatment and closely monitored 

therapeutic responses. A recent MALDI-TOF-MS study that profiled serum from patients 

treated with cisplatin-gemcitabine in combination with the proteasome inhibitor 

bortezomib,  revealed a 13-peptide signature that was able to distinguish with high 

accuracy, sensitivity, and specificity, patients with short and long progression-free survival 

(69). The epidermal growth factor receptor (EGFR) tyrosine kinase is an important target for 

treatment of NSCLC, and EGFR-inhibitor-based therapies have showed promising results. 

The serum MALDI-MS study conducted by Taguchi and co-workers in NSCLC patients  

 

Type of Biomarker Proteins Techniques 

Diagnostic 

Hp β chain (54) LC-ESI-MS/MS, ELISA 

SAA1

SAA2 (55)
LC-MS/MS, ELISA, IHC 

Apo A1 (56) 2D-PAGE, MALDI-TOF 

Gelsolin

TIMP2 

PEDF (57) 

2D-DIGE 

RBP

α-1 antitrypsin (58)
2D-DIGE, MALDI-TOF-MS 

KLKB1

Periostin 

Multimerin-2 

CD166 

LAMP-2 (59) 

LC-MS/MS 

Prognostic 

Glycolysis

(11 components) (39)
2D-PAGE 

Annexin A3 (61) 2D-DIGE, MS, IHC* 

S100A11 (62) 2D-PAGE, MALDI-TOF-MS/MS, IHC 

S100A6 (63) SELDI-TOF-MS 

CK 7, 8, 9 and 19 (64) 2D-PAGE, MS 

CYFRA21-1

CK18 (65)
ELISA 

Myosin IIA

Vimentin (66) 
LC-MS/MS 

PHP14 (67) 2D-PAGE, ESI-TOF-MS/MS 

Calmodulin

Thymosin β4 

Thymosin β10 (68)

MALDI-MS, IHC 

Predictive 
13-peptide signature (69) MALDI-TOF-MS 

8-peak signature (70) MALDI-MS 

* Immunohistochemistry 

Table 1. Potential lung cancer biomarkers discovered by the use of proteomic tools 
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treated with gefitinib and erlotinib revealed an 8-peak profile predictive of outcome (70). 

This 8-peak signature was commercially launched as a commercial product (Veristrat ®, 

Biodesix, Broom field, CO, US) and its clinical relevance is being validated in the context of a 

randomized phase III clinical trial where patients with advanced NSCLC progressing after 

first-line treatment, stratified according to serum MALDI-MS profiling, are subsequently 

randomly allocated to receive either erlotinib or chemotherapy as second-line therapy 

(PROSE, Proteomics Stratified Erlotinib trial). To the best of our knowledge, this is the only 

clinical trial investigating the predictive role of a proteomics biomarker in lung cancer 

patients. A summary of all mentioned biomarkers can be found on Table 1. 

10. Conclusions 

Proteomic approaches are improving rapidly and the development of high-throughput 

platforms is showing promising results as the list of candidate biomarkers for lung cancer is 

continuously growing. However, there is a great need for careful interpretation of this 

intricate data in order to generate biologically relevant hypotheses. The proteome is highly 

complex and current tools cannot yet provide a definitive solution for its exploration. In 

addition, cancer is a multifactorial disease so diverse that a great deal of time and effort will 

be necessary to define its associated proteome modifications and to translate these into 

practical clinical applications. In fact for many of the identified proteins, their functional role 

in lung cancer development is not yet known and a solid clinical validation is still lacking. 

Nonetheless, it is likely that some of these candidate biomarkers will serve to identify new 

possible therapeutic strategies. 
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