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1. Introduction 

Study related to diseases such as cancer has changed tremendously for a decade. For many 

years, the study was restricted largely to a single gene or a few genes in cancer cells. The 

studies have uncovered the roles of individual genes in the uncontrolled behavior of cancer 

cells. Studying the functional roles of genes in cancer cells has deepened our understanding 

not only the cancer cells as well as normal cells. Since 2003 onwards, the trend of 

publications was focusing on the analysis of thousands of genes with related molecular 

pathways. Steps taken from this analysis is then translated to clinical practice for the 

biological markers for an early detection, monitoring, prognosis of the disease and response 

to therapy. 

The completion of the Human Genome Project in 2003 enabled a new era in biological 

sciences, in particular molecular medicine. The availability of the database of full sequences 

of approximately 3 billion base pairs and approximately 30,000 genes in human DNA will 

lead to a better understanding of physiological and pathophysiological changes in human 

body. Genome-wide expression technology allows the simultenous analysis of thousands of 

genes in a single experiment. The availability of the technology alters the way biological 

experiments can be designed. This has resulted of so called ‘discovery biology’. The large 

amount of data produced by microarray resulted to new and unexpected features of cellular 

functions. 

Since it was first introduced, microarrays are widely used for basic research, the 

development of prognostic tests, target discovery or toxicology researchs. The new form of 

cancer screening utilizes the molecular data generated from microarray studies. We will 

discuss the application of gene profiling data in the clinical screening of cancer. It is 

hopefully will give a broad picture the pipeline required to discover biomarkers of cancer. 
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The chapter is subdivided into a series of sections; each will discuss the scientific evidence 

on the molecular and cellular studies in selected cancers. We will try to critically assess the 

evidence upon which the theory on the cancer was built. The conversion of normal cells into 

cancer cells is a complex process and multistep processes. Scientists for many years tried to 

uncover the causes of cancer and emphasize certain oncogenes, or tumor suppressor genes 

or other groups of genes. Further information on how these findings were translated to the 

clinical settings will be provided. To date, with the massive gene expression profile data 

available to the researchers, there are still major hurdles in validating and reproducing the 

results. We will discuss the major drawbacks associated with the use of molecular 

signatures as the biomarkers or response to treatment. 

2. Molecular signatures in colorectal carcinoma 

Colorectal cancer (CRC) is a type of cancers that develops in the colon or the rectum of the 

human digestive system or gastrointestinal tract (1).Colorectal cancer is the third leading 

cause of death in both men and women in the US with 141,210 new cases and 49,380 death 

expected in 2011 (2). CRC progresses slowly over a period of time usually between 10 to 15 

years (3, 4). The tumor begins with noncancerous polyps where the tissues that form the 

lining of the colon or rectum differentiate into cancerous tissues (5). Approximately, 96% of 

colorectal cancers are adenocarcinomas, which arise from the glandular tissue (6). It can 

grow along the lining of the epithelium into the wall of the colon and rectum and invade the 

digestive system (7). In addition, the cancerous cells can also penetrate into the circulating 

systems, the blood and lymphatic systems which known as metastasis (7). Typically, the 

cancerous cells will first spread into the nearby lymph nodes and subsequently penetrate 

into other organs such as liver, lungs and ovary through blood vessels (8, 9). Colorectal 

cancer can be classified as tumors/nodes/metastasis (TMN) staging and Dukes classification 

(12). The TMN assigns the number based on three categories, T, M and N, which are the 

degree of invasion of the intestinal wall, lymph node involvement and the degree of 

metastasis, respectively (10). The higher number of TNM system indicates the advanced 

stage of colorectal cancer (10).  

Unhealthy lifestyles such as alcohol consumption, high intake of red meat, obesity, smoking 

and lack of physical activities are among the risk factors for CRC (1, 11). Age and gender 

also play significant role in the development of CRC as the risk is higher in male and 

elderly(7). People with inflammatory bowel disease such as ulcerative colitis and Crohn’s 

disease are also at high risk of getting CRC (12). Among the patients with Crohn’s disease, 

approximately, 2%, 8% and 18% of the patients will develop CRC after 10, 20 and 30 years, 

respectively (12). About 20% of patients with ulcerative colitis develop CRC within the first 

10 years (13). Mutations in genes such as KRAS, APC, and MMR are the well-documented 

genetic factor that contributes to colorectal cancer (3, 14, 15). Individual with family history 

of CRC in two or more first degree relatives have 2 or 3-fold greater risk of getting CRC and 

this has accounted for 20% of all cases (7). Examples of CRC involving genetic mutations are 

hereditary nonpolyposis colorectal cancer (HNPCC or Lynch Syndrome), Gardner 

syndrome and Familial adenomatous polyposis (16).  
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Diagnosis of CRC is based on tumor biopsy performed during the sigmoidoscopy or 

colonoscopy (7). CT scan of chest, abdomen and pelvis could be performed to determine the 

metastasis state and in certain cases, PET or MRI may be used to assist in the diagnosis 

(7).Molecular testing for patients with a strong family history can be performed to identify 

mutation, thus initiate early diagnosis and screening in family members. In addition, 

molecular characterization of mutations involved in CRC may help doctors to plan a better 

treatment strategy for the patients. Managing our lifestyles can help us to reduce our risk of 

getting CRC, for example by improving lifestyle through regular exercise, increasing the 

consumption of whole grains, fruits and vegetables and reducing the red meat intake (17). 

The treatments for CRC include surgery, chemotherapy and radiotherapy.  

2.1. Molecular biology of colorectal cancer 

Colorectal cancer is a multistep process that includes accumulation of several genetic and 

epigenetic alterations (18, 19). It is well characterized that the adenoma to carcinoma 

sequence is due to accumulation of the genomic alteration, which is induced by genomic 

instability (4, 20). Genomic instability is an event, which will increase tendency of the 

genome to acquire mutations when several important processes in maintaining and 

replicating the genome are malfunction. It is a hallmark of many human cancers (20). There 

are three well-reported genomic instability pathways that could lead to colorectal cancer, 

which will be discussed in details below.  

a. Chromosomal instability (CIN) 

Chromosomal instability lead to increase rate of losing or gaining chromosomes during 

cell division and accounts for 15% to 20% of sporadic CRC as well as Lynch Syndrome 

(Hereditary Non-Polyposis Colorectal Cancer) (21).There are three mechanisms 

involved in this process that includes structural chromosome instability, the 

chromosome breakage-fusion-bridge (BFB) cycles and numerical instability (22). 

Structural chromosome instability is caused by high incidences of DNA double-strand 

breaks, which may lead to abnormalities in chromosomal segregation during mitosis. 

Chromosomal damage may result in mitotically unstable chromosome, which may 

promote an event known as breakage-fusion-bridge (BFB) (22). An abnormal number of 

centrosome may be caused by abnormal mitotic polarity as well as unequal segregation 

of chromosomes during the anaphase stage (23). CIN promotes cancer progression by 

increasing clonal diversity (21). In the clinical perspective, large meta-analysis has 

shown that CIN is a marker of poor prognosis in colorectal cancer (20).  

b. Microsatelite instability (MIN) 

Microsatellites are repetitive sequences of DNA, which is highly varied between 

individuals (24). The most common microsatellites in human is a dinucleotide repeat of 

CA (25). MIN is a condition, which is manifested by damaged DNA due to defective in 

the DNA repair mechanism. CRC with the presence of MIN have a better prognosis 

compared to CRC with CIN (26). MIN involves the inactivation of the DNA Mismatch 
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Repair (MMR) genes via aberrant methylation or somatic mutation (26). HNPCC or 

Lynch Syndrome is an example of CRC, which is caused by MIN with 15% occurrence 

(27). MIN could cause CRC in 2 mechanisms; 1) mutations in the MMR genes where 

error in the microsatellite repeat replication is unfixed. This leads to the inactivation of 

tumor suppressor genes (TSG), a group of genes which is crucial in maintaining cell 

cycle progression and apoptosis induction (20). Inactivation of these genes may lead to 

tumorigenesis through uncontrolled cell division 2) epigenetic changes that silence the 

MMR genes (20). 

c. CpG Island Methylation and CpG Island Methylator Phenotype (CIMP) 

Hypermethylation of the promoter region of a gene that contains CpG Island (CGI) and 

global DNA hypomethylation are associated with epigenetic instability in colorectal 

cancer (20). CGIs are short sequences rich in the CpG dinucleotides and are observed in 

the 5’ region of almost half of all human genes (28). In-vitro study of BRAF in CRC cell 

lines showed no correlation between BRAF and CIMP (29).  

2.2. Genome Wide Association Study (GWAS) in colorectal cancer 

The completion of Human Genome Project in 2003 and the International HapMap Project in 

2005 have opened up a new era in genetic and phenotype correlation study (30). The 

completion of these two projects has made the Genome wide association study (GWAS) 

possible. GWAS is considered as the most powerful tool to study the association between 

phenotypes and genotypes and also to identify common, low-penetrance susceptibility loci 

in a particular disease. In addition, GWAS can also be employed to investigate gene-

environment interactions and the pooled analyses may also lead to the identification of 

novel modifying genes. Several GWAS studies have been performed in colorectal cancer 

and several loci were identified to be associated with CRC such as 8q24 (128.1-128.7 Mb, 

rs6983267) (31, 32). The C-MYC (MYC) oncogene is located approximately 300 kb from this 

region and is often over-expressed in CRC (33). Validation studies have confirmed that 

rs6983267 loci as the most promising variant in CRC, which has increased the chance of 

getting CRC by approximately 1.2 fold (33, 34). Recent publication has suggested that this 

variant is involved in enhancing the Wnt signaling and MYC regulation, which are known 

pathways in carcinogenesis (35). However, further functional analyses are still needed in 

order to determine the function of this variant. In the Japanese population, this variant leads 

to an increase risk of CRC with an allelic OR=1.22. Even after the adjustment for 

confounders, the OR remains significant (OR = 1.25). In the ARCTIC report, a locus at 9p24 

was identified to be associated with CRC and was confirmed in the Colorectal Cancer 

Family Registry. Several numbers of loci that include 18q21:SMAD7; 15q13.3:CRAC1; 8q23.3: 

E1F3H; 14q22.2:BMP4; 16q22.1: CDH1 and 19q13.1:RHPN2 were also found to be associated 

with CRC. These genes have been shown to be involved in CRC progression. Studies 

conducted in Korean and Japanese patients with CRC have identified a novel susceptible 

locus in SLC22A3, which was significantly associated with distal colon cancer (36). The 

variant, rs7758229, was located on 6q26-q27 with OR=1.28. Three variants, rs7758229, 
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rs6983267 and rs4939827, in SMAD7 together with alcohol consumption may increase the 

risk of CRC by approximately two-fold. Several variants including rs6983267, rs6695584, 

rs11986063, rs3087967, rs2059254 and rs72268855 showed evidence of association with CRC 

in Singaporean Chinese (31). sSNP rs3087967 at 11q23.1 was associated with increased risk 

of CRC in men (OR=1.34) compared to women (OR=1.07). The rs 10318 at locus 15q13 

(GREM1) was also associated with CRC with OD =1.19 (37). 

Almost half of the susceptibility loci in CRC are located nearby the transforming growth 

factor beta gene (TGF-1), which is important in the carcinogenesis (38). An elevated level of 

TGF-1 was linked to tumor progression and recurrence in CRC. Germline mutations in 

components of TGF-1 signaling pathway such as SMAD4 is responsible for the high-

penetrance juvenile polyposis syndrome. Other genes are SMAD4, RHPN2, BMP4, BMP2 

and GREM1.  

2.3. Gene expression profiling in colorectal cancer 

Gene expression profiling was performed to compare between colorectal adenomas and 

CRCs and the result showed that the level of six cancer-related gene sets were increased in 

CRCs compared to adenomas (FDR<0.05). These include genes that involved in 

chromosomal instability, proliferation, differentiation, angiogenesis, stroma activation and 

invasion. Changes in the activity of the chromosomal instability were the most significant 

gene set (FDR=0.004) (39). The key genes that are associated with colorectal adenoma to 

carcinoma progression are AURKA, TPX2 (Chromosomal instability), PLK1 (Proliferation), 

ADRM1 (Differentiation), SSCA1 (Stroma activation), SPARC and PDGFRB (Invasion). The 

expression levels of these genes were significantly higher in CRC compared to adenoma 

(p<1e-5). Overexpression of AURKA induces centrosome amplification, aneupploidy and 

cellular transformation in vitro (40). AURKA interacts with TPX2 and plays a role in 

centrosome maturation and spindle formation (41). The polo-like kinase 1 (PLK1) is 

important in spindle formation and cell cycle progression during the G2 and M phase (42). 

Wu and colleagues showed that the extracellular matrix and metabolic pathways were 

activated and the genes related to cell homeostatsis were downregulated. In this study, they 

compared cancer transcriptome using massive parallel paired-end cDNA sequencing in 3 

different tissues, CRC tissue (stage III), adjacent non-tumor tissue and normal tissue from a 

57 years old female patient. They detected 1660, 1528 and 941 significant differential genes 

(DEGs) between the CRC and adjacent tissue, the CRC and normal tissue; and the adjacent 

and normal tissue respectively. 15-prostaglandin dehydrogenase (15-PGDH) was 

downregulated in cancer compared to normal tisssue, which is common oncogenic event in 

approximately 80% of CRC cases. The transition between adenoma and carcinoma processes 

involved inactivation of TGFBR2, thus progressive inactivation of this gene from cancer-

adjacent and normal tissue was expected. In addition, APC, MYH, CD133, IDH1 and MINT2 

were also dysregulated in CRC. They also identified many genes involved in extracellular 

matrix (ECM) receptor interactions were highly dysregulated in cancer. The findings 

showed that all collagen type proteins were overexpressed up to 1000-fold in cancer tissue. 
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In addition, members of MMP family, which degraded the ECM structures, were also 

induced significantly in tumor. These include MMP1, MMP3, MMP14 and MMP7. Other 

cell-cell adhesion-related molecules for examples laminins (LAMA4, LAMA5, LAMB1, 

LAMB2 and LAMC2) and integrins (ITGA5, ITGB5, ITGA11 and ITGBL1) were elevated in 

cancer tissues. It was suggested that “angiogenesis switch” was activated in tumor tissues 

since vascular endothelial growth factor (VEGF) was found to be upregulated. In conclusion, 

up-regulation of the ECM pathway and the angiogenic growth factors may lead to 

remodelling of the ECM pathways as well as expansion of the new vessel networks, which 

subsequently resulted in CRC progression. Since their results in concordance with previous 

studies that showed the ECM pathway was subjected to intensive epigenetic modification, 

therefore this ECM may be a good candidate as prognostic biomarkers in CRC (43). 

3. Molecular signatures in ovarian cancer 

Ovarian cancer is among the top ten leading cancers among women the United States. In 

this country alone, there are approximately 22,280 new cases and 15,500 estimated death in 

2012 (44). At our local population, approximately 1627 women were diagnosed in 2003 to 

2005 and the figure showed increasing trend in 2007(45).In Japan and Sweeden, the 

incidence of ovarian cancer per 100,000 women is 3.1 cases and 21 cases respectively (Green 

et al., 2012). Due to vague or absence of early signs and symptoms, patients suffer from this 

cancer seek late treatment (46). Therefore, the cancer is normally diagnosed late when the 

disease is not longer confined to the ovary. Based on different morphological characterisitcs 

of the cancer, it is divided into epithelial and nonepithelial types. The epithelial type is 

further subdivided into serous, mucinous, endometrioid and clear cells. On the other hand, 

the nonepithelial is granulosa cells, mixed germ cells tumour, immature teratoma, 

dysgerminoma and teratoma. The risk factor for this cancer is unclear, however the 

European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study has 

recently documented that women who smoke more than 10 cigarettes a day had doubled 

the risk to develop mucinous ovarian cancer (47). This has suggested that the effect of 

smoking differs based on different histological subtypes of ovarian cancer(47). On the other 

hand, a study has shown that long period of breastfeeding seems to have reduced risk of 

ovarian cancer (OR = 0.986, 95% CI 0.978-0.994 per month of breastfeeding) (48).This effect of 

breastfeeding was also varies between histological subtypes as there was no association 

between breastfeeding and borderline serous or mucinous cancer (48). 

Ovarian cancer was initially divided based on molecular pathways involved in the 

development and progression of the subtypes (49). Type I is low-grade serous, low-grade 

endometrioid, mucinous and clear cells. They are believed to arise from benign lesions such 

as ovarian inclusion cyst or endometriotic lesions. These lesions follow the stepwise pattern, 

whereby it evolved from the benign adenoma to borderline and finally to malignant 

tumours (table 1).  

Type II ovarian cancer is high-grade serous, high-grade endometrioid and undifferentiated. 

The common mutations that are found in these subtypes are p53, BRCA1/2, PIK3CA with 

chromosomal instability. They normally involve the peritoneum and grow rapidly.  
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Characteristics of tumour Type I Type II 

Type of tumor Low-grade serous High-grade serous 

 Low-grade endometrioid High-grade endometrioid 

 Mucinous  Undifferentiated 

 Clear cell  

Common mutations and genetic 

modifications 

KRAS 

BRAF 

PTEN 

CTNNB1 

Microsatellite instability 

p53 

BRCA1 

BRCA2 

PIK3CA 

Chromosome instability 

Table 1. Ovarian subtypes based on common mutations and genetic modifications 

In clinical practice, the gyneoncologist still use CA125 as the biomarker to monitor treatment 

of this cancer. However, it is not sensitive and specific to detect the cancer in its early stage 

(46). It is of great demand to find new molecular marker for the ovarian cancer. 

Ovarian cancer is treated by surgery, radiation or platinum-taxane based chemotherapy 

depending on the subtypes and extent of the cancer (50). Patients at stage I and II will 

undergo bilateral salphingo-oophorectomy. While for advanced cases, adjuvant 

chemotherapy combined with surgery is highly recommended. With the latest 

understanding on the mutational types of ovarian cancer, mitogen activated protein kinase 

(MEK) inhibitor such as CI-1040 was used to test the potential therapeutic agent in in vitro 

ovarian cancer cell line (51). This cell lines containing KRAS or BRAF mutations, which are 

known mutations for type I ovarian cancer. The targeted therapy for type II ovarian cancer 

encounters difficulty due to lack of common molecular pathways. In two cohort studies 

involving 16 international centers, women with BRCA1 or BRCA2 mutation were treated 

with two different doses of Olaparib (52). This drug is orally active poly(ADP-ribose) 

polymerase (PARP) inhibitor. The result showed a promising therapeutic indexin ovarian 

cancer patients with mutation of BRCA1 or BRCA2 (52).Based on this study, Olaparib has 

possible as therapeutic agent in type II ovarian cancer. 

3.1. Molecular biology of ovarian cancer 

Ovarian cancer is a heterogenous disease and thus, there is no clear molecular genetics 

involved in the transition of normal ovarian epithelial cells into cancer cells. Approximately 

10 to 15% of ovarian cancer is thought to run in the families (53). It is closely related to 

BRCA1 and BRCA2 mutation (53). It was recently published that suggested screening of 

BRCA1/2 mutation in patients with ovarian cancer prior to chemotherapy treatment (54). 

This is because presence of such mutations may influence the treatment outcomes (54). 

Human DNA repair mismatch genes for example MLH1 and MSH2 accounts for 10% of 

patients with hereditary nonpolyposis colon cancer syndrome (55). Other related genes 

include glutathione S-transferase M1 (GSTM1) is associated with endometrioid or clear cells 

ovarian cancer. 
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Approximately 85% of ovarian cancer is regard as sporadic with no apparent hereditary 

factors. Accumulation of mutagenic genes and deregulation of signaling pathway frequently 

lead to the development of cancer. Different subtypes of ovarian cancer reveal different 

molecular pathways. Coagulation pathway was reported to be disturbed in clear cell 

ovarian carcinoma (56). Genes that stimulate or inhibit coagulation were noted to be 

dysregulated. Angiogenesis and glycolysis are two major activated pathways in clear cell 

ovarian carcinoma (56). Vascular endothelial growth factor (VEGF) and its receptor FLT1 

were upregulated in this type of cancer and involved in angiogenesis. Earlier study by 

Yamaguchi et al 2010, reported molecular pathway related to clear cell ovarian cancer was 

related to hypoxia-inducible factor 1 (HIF1α) (57). HIF1α regulates ADM, which is related to 

angiogenesis. It also regulates genes that are linked to glucose metabolism including 

SLC2A1 in glucose transport and HK1/HK2 and ENO1/ENO2 in glycolysis. Both pathways 

could act as potential therapeutic target based on the small interfering RNA of genes related 

to these pathways combined with antiangiogenic drug, Sunitinib(56). 

3.2. Gene expression profiling in ovarian cancer 

In ovarian cancer study, microarray was used to classify 113 samples from five different 

histopathological subtypes; endometrioid, serous, mucinous, clear cell and mixed type 

according to the gene expression pattern (58). The results showed 95% of all samples were 

clustered within their expected groups. Gene expression profile in this study failed to 

distinguish between high-grade endometrioid and serous ovarian cancer. The result derived 

from the principal component analysis demonstrated the separation of celar cell, mucinous 

and endometrioid with serous ovarian cancer. This can be explained through the origin of 

these types of cancer, which is Mullerian epithelium. In contrast to serous ovarian cancer, 

which most likely arise directly from ovarian surface epithelium (58). Microarray was also 

used to distinguish between various grades of clear cells ovarian cancer from other subtypes 

of ovarian cancer including serous papillary (59). Among genes identified were E-cadherin 

and osteonidogen were detected at high level in clear cells. While discoidin domain receptor 

family member (DDR1), estrogen receptor 1 and cytochrome P450 4B1 were at a low level in 

clear cells ovarian cancer compared to other ovarian cancers (59). 

A separate microarray study was done on 285 of various grades of endometrioid and serous 

ovarian cancer samples that were analysed together with low-grade serous and 

endometroid ovarian cancer (60). The result showed high-grade serous subtype was related 

to overexpression of Wnt/βcatenin and cadherin pathway genes including N-cadherin and 

P-cadherin but low E-cadherin protein expression. This finding demonstrated the high-

grade serous ovarian cancer contained messenchymal expression pattern. Also it has 

suggested there is epithelium-mesenchymal transition in this subtype of ovarian cancer. 

High expression of genes related to proliferation and extracellular matrix-related genes such 

as COL4A5, COL9A1 and CLDN6. Immune cell markers such as CD45, PTPRC and 

lymphocyte markers, CD2, CD3D and CD8A were expressed low in the high-grade serous 

subtype (60).  
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Gene expression profiling was also performed to detect genes that were differentially 

expressed in primary ovarian cells as compared to the neighboring metastatic tissue 

omentum (61). Among significant genes include hepsin (HPN), which is related to epithelial 

cells. Using immunohistochemistry technique, HPN protein was localised in epithelial cells, 

suggestive that it can be a marker of epithelia cells and not cancer (61). In advanced stage of 

ovarian cancer, predictive markers were suggested to be different. For example EZH2, 

PTTN and Lamin-B, were positively detected in primary as well as metastatic omental 

tissue. MGB2 is another biomarker that significantly overexpressed in primary as well as 

ovarian metastatic tissue. To characterize two different cancers; breast and ovarian cancers 

that involve serosal cavities, gene expression profiling was carried out (62). About 288 

differentially expressed genes with at least 3.5-fold up-regulated in breast and 

ovarian/peritoneal serous cancers (62). These groups of genes may potentially used to 

distinguish both cancers for better therapeutic intervention. 

Microarray of the nonepithelial ovarian cancer or type II ovarian cancer is still limited. 

Despite its rare incidence of this subtype of ovarian cancer, we have performed microarray 

assay on the formalin-fixed paraffin embedded tissues (63). About 804 differentially 

expressed genes with at least 2-fold change (P<0.005) (63). Among the significant genes were 

EEF1A2 and E2F2; which were up-regulated in nonepithelial ovarian cancer as compared to 

the normal ovarian cells. EEF1A2 may act as oncogene and play an important role in the 

progression of cancer (64). E2F2 plays a role in cell cycle and positive immunostaining in all 

subtypes of nonepithelial ovarian cancer may suggest its role as an oncogene (63).  

4. Molecular signatures in endometrial cancer  

Cancer of endometrium is cancer arises from the inner lining of the uterus. The cancer 

appears in multiple histologic subtypes as a result of műllerian differentiation. They are 

divided into two broad groups that include endometrioid and non-endometrioid (65). The 

recent surgical staging of endometrial cancer is based on the International Federation of 

Gynecology and Obstetrics in 2008 (66). Endometrial cancer is divided into two types based 

on the underlying pathogical findings and clinical observations. There are endometrioid 

(type I) and nonendometrioid carcinoma (type II). The former is the commonest type (85% 

of total cancer) with history of estrogen exposure with underlying endometrial hyperplasia 

(67).Also the cancer cells expressed estrogen and progesterone receptor and typically of low 

histopathological grade (68). The majority of patients are relatively young with good 

prognosis. While the second type is less common and it is not related to estrogen. It presents 

with high histopathological grade with poor prognosis. The cancer has an underlying 

atrophic endometrium (69). Apart from this classification, there are still cancers that do not 

fit into these two categories, in particular endometrioid carcinoma with high 

histopathological grade (67). 

Endometrial cancer is the most common malignancy of gynecological tract in the United 

States (44). The incidence is relatively high compared with Southeast countries such as 
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Malaysia where the cancer affects approximately 3.3% of women between the year 2003 to 

2005 (70) and the figure increases to 4.6% in 2007 (45) . Among the main races in Malaysia, 

Chinese has the highest age-standardized incidence rate with 4.5 per 100,000 population, 

followed by Indians and Malays (45). Failure to control overweight problem, manage 

chronic anovulation and increased usage of estrogen, are most likely the reason for 

continued high incidence for this cancer. 

Risk factors associated with endometrioid endometrial cancer include old age, 

unoppossed exposure of estrogen as in estrogen replacement therapy, nulliparity and 

obesity. Also it is seen in diseases associated with high estrogen level, such as polycystic 

ovarian syndrome and estrogen-secreting ovarian cancer (71). Presence of estrogen 

increases the proliferative activity of endometrial cells, therefore causing higher chance to 

cause coding errors and somatic mutations (72). For nonendometrioid type, the risk 

factors are slightly different, which include additional history of primary cancers such as 

breast, colorectal and ovarian cancer (73). Combined oral contraceptives can interruptwith 

the menstrual cycle seems to have good benefits in reducing the risk of endometrial 

cancer (74). The current treatment for the disease is a combination of surgery with or 

without an adjuvant chemotherapy consisting of intravenous cisplatin, doxorubicin and 

cyclophosphamide (75). Diagnosis of this cancer is based on the clinical symptoms with 

underlying risk factors for endometrial cancer. Postmenopausal women under 50 years 

old presented with vaginal bleeding were reported to be free from endometrial cancer 

(76). This was based on the initial screening using transvaginal ultrasound scanning and 

endometrial biopsy procedure. The patients were follow-up between one to five years 

(76). 

4.1. Molecular basis of endometrial cancer 

Endometrial cancer can be divided based on its molecular change. Type 1 or endometrioid 

endometrial cancer was documented to have PTEN mutation(67).However, a recentcase 

control study investigating on the single nucleotide polymorphism in several cancer-

related genes include PTEN, PIK3CA, AKT1, MLH1 and MSH2 failed to show any 

association with endometrial cancer (77).Approximately 20 to 40% of this type displayed 

mircosatellite instability or β-catenin mutations. Additionally, K-ras mutations occur in 15 

to 30% of this cancer. Mutations in p53 and E-cadherin were detected in about 10 to 20% 

of cases and the lowest percentage of genetic alteration is in p16 inactivation. The genetic 

pattern in type II or nonendometrioid endometrial cancer is slightly different from the 

endometrioid type. This small percentage tumour comes from mesenchymal cells.The 

majority of this cancer (80 to 90%) has p53 mutations or E-cadherin alterations (78, 79). 

The type of cancer rarely contains mircosatellite instability, β-catenin or K-ras mutations 

(67).Sporadic endometrial cancer with positive microsatellite instability (MIN) was not 

associated with somatic mutations of mismatch repair genes such as MSH2 and MLH1 

(80). Poor association was also observed between positive MIN with mutations in genes 

with coding region microsatellites repeats (80). 
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Genetic alterations Endometrioid or type I Nonendometrioid or type II 

Microsatellite instability 20 - 40% 0 – 5% 

K-ras mutations 15 - 30% 0 – 5% 

p53 mutations  10 – 20% 90% 

PTEN inactivation 35 – 50% 10% 

β-catenin mutations 25 – 40 % 0 – 5% 

p16 inactivations 10% 40% 

E-cadherin alterations 10 – 20% 80 – 90% 

Table 2. Molecular changes in both subtypes of endometrial cancer (67) 

4.2. Molecular carcinogenesis of endometrial cancer 

Endometrial cancer cells has the ability to proliferate without control or able to spread 

throughout the body following multistep processes. 

 

Figure 1. Figure 1: A model of endometrial cancer development. The genetic alterations at the early 

stage are different from the late stage of endometrial cancer (72). 

4.3. Gene expression profiling in endometrial cancer 

Earlier studies on the microarray in endometrial cancer tried to discriminate between 

different histologic types of endometrial cancer using the genomic expression profiling (81). 

The study analysed 119 endometrial cancer consisted of endometrioid, papillary serous, 

mixed mullerian tumor and normal cells. The result showed 151 genes that were 

significantly expressed with at least 2-fold change among endometrioid as compared to 

papillary serous cancer (P<0.001). Among the genes detected were BUB1, CCNB2 and Myc) 

(81). Comparing between mixed mullerian tumors and endometrioid revealed 1,132 genes 

that were significantly different with at least 2-fold change (81). High expression of IGF2 

(somatomedin A) was reported in mixed mullerian tumor as compared to endometrioid and 

papillary serous tumour (81). Our local data showed low expression of IGF2 in 

endometrioid endometrial cancer compared with normal endometrium (82). Low expression 

of IGF2 was corresponds to an early stage of endometrial cancer (83). All reported results 

from these expression profiling studies have concluded that different histologic types of 

endometrial cancer displayed different expression profiles. 
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The use of microarray when combined with laser capture microdissection (LCM) tissues has 

presented reliable results (84). However, the decision whether to use the LCM technique is 

still relied on the ratio of stromal cells to the surrounding cancer cells. Pathways that are 

closely related to endometrial cancer were identified after isolation of microdissected 

cancerous cells was used (82). Among the significant pathways comprise of Wnt-β catenin, 

insulin action, cell cycle and NOTCH and B-cell pathways (82). The malignant potential of 

endometrial cancer cells was studied to identify gene signatures of vascular invasion (85). 

Total of 18-gene signatures were differentially expressed with at least fold change of 2. 

Among the genes were IL8, MMP3, COL8A1 and ANGPTL4, which were closely related to 

invasiveness, vascular biology and matrix remodelling (85). Microarray was also used to 

discrimate between different genetic backgrounds. As an example, molecular profiling was 

used to differentiate between self-described African-American with self-described 

Caucasian women (86). The result failed to differentiate the racial group using molecular 

background. This was probably due to limited sample size to represent the whole 

population. 

5. Molecular signatures in breast cancer 

Breast cancer is the most frequent cancer in women in most parts of the world (87). 

Approximately 1.1 million of women in the world were diagnosed with breast cancer every 

year and 410,100 died from the disease. Breast cancer can be divided into two main types; 

ductal carcinoma and lobularcarcinoma (88). The most common type is ductal carcinoma, 

which starts in the tubes or ducts that move milk from the breast to the nipple. Lobular 

carcinoma originates from lobules in the breast that produce milk. Breast cancer could 

become invasive where the cancerous cells may acquire the properties to escape from its 

primary sites into other tissues in the breast. Noninvasive or also known as ‘in situ’ indicates 

that the cancerous cells have not yet invaded other tissues within the breast. There are 

several grading systems used to classify breast cancer, which include histopathology, grade, 

stage and receptor status (89). Breast cancer staging uses TNM system, which is based on the 

size, the spreading and metastatic properties of the tumor to the other organs. There are 3 

receptors on the surface as well as in the cytoplasm and nucleus of the breast cancer cells 

(90). The receptors are estrogen receptor (ER), progesteron receptor (PR) and HER2 receptor 

(90). Immunohistochemistry technique may be employed to differentiate whether the tumor 

has positive or negative ER, PR and HER2 receptors (90).  

Risk factors of getting breast cancer in women include age and gender. The risk of getting 

breast cancer is increased in elderly (88). Women are 100 times more likely to get breast 

cancer compared to men. Genetic factors may also play a role in the development of breast 

cancer, although it is estimated that only 5-6% of breast cancer are hereditary (91). 

Mutations in the BRCA1 and BRCA2 genes account for 80% of hereditary breast cancer (92). 

Patient’s positive for BRCA1 and/or BRCA2 may have 50% to 80% lifetime risk of 

developing breast cancer and 15% to 65% risk of developing ovarian cancer (92, 93). Other 

risk factors are high-fat-diet, alcohol intake, environmental factors such as tobacco smoking 

and radiation (94).  
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The diagnosis of breast cancer is based on the microscopic analysis of breast biopsy, 

mammography and clinical breast exam (95). However, if the test is inconclusive, then Fine 

Needle Aspiration and Cytology (FNAC) may be used (96).Stage 1 breast cancer is treated 

with lumpectomy to remove a small part in the breast and usually have high prognosis. 

Stage 2 and 3 cancers are treated with lumpectomy or mastectomy, chemotherapy and 

radiation and usually have poor prognosis and high risk of recurrence. Stage 4 has poor 

prognosis and is treated by various combination of all treatments. Drugs used to treat breast 

cancer include hormone-blocking therapy for ER+ patients (tamoxifen, aromatase 

inhibitors), chemotherapy (cyclophosphamide and doxorubicin) and monoclonal antibodies 

(trastuzumab) for HER2+ breast patients (97).  

5.1. Genome wide association study (GWAS) in breast cancer 

A single nucleotide polymorphism (rs2046210, A/G allele) at 6q25.1 was identified in 

Chinese women. In a pooled analysis study performed in the East Asian, European, and 

African ancestries, this variant was also found to be associated with breast cancer risk in 

Chinese women (OR=1.3), Japanese women (OR=1.31), European (OR=1.07), and American 

women (OR=1.18) (98). However, there was no association observed in African American 

women (OR=0.81). This variant was found to be associated with increased breast cancer risk 

in all Chinese in Tianjin, Nanjing, Taiwan and Hong Kong. This was also in agreement with 

three studies conducted in Japanese women (Nagoya, MEC and Nagano) as well as studies 

performed in European women (NBHS, CBCS and LIBCSP). A putative functional variant, 

rs6913578 was identified at 1,440 downstream of rs2046210, which was associated with 

breast cancer risk in Chinese (r2=0.91) and European ancestry (r2=0.83), but not in Africans 

(r2=0.57). Genes located at rs2046210 are PLEKHG1, MTHFD1L, AKAP12, ZBTB2, RMND1, 

C6Orf211, C6orf97, ESR1, C6orf98, SYNE1 and NANOGP11. In vitro functional analysis on 

rs6913578 altered luciferase reporter activity hence may influence the DNA binding protein 

interactions, which subsequently lead to alteration of their neighboring genes expression. 

Electrophoretic mobility shift assay confirmed that the C allele of rs6913578 alter the DNA-

nuclear protein interaction and could modify the expression of neighboring genes.  

There was an association between an increased breast cancer risk with rs9397435 at the 

6q25.1 locus in European, Chinese and African populations. This variant was located at 

2,854 bp downstream of rs2046210 and 1,414 downstream of rs6913578. However, this 

variant was weakly correlated with rs2046210 in Europeans (r2=0.087) and African (r2=0.039) 

(99). Turnbull and colleagues conducted a GWAS in 3,659 European ancestry cases and 

4,897 controls. They found that SNP rs3757318, which was located at 200kb upstream of 

ESR1 and 34,253bp of upstream of rs2046210 has the most significant association with breast 

cancer risk (OR=1.21). It was strongly correlated with rs2046210 in Chinese populations 

(r2=0.48) but weakly correlated in Europeans (r2=0.181) (100). 

In Ashkenazi Jews population, Gold and colleagues performed three phases of GWAS in 249 

familial breast cancer cases and 299 controls. In the first phase, they compared the allele 

frequencies of 150,080 SNPs in 249 high-risk, BRCA1-BRCA2 mutation-negative AJ familial 
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cases with control cases. In phase II, 343 SNPs were genotyped from 123 regions, which were 

most significantly associated with breast cancer including 4 SNPs in FGFR2 region in other sets 

of 950 consecutive breast cancer cases. Major associations were replicated in third independent 

set of 243 breast cancer cases and 187 controls. The results showed a significant association at 

rs1078806 in the FGFR2 region of chromosome 6q22.33 with OD=1.26 for all cases combined. 

Candidate genes in this locus such as ECHDC1 and RNF146, which encode for mitochondrial 

fatty acid oxidation and ubiquitin protein ligase were among the known pathways in the 

pathogenesis of breast cancer (101). It is well known that results reported from GWAS could 

not be applied across all ethnicities. This is not surprising since most all variants are tagging 

SNPs, therefore they exist differently in the genetic make-up of different ethnic groups. Hence, 

it is important to determine the SNPs in breast cancer or any particular diseases in different 

populations to identify the risk of developing the disease in an individual.  

5.2. Gene expression profiling in breast cancer 

A research done to study bimodal gene expression profiles in breast cancer using 5 studies 

that used different microarray platforms including cDNA arrays, Affymetrix and Agilent 

(102). Bimodality is a conditional expression property of a particular gene and is associated 

with certain physiological conditions such as disease state and normal. They found 866 

bimodal genes shared across all platforms. These genes were enriched in breast cancer-

associated genes and involved in pathways related to carcinogenesis for example: ERBB2, 

ESR1, CEACAM5 and AR. They also examined the close neighbor group and the analysis 

showed that 15 out of 23 bimodal genes were known and have been reported as breast 

cancer associated genes. These include TCAP, PSMD3, GRB7 and CXCL10 (PMC2822536). 

Microarray was also used to classify the differential gene expression in ER+ve and ER-ve 

breast cancer patients. A study showed that 67 genes were overexpressed in ER+ve tumors 

while 17 were overexpressed in ER-ve breast cancer. ADCY1, ACOT4 AR, ATP2A3, DNAJA4 

were examples of genes that overexpressed in ER+ve breast cancer. An example of genes 

that were overexpressed in ER –ve were ACN9, EGFR, LYN and MALL (103). 

Gene expression profiling of tumor-associated stroma in breast cancer showed large changes 

during cancer progression (104). In this study, laser capture microdissection was used to 

dissect the normal epithelium, stroma, tumor epithelium and tumor-associated stroma 

samples followed by microarray and gene ontology analyses. Tumor-associated stroma 

undergoes massive changes in the expression profile of genes composed of the extracellular 

matrix, matrix metalloproteases and cell cycle-related protein. An increased in the 

mitochondrial ribosomal proteins and decreased in cytoplasmic ribosomal proteins were 

also observed in both, the tumor epithelium and stroma. The changes in expression profiles 

of the tumor-associated stroma were somewhat similar to tumor epithelium, which 

indicated that the tumorigenesis occured even before the tumor cells invaded into the 

stroma.  

Gene expression profiling using whole genome oligonucleotide microarrays to catalog 

molecular variation in 52 widely used breast cancer cell lines. The cell lines were divided 
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into different categories including luminal with ER positive, basal and ER-ve, which 

subdivided into basal A (established at UT Southwestern including 2 BRCA1 mutant lines) 

and basal B (non-tumorigenic lines and several highly invasive cell lines). They identified 80 

loci of high level of amplification in 35 different cell lines. These include increased 

expression of known oncogenes involved in breast cancer, for example MYC (8q24), CCND1 

(11q13) and ERBB2 (17q12). Gain or losses resulting in increased or decreased expression of 

oncogenes or tumor supressor genes, which subsequently led to breast cancer. Using DR-

Correlate, 3,511 genes were differentially expressed and correlated significantly with altered 

gene copy number (FDR<0.05). In total, 487 genes were resided in loci of high-amplitude 

CNA including known breast cancer genes such as EGFR, FGFR1, ERBB2, PPMID and 

ZNF217. In addition, several genes involved in oncogenesis such as cell proliferation, 

survival, migration/invasion, ER-signaling, maintenance of genome integrity were also 

upregulated in cancer cell lines. These include E1F3H, CDC6, GAB2 (cell proliferation), 

MCL1, APIP, MAP3K3 (survival), ADAM9, CDD4 (migration/invasion), MUC1, NCOA3 (ER-

signaling), RAD21, RAD9A and RAD51C (maintanence of genome integrity) (105). 

Gene expression profiling study was carried out on peripheral blood cells for an early 

detection of breast cancer in 121 females referred for mammography. Genome Survey 

Microarrays v2.0 that contains 32,878 probes representing 29,098 genes was used to 

determine the differentially expressed genes in breast cancer compared to normal. Genes 

that expressed higher in blood of breast cancer patients were EEF1G, RPL14, RPLL15 

(translation), ATP5E, ETF1, ATP6V0B (cellular biosynthetic process), TIRAP, DEFA3 and 

ANXA1 (response to external stimulus). Several genes involved in cellular lipid metabolic 

process, steroid metabolic process, catecholamine metabolic process and phenole metabolic 

processes were downregulated in breast cancer compared to normal control. These include 

HDC, PEMT, HEXA, ACAT and SULT1A4 (106).  

6. From lab to bedside: FDA approval 

Advances in genomic research resulting in new molecular tools that serves as prognostic 

and predictive markers in cancer treatment. Particularly in breast cancer, surgeons know 

that early detection is one of the keys to successful treatment. If breast cancer is caught early, 

the tumor can be surgically removed and with an appropriate treatment, most patients can 

recover. However, within 5 to 10 years, 30% increase number of patients with early stage 

breast cancer develops metastases. The identification of patients with high risk of distant 

recurrence is essential for systematic adjuvant therapy to be most effective. At the same 

time, adjuvant therapies such as chemotherapy and hormonal therapy (e.g. Tamoxifen or 

aromatase inhibitors) may reduce the risk of distant metastases by approximately one-third 

for some patients. It is estimated that more than 70% of patients receiving such therapy may 

have survived without it –and may have safely avoided the harmful side effects (107-109).  
Commercially available multigene molecular tests such as Oncotype DX® (Genomic Health, 

USA) and MammaPrint® (Agendia, Netherlands) have revolutionized the predictive and 

prognostic tools in clinic. Using the patients’ own genetic expression patterns, it can provide 
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clinicians with more information on the treatment outcomes of using chemotherapy, 

endocrine therapy or combination therapies by stratifying the risk of recurrence for patients. 

Oncotype DX® and MammaPrint® provide clinical judgment as opposed to laboratory 

results that requireinterpretation by a clinician. Moreover, the algorithm used to reach this 

judgment is proprietary and thus inaccessible to the clinician. Therefore the arrival of the 

first generation of multigene molecular test involved a need for a paradigm shift in the 

configurations of persons and tools that marry genomic techniques to market, legal, and 

regulatory strategies in ways that reframe conceptions of risk, diagnosis, prognosis, therapy, 

discovery, utility, and validity. In addition, regulatory bodies need to handle these new 

advances without sacrificing patient’s safety. These first generation multigene molecular 

tests are considered the first regulatory-scientific hybrid products (110).  

The Oncotype DX® is a multigene panel which has been clinically validated to predict the 

risk of recurrence for those women with early stage (I, II, IIIa) invasive breast cancer that are 

estrogen-receptor positive (ER+), human epidermal growth factor receptor negative (Her2-), 

lymph node negative or positive, and predict who may or may not significantly benefit from 

adjuvant chemotherapy. While MammaPrint® analyzes 70 genes from an early-stage breast 

cancer tissue sample to determine if the cancer has a low or high risk of recurrence within 10 

years after diagnosis. They claimed to be the first and only FDA-cleared IVDMIA breast 

cancer recurrence assay in their official website, http://www.agendia.com/pages/ 

mammaprint/21.php (110). The researchers at the Netherlands Cancer Institute (NKI) who 

discovered it, established a company to commercialize it as a test (111). Oncotype DXbegan 

as a commercial platform; the company (Genomics Health) that produced it did not discover 

a signature but rather constructed it by asking users at every step what clinical question 

they wanted the signature to answer and what data would be credible in that regard. The 

test has been designed to minimally disrupt existing clinical workflows (110, 112). 

MammaPrint requires a change in pathologists’ and clinicians’ routines in terms of specimen 

storage. MammaPrint requires specimen to be stored in RNARetain®, a proprietary RNA 

storage liquid instead of the standard FFPE block. Breast cancer classification was based on 

genomic signature instead of histopathology diagnosis as well as clinical judgement on the 

decision for chemotherapy treatment (113). Thus, while these two trials signify a new 

departure for clinical cancer trials on a number of levels – they both incorporate new models 

of interaction between biotech companies and public research. They also aim to establish the 

clinical relevance of genomic markers and also embody a different socio-technical direction. 

One attempts to accommodate established routines, while the other openly challenges 

prevailing evidential hierarchies and existing biomedical configurations (110).  

The legal statute of the USA gives the US Food and Drug Administration (FDA) the power 

to regulate drugs and devices, with the multigene molecular tests fall under the less 

rigorous medical devices statute. The FDA has traditionally exercised ‘enforcement 

discretion’ by leaving the actual performance of ‘in-house’ tests to be regulated by a 

different mechanism defined by the Clinical Laboratory Improvement Amendments (CLIA). 

It is a set of federal regulatory standards that falls under the authority of the Centers for 

Medicare and Medicaid Services (114). The intention was to ensure the reliability and 
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accuracy of clinical laboratory testing. FDA regulators have suggested the development of 

translational medicine tests such as Oncotype DXand MammaPrint might constitute an 

entirely new regulatory category. In 2006 and 2007, the FDA published two versions of ‘Draft 

Guidance’, signaling the Agency’s inclination to step in and take direct responsibility for the 

novel test category. In 2007, MammaPrint was submitted to the FDA and successfully obtained 

FDA clearance after only 30 days. An ‘FDA cleared’ button promptly appeared on all 

commercial MammaPrint material (http://www.agendia.com/pages/mammaprint/ 21.php). 

Given the non-binding nature of the FDA draft guidance, Genomic Health chose not to pursue 

this regulatory route. Instead they try to gain ‘official’ recognition from the clinicians via 

inclusion in the clinical practice guidelines of professional oncology organizations. The 

company viewed the pursuit of FDA clearance as much more costly and time-consuming than 

simply lobbying professional organizations of clinicians – many of whom the founders already 

knew through their previous works at Genentech (110). The American Society of Clinical 

Oncology (ASCO) included Oncotype in its 2007 guidelines and the US National 

Comprehensive Cancer Network (NCCN) followed suit in its 2008 guidelines.  

6.1. Study design of the multigenes panel 

In cancer epidemiology, both retrospective case – control studies and prospective cohort 

studies are observational, rather than experimental, studies. Neither type of study involves 

random assignment of exposure hence; observed associations between exposures and 

disease do not provide as strong a basis for claims of causality as in experimental studies. 

The most serious limitation of epidemiological studies is their non-experimental nature, not 

whether they are retrospective or prospective. In therapeutics, many retrospective analyses 

are also non-experimental, with treatment selection based on patient factors and referral 

pattern rather than on randomization. Such studies are also often conducted without a 

written protocol and are unfocused, with numerous patient subsets and endpoints 

compared without control for the overall chance of a false-positive conclusion. In contrast, 

prospective randomized clinical trials contain internal control of treatment assignment, 

careful and proscribed data collection (including outcomes and endpoints), and a focused 

analysis plan that is developed before the data are examined (112). 

Many biomarker studies are conducted with convenience samples of specimens, which just 

happen to be available and are assayed for the marker. They have not prospectively 

determined subject eligibility, power calculations, marker cut-point specification, or 

analytical plans. Such studies are more likely resulting in highly biased conclusions and 

truly deserved to be pejoratively labeled as “retrospective.” However, if a “retrospective” 

study is designed to use archived specimens from a previously conducted prospective trial, 

and if certain conditions are prospectively delineated in a written protocol before the marker 

study is performed, it might be considered as a “prospective – retrospective” study. Such a 

study should carry considerably more weight toward determination of clinical utility of the 

marker than a simple study of convenience, in which specimens and assays were happened 

to be available. Multiple studies of different candidate biomarkers based on archived tissues 

from the same prospective trial would present a greater opportunity for false-positive 
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conclusions than a single fully prospective trial focused on a specific biomarker. 

Consequently, independent confirmation of findings for specific biomarkers in multiple 

prospective – retrospective study (115). 

6.2. Oncotype DX breast cancer assay 

The Oncotype DX® analyzes the expression of 21 genes (16 cancer-related and 5 reference 

genes) within a tumor to determine a recurrence score (RS) using reverse transcription PCR 

(RT-PCR) in formalin-fixed, paraffin-embedded (FFPE) breast cancer tissue samples. In the 

earlier stage, the researchers has to show that RNA extracted from FFPE tissues could match 

fresh tissue results in terms of producing a high concordance in the RT-PCR results (116, 

117).To interpret the result, Oncotype DX test results assign a Recurrence Score (RS) – a 

number between 0 and 100 – to the early-stage breast cancer or DCIS as stated below: 

 RS lower than 18: The cancer or DCIS has a low risk of recurrence. The benefit of 

chemotherapy for early-stage breast cancer or radiation therapy for DCIS is likely to be 

small and will not outweigh the risks of side effects. 

 RS between 18 and 31: The cancer or DCIS has an intermediate risk of recurrence. It’s 

unclear whether the benefits of chemotherapy for early-stage breast cancer or radiation 

therapy for DCIS outweigh the risks of side effects. 

 RS greater than 31: The cancer or DCIS has a high risk of recurrence, and the benefits of 

chemotherapy for early-stage breast cancer or radiation therapy for DCIS are likely to 

be greater than the risks of side effects. 

The RS corresponds to a specific likelihood of breast cancer recurrence within 10 years of the 

initial diagnosis, as well as response to adjuvant treatment. Using recurrence score, it may 

be possible for healthcare providers and patients to determine whether adjuvant 

chemotherapy is needed following primary therapy for breast cancer (118, 119).  

i. NSABP Study B-14 

The Oncotype DX was developed and clinically validated on the basis of a retrospective 

analysis of the existing material from two randomized clinical trials (NSABP-B-20 and 

NSABP-B-14). The signature is based on the expression of genes that are associated with 

proliferation, ER signaling, HER2, and invasion (118). The 21 multigene chosen were 

always at the top of the list in published literature. The developers used the samples 

from 447 patients as the ‘discovery’ or ‘training’ set to select the 21 genes eventually 

included in the Oncotype test. Company researchers then applied an algorithm to the 

results of the tests and developed the aforementioned RS score. They believe the score is 

one of the strengths of the Oncotype test: as a single number on a continuous 0–100 scale 

and not a category (that is, yes/no, good/poor). It is supposed to provide clinicians with 

‘useful’ information as a basis on which to act, while preserving clinical decision-

making as a clinician’s prerogative, since by not providing a categorical answer it does 

not entail a specific intervention (110). Results from this study demonstrated that 

Oncotype DX is an accurate and reliable predictor of breast cancer recurrence. (120). The 
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study also concluded that the RS has been validated as quantifying the likelihood of 

distant recurrence in tamoxifen-treated patients with node-negative, estrogen receptor-

positive breast cancer (118). 

ii. NSABP Study B-20 

About 668 samples of cancer tissue from a clinical trial called NSABP B-20 (“A Clinical 

Trial to Assess Tamoxifen in Patients with Primary Breast Cancer and Negative Axillary 

Nodes Whose Tumors Are Positive for Estrogen Receptors) were used to show that 

Oncotype DX can predict chemotherapy benefit (119). The study concluded that the RS 

of the assay not only quantifies the likelihood of breast cancer recurrence in women 

with node-negative, estrogen receptor-positive breast cancer, but also predicts the 

magnitude of chemotherapy benefit (118). 

iii. Kaiser Permanente study 

A large clinical study of 234 cases and 631 controls available for pathology studies (after 

screening of 4964 patients) conducted by Kaiser Permanente confirmed in a community 

setting that Oncotype DX helps to predict the likelihood of breast cancer survival at 10 

years (121). The primary objective of this study was to determine whether the proportion 

of patients who were free of a distant recurrence for more than 10 years after surgery was 

significantly greater in the low-risk group than in the high-risk group. The second 

primary objective was to determine whether there was a statistically significant relation 

between the RS and the risk of distant recurrence. The cutoff points were prespecified to 

classify patients into the following categories: low risk, intermediate risk and high risk. 

The cutoff points were chosen on the basis of the results of NSABP trial B-20. The study 

concluded that in a large, population-based study of lymph node-negative patients not 

treated with chemotherapy, the RS value was strongly associated with risk of breast 

cancer death among ER-positive, tamoxifen-treated and -untreated patients. 

iv. SWOG 8814 study 

SWOG-8814 was a randomized phase III clinical trial of 1,477 postmenopausal women, 

all of whom had estrogen receptor-positive (ER+) breast cancer that had spread to the 

axillary lymph nodes. All women in the trial got daily tamoxifen for up to five years, 

longer than the standard therapy for treating ER+ breast cancer. One arm of 361 patients 

got only tamoxifen. The rest got tamoxifen plus a three-drug chemotherapy regimen of 

cyclophosphamide, Adriamycin®, and 5-fluorouracil, a combination known as CAF. 

Investigators retrospectively analyzed tumor specimens from this trial using the 

Oncotype DX® in 367 women with ER-positive, mainly tamoxifen-treated lymph node-

positive, the RS assay quantified the likelihood of breast cancer recurrence and also 

predicted the magnitude of chemotherapy benefit (122).  

v. Oncotype DX TAILORx Trial 

Following the development of the specialized translational research program from 

National Cancer Institute (NCI), the Program for the Assessment of Clinical Cancer 
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Tests (PACCT) launched the TAILORx trial (123).Since the validation of the Oncotype 

DX Breast Cancer Assay Recurrence Score were able to clearly show that the multigene 

panel were able to predict chemotherapy with hormonal treatment benefit for patients 

with high Recurrence Score while patients with low Recurrence Score do not benefit 

from chemotherapy. However as high as 37% of patients fall into the intermediate 

range, which do not show a clear outcome of the benefit of chemotherapy (122). A 

randomized prospective clinical trial is currently ongoing to further validate a group of 

node-negative, ER+ breast cancer patients with a RS in the intermediate range, which is 

known as Trial Assigning IndividuaLized Options for Treatment (Rx) TAILORx 

conducted by the North American Breast Cancer Group (http://www.cancer.gov/ 

clinicaltrials/noteworthy-trials/tailorx). Since 2006, the trial enrolled 10,000 patients (of 

which 4500 were to be in the randomized arm) in 900 participating centers (110). 

Patients with mid-range RS will be randomized for chemotherapy while patients with 

low and high RS will not be randomized as the outcome has been clearly defined in 

previous studies. 

6.3. Recommendation of use as tumor marker 

Because Oncotype DX was able to achieve level II evidence to support it’s prognostic role, 

Oncotype DX has received approval from the American Society of Clinical Oncology 

(ASCO) in the2007 guidelines (124). It was included in the National Comprehensive Cancer 

Network (NCCN) 2008 guidelines (Breast Cancer version 1.2011 [http://www.nccn.org].) as 

an option to evaluate prognosis and as a complement to clinicopathological features to 

predict response to chemotherapy for patients with ER-positive, node-negative breast 

cancer. None of the microarray-based prognostic signatures has been endorsed by these 

professional bodies. 

6.4. MammaPrint 

MammaPrint (initially known as the 70 Gene Amsterdam Signature) was originally 

developed as an academic/scientific endeavor using whole genome microarray technology. 

The objective was to develop a gene expression signature that could accurately identify 

early stage breast cancer patients who were either at high risk or at low risk of recurrence 

and, therefore, enable more individualized treatment. The MammaPrint investigators from 

the NKI-AVL in collaboration with the Rosetta Inpharmatics (a Seattle company) procured 

and analyzed 78 tumors with the whole-genome microarray. Out of the 25,000 genes in the 

human genome, 231 genes were selected according to its association with the disease 

outcome. Further bioinformatic analysis using 2-D cluster analysis followed by a leave-one-

out cross validation procedure produced 70 critical genes that were shown to correlate best 

with the likelihood of distant recurrence. These 70 genes affect all steps known to be 

important for metastasis including cell cycle regulation, angiogenesis, invasion, cell 

migration and signal transduction (111).The resulting 70-gene signature profile classifies 

tumors as either high risk or low risk of recurrence. If it is used in conjunction with other 

risk factors, it helps to identify patients who will benefit from the adjuvant therapy. The 70-
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gene signature was constructed as a dichotomy as the discussions between the research 

team and clinicians, who insisted that the main goal of the test should be to avoid 

overtreatment of the disease. To accomplish this end, the low-risk group had to be defined 

inclusively. At the same time, the test developers felt that clinicians expected a clear answer 

(good/poor signature) from the test, hence the dichotomy (111). This position, once again, 

contrasts with the Genomic Health’s decision to report their Oncotype DX data analysis as a 

continuous variable that leaves room for clinical judgment (110).  

With this 70-gene signature, further validation was needed on a larger, independent patient 

population. The primary validation was thus carried out via another retrospective study 

that used samples from 295 patients held in the same NKI bio-bank. The first validation for 

the 70-gene signature was undertaken in a series of 295 consecutive women with breast 

cancer. The proportion of patients who remained free from distant metastases at ten years 

was 87% in the low-risk group and 44% in the high-risk group. The profile was a statistically 

independent predictor and added to the power of standard clinico-pathologic parameters 

(125). A research network team called TRANSBIG, an abbreviation for “Translating 

molecular knowledge into early breast cancer management: building on the BIG network for 

improved treatment tailoring”, used the 70-gene signature as retrospective study in 2006 

using 307 pa54tient samples from five European institutions. The results showed that the 

proportion of patients who remained free from distant metastases at 10 years was 90% in the 

low-risk group and 71% in the high-risk group. The 70-gene signature was found to provide 

prognostic information more than what could be determined from patient age, tumor grade, 

tumor size, and ER status in a population of lymph node negative patients without adjuvant 

chemotherapy (113). Although they initially favored licensing the technology, the NKI team 

found no viable taker. So, in 2003 the original researchers, in consultation with the NKI 

board of directors, established a spin-off company using private venture capital and 

European Union (EU) funding, and convinced the director of oncology at a leading 

diagnostic company, Agendia, for Amsterdam Genetic Diagnostics Amersham (110). The 

Agendia team had a signature but they did not have a test. In other words, it was not 

immediately obvious how to convert the 70-gene signature into what eventually became 

MammaPrint, a ‘high-throughput diagnostic test’ (126). The original signature had been 

developed using microarrays containing 25,000 oligonucleotides, a highly impractical 

platform for routine use. The company therefore developed a customized microarray 

containing a reduced set of probes, whose production was entrusted to Agilent, to whom 

Rosetta had, in the meantime, sold its technology. 

The TRANSBIG Consortium performed another independent validation study of 302 

adjuvantly untreated patients with at least ten years of follow-up. For the NKI researchers, 

the problem was less RNA extraction than the microarray analysis itself. Compared with 

RT-PCR, microarray analysis was a relatively novel, non-standardized technology and as 

such, it raised a number of logistic and statistical challenges (127, 128). As a result, in 

addition to the validation studies of the signature per se, researchers conducted a number of 

other studies to show that sample collection for the test (as distinct from the centrally 
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performed test itself) was feasible and reproducible in community-based settings (129). 

Additional studies demonstrated that the MammaPrint classifies greater than 95% of ER-

negative cancers as poor prognosis and there was a strong correlation between 70-gene 

signature-defined poor prognosis and high histological grade (130, 131). Furthermore, the 

studies demonstrated that the 70-gene signature would outperform the current methods 

based on clinicopathological parameters for chemotherapy use. 

One study revealed that MammaPrint validates in older American breast cancer patients 

(132). While another study demonstrated that MammaPrint has strong prognostic value in 

patients with 1-3 positive lymph nodes (133). With more than 14,000 patient results reported 

to date, the technical robustness and reliability of MammaPrint is well established. 

MammaPrint is a considerable a step forward in the advancement of personalized cancer 

treatment. Several other prognostic signatures including the 76-gene signature (134, 135) 

and genomic grade index (136-139) were also shown to be independent predictors for the 

cancer outcomes.  

i. MicroarRAy PrognoSTics in Breast CancER (RASTER) study 

To evaluate whether the prognostic signature is suitable for the use in clinical practice, 

the MammaPrint was used to assess feasibility of implementation of the test as a 

diagnostic test in community hospitals in the Netherlands. The study aimed to test the 

effect of the signature on the use of adjuvant systemic treatment; proportion of patients 

with “poor” versus “good” prognosis in a series of unselected patients with node-

negative breast cancer; and finally to examine the concordance between risk predicted 

by the prognosis signature and risk predicted by commonly used clinicopathological 

guidelines. The findings of this study show that implementation of the 70-gene 

prognosis signature as a diagnostic test is feasible in community hospitals in the 

Netherlands (129).  

ii. MINDACT Trials 

MammaPrint is currently being tested in the MINDACT (Microarray In Node-negative 

and 1-3 positive lymph-node Disease may Avoid ChemoTherapy) trial (140). This is to 

determine whether this signature can actually replace clinicopathological parameters 

for the identification of patients who could be spared from the use of chemotherapy. 

The more ‘confrontational attitude’ of the MINDACT leaders toward traditional clinico-

pathological tools has resulted in a very different trial design compared to the Oncotype 

DX TAILORx Trial.In the MINDACT trial, women recruited into the trial are assigned 

to high- and low-risk categories using both standard clinical-pathological features and 

the 70-gene MammaPrint test results. An open-access computer program, Adjuvant! 

Online, developed in the US and widely used by breast cancer clinicians to estimate the 

outcome in terms of relapse and survival with or without chemotherapy. By 

confronting the predictions of MammaPrint and Adjuvant! Online, the trial directly 

compares between these two prognostic tools: women whose Adjuvant! Online and 

MammaPrint results are discordant (when clinical/pathological features indicate high 
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risk of recurrence and when MammaPrint indicates low risk, or vice versa) are then 

randomized for chemotherapy. 

6.5. Conclusion 

Based on the recommendation by the Evaluation of Genomic Applications in Practice and 

Prevention (EGAPP) Working Group, the general consensus was that retrospective study of 

samples and data from prospective studies were insufficient, although these studies were 

superior to studies using ‘convenience samples’, such as those contained in a general-purpose 

bio-bank. However, potential for patient selection bias cannot be excluded (141), therefore the 

working group recommend prospective studies such as TAILORx and MINDACT as the gold 

standard for testing the value of a multigene molecular test such as Oncotype or MammaPrint. 

From their review on these multigene molecular tests, they found insufficient evidence to 

make a recommendation for or against the use of tumor gene expression profiles to improve 

outcomes indefined populations of women with breast cancer. The working group found 

preliminary evidence on the potential benefit of the Oncotype DX testing results to some 

women who face decisions about treatment options (reduced adverse events due to low risk 

women avoiding chemotherapy) but could not rule out the potential harm for others (breast 

cancer recurrence that might have been prevented). The evidence is insufficient to assess the 

balance of benefits and harms of the proposed uses of the tests. The working group therefore 

encourages further development and evaluation of these technologies. There are still 

limitations that prevent these multigene molecular test such as the Oncotype DX, 

MammaPrint and other genomic prognostic markers from replacing the microscope for 

diagnosis, prognosis and treatment of an early breast cancer. However, additional important 

clinical information from this test has added to traditional histology and IHC determination of 

ER, PR and HER2 in terms of prognostic and predictive power. 

7. Challenges associated with the clinical translation  

Advances in laboratory and clinical science has propelled to a transitional period, which 

requires a redefinition of biology, genomics, and medicine in relation to one another. 

“Molecular gene signatures” is a new buzz word within the field of personalized medicine in 

the treatment of breast cancer (111, 118), thyroid cancer (142), endometrial cancer (143), 

ovarian cancer (144) and other cancers as well. However, the road from the scientific discovery 

of molecular signatures associated with cancer until it can be translated to clinical application 

is long and arduous. A recent review on the current status of translational research in cancer 

genetics has analyzed the extramural grant portfolio of the National Cancer Institute (NCI) 

from Fiscal Year of 2007. From the study, the funded grants and publications were classified as 

follows: T0 as discovery research; T1 as research to develop a candidate health application (e.g., 

test or therapy); T2 as research that evaluates a candidate application and develops evidence-

based recommendations; T3 as research that assesses how to integrate an evidence-based 

recommendation into cancer care and prevention; and T4 as research that assesses health 

outcomes and population impact (145). An “explosion” in gene expression research during the 
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last few years has already led to the development of several genetic classifiers in the genomic 

discovery (T0) stage and T1 stage (which bridges discovery to candidate health application, or 

“bench to bedside”). However, less genomic research was conducted and published in T2 and 

above, with only 1.8% of the grant portfolio and 0.6% of the published literatures in these 

categories. In addition to discovery research in cancer genetics, a translational research 

infrastructure is urgently needed to methodically evaluate and translate gene discoveries for 

cancer care and prevention (146, 147). 

 

Table 3. Systemic therapy options for the treatment of invasive breast cancer in the adjuvant and 

advanced disease settings. Among solid tumors, breast cancer treatment arguably has made some of the 

greatest advances during the previous 3 decades (148). Advances in laboratories and clinical science 

have propelled us into the current transitional period and how clinical trials must evolve to lead us into 

the era of personalized oncology (148) 

7.1. Challenges of gene expression profiling studies 

In order to understand challenges associated with the clinical translation of molecular gene 

signature obtained from microarray studies, we must understand the challenges and 

limitations of gene expression profiling. Although gene expression profiling seems to have 

value in the discovery of molecular markers for potential use in diagnosis or as a therapeutic 

target, translating this technology into genomic medicine is still a work in progress. For a 

better understanding in terms of strengths and limitations of gene expression profiling 

techniques, we need to understand biological, technological, statistical, and informatics 

challenges and caveats. 

7.2. Biological challenges 

A microarray experiment presents a snapshot of the gene expression of the biological system 

that is dynamic and constantly changing at a given time point, which may not provide the 

complete picture or accurately depict of what is really happening at cellular level. Thus, the 

presence of mRNA does not explicitly mean that it was just synthesized. Likewise, the 
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inability to detect an unstable transcript may be due to its high degradation rate (149). The 

expression of some genes (“housekeeping genes”) is thought to be more stable, and these 

genes are often used as controls for the normalization of expression levels of other genes. 

However, the expression of traditionally used controls such as ribosomal RNA genes, also 

changes across different tissues and experimental conditions making it difficult to select 

“gold standards” (150). Sampling issues such as biopsy method (151), contamination from 

neighboring tissues may seriously affect in different expression profiles as microarray 

technology is very sensitive to such variations (152). RNA quality is a critical issue in 

genome-wide analysis of gene expression. RNA is less stable than DNA and care should be 

taken and adequate protocols followed to preserve the quality of biological material. This is 

particularly important in clinical setting. Another limitation in prognostic or predictive 

markers from gene expression profiling is that microarray covers only part of the whole 

picture. Most of cellular functions are performed by proteins and physiological changes can 

be modulated by not only changes in protein levels but also by protein modifications such 

as glycosalation, methylation, acethylation, and phosphorylation. These modifications could 

change protein conformation and lead to changes in activity, which is not detectable by gene 

expression profiling (152). 

7.3. Technological challenges 

All of the microarray platforms available in the market are proprietary, a general concern for 

the inter-platform variability in the gene expression profiles has been addressed by the 

MicroArray Quality Consortium II (MAQC) (153). Despite the high variability in gene 

expression attributed to differences in microarray platforms, studies have demonstrated that 

reproducibility across platforms can be dramatically improved when standardized protocols 

are implemented for RNA labeling, hybridization, data processing, data acquisition, and 

data normalization. When these technical variables are standardized, different microarray 

platforms can produce comparable outcomes (154, 155). Nevertheless, the results from 

comparison across different platforms can be misleading and should be interpreted with 

great caution (156). Technicalities of the microarray platforms deals with binding efficiency 

of labeled target to the respective probe as well as technical variation during experiments 

also may affect the reproducibility of the gene expression profiles (152). With regards to 

prospective experiments, the uniformity of experimental conduct will help to minimize 

potential bias and thus improve the validity of a study. The establishment of the Microarray 

Quality Control (MAQC) project in 2005 to develop procedural guidelines and quality 

control metrics in the first phase and the second phase aims to evaluate various data 

analysis method and predictive models (153). One of the serious problems has been a wide 

diversity of data formats used in microarray experiments. As a result, the Microarray 

GeneExpression Database Society (MGED) was created in 1999 to develop a common 

standard for data input and reporting that could be shared among scientists in the 

microarray field. In 2001, the MGED created the Minimum Information About a Microarray 

Experiment (MIAME) guidelines, which serve as a template for researchers to report an 

adequate description of how microarray data were obtained (157). 
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7.4. Statistical and and bioinformatic challenges 

The experimental design of the microarray studies is of paramount importance, as it should 

have a clear goal and a specific hypothesis to test. In the design of a microarray experiment, 

all potential sources of variation should be taken into account to avoid any systematic bias. 

Researchers should adhere to the sound principles of study and match the experimental 

variables of cases and controls to the fullest extent possible. It is important to select 

biologically homogenous sample populations, balancing a design with respect to all factors 

that can confound results among the comparison groups, and handling samples uniformly 

through the course of the entire experiment when designing a microarray study (158). 

Randomization of samples will assure baseline equality between the groups being 

compared. Violation of these principles will lead to biased results and can cause a loss in 

power. It should be pointed out that statistical analysis of data couldn’t solve fundamental 

problems of study design. Significantly, the validity of gene expression profiles depends on 

the characteristics of samples and selection bias, eligible criteria of participation and other 

confounding factors. An adequate sample size is necessary to achieve sufficient power to 

demonstrate significance of findings, especially in microarray studies where thousands of 

genes are tested simultaneously (159). Appropriate preprocessing of microarray data, 

known as “normalization” prior to analysis is critical for identifying differentially expressed 

genes. Normalization attempts to remove variability among chips and other systematic 

biases that are unrelated to biological variation so that a meaningful biological comparison 

can be made. Transformation is used for multiple purposes, including stabilizing variance in 

data so that underlying assumptions required for the statistical analysis method are met. 

Although it is expected that the choice of a preprocessing procedure does not affect the core 

results of microarray data, different normalization and/or transformation methods may 

result in different outcomes (160).  

Application of appropriate analysis methods to the microarray data, for example 

classification and cluster analysis are typical analytical approaches to categorized 

microarray data into manageable classes. However, there is no standard ‘method’ to how to 

best analyze the genomic data and it’s very tempting to present / published the best-looking 

result, leading to biased evaluation of the statistical prediction rule. Another issue of 

classification is “overfitting”, which occurs when a classifier is made to perfectly fit a set of 

data that was used in the model development, but has no discriminatory power so that the 

results cannot be reproduced in a set of completely independent samples (161). This may 

lead to insufficient evidence of accuracy and reproducibility of multigene signature from 

gene expression profiles for clinical use, although it showed initial promising and 

reproducible results in class discovery studies and preclinical analysis (162). An adequate 

sample size is essential for any cross-validation technique to be effective. Another significant 

challenge for researchers is to reconstruct network structure from available expression data. 

Many different methods for network inference have been proposed (163). A common 

problem of such models is exponential complexity: the number of parameters increases 

exponentially with the number of variables. Thus, many alternative and equally probable 

network structures may be constructed from a given dataset. Dupuy and Simon (164) 



 
Genomic Expression Profiles: From Molecular Signatures to Clinical Oncology Translation 29 

reviewed the cancer literature of studies relating gene expression profiles to patient 

outcome, either response to treatment, survival or disease-free survival and found that 50% 

of the publications had at least one flaw so serious as to raise questions about the validity of 

the conclusions. The three most common serious flaws they found were: misleading use of 

cluster analysis, lack of adjustment for the multiplicity of analyzing thousands of genes, and 

erroneous use of partial cross-validation. They pointed out that cluster analysis rarely has a 

valid role in the development of predictive classifiers. Its wide use in the literature reflects a 

lack of proper statistical guidance or collaboration in the conduct of expression profiling 

studies (164).Therefore, cancer research organization need to better appreciate the 

fundamental changes occurring in the nature of biomedical research and make major 

commitments to departments for providing professional biostatistical collaboration as an 

integral part of translational research.  

7.5. Challenges in incorporating molecular profiling assays into routine clinical 

practice 

While the first-generation prognostic multigene classifiers, such as the MammaPrint assay 

and the Oncotype DX breast cancer assay, are the closest to clinical practice, the second-

generation prognostic multigene assays have not been commercialized. This includes the 

assessment of breast cancer microenvironment or host immune response. The assay requires 

further external validation studies to determine their clinical utilities (165). Despite several 

studies, the translation of predictive multigene classifiers into the clinic is even more 

challenging than that of prognostic multigene classifiers (166). Most of the predictive assays 

are derived mainly from cell lines. Microarray as the assay platform is not as quantitative as 

using a qRT-PCR assay. Therefore, subtle changes in gene expression may not be reflected in 

microarray-based assays, although these subtle differences may be sufficient to cause 

resistance to chemotherapeutics. Furthermore, resistance may occur due to low penetrance 

of the drug being administered and may be unrelated to tumor tissue. To incorporate 

prognostic and/or predictive multigene classifiers into clinical practice, the following key 

criteria need to be fulfilled: 

First, the platform on which the classifier is based should be suitable for broad clinical 

application and ensure that the classifier is stable under a variety of operating conditions. If 

not, the classifier needs to be translated to a clinically applicable platform (167). The assay 

protocols should be standardized to achieve satisfactory inter-laboratory and intra-

laboratory reproducibility, thereby establishing analytic validity. Assay standardization 

includes pre-analytic parameters, such as sample storage and preparation, and analytic 

performance parameters, such as the sensitivity and specificity of the system as well as 

assay reproducibility. The Clinical Laboratory Improvement Amendments of 1988 (CLIA) 

requires laboratories to independently establish analytic validity and improve assay 

standardization. To venture from scientific discovery to the beginning of clinical 

translational research is a challenge as academic scientist are usually funded and rewarded 

for discovery, rather than to pursue focused translational research as members of a large 

interdisciplinary team. Funding agencies may not be experience in funding and monitoring 
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focus translational research. In some other developing countries, to fund such large 

interdisciplinary and multicenter translational research is prohibitively expensive. Because 

of these limitations in conducting and funding focused translational research, a defined 

discovery to a product for use in a defined medical context goes untranslated unless they 

are of interest to the industry (168, 169). 

Second, it is critical to classify studies as developmental or validation studies in order to 

increase the clinical validity of the classifier. For assays that purport to elucidate predictive 

significance, this strategy needs to be applied to determine the clinical utility of the classifier 

(167, 170). Developmental studies need to include internal clinical validation; this can be 

accomplished either by splitting the study population into two populations (the training 

model and the testing model or by cross-validation based on repeated model development 

and testing on random data partitions. These approaches will increase the accuracy of the 

classifier, which in turn makes its further development possible. Independent validation 

studies are critical to further evaluate the predictive accuracy and usefulness of the classifier 

in clinical practice. The studies should be prospectively designed, and should verify both 

clinical validity and clinical utility. Pusztai et al (171) identified out of the 939 publications 

over twenty years period on prognostic factors for patients with breast cancer, only estrogen 

receptor, progesterone receptor and HER2 amplification and Oncotype DX RS were included 

alongside the traditional staging variables recommended by the ASCO guidelines. The 

pitfall for most of these genomics discovery researches is that only a few of the markers 

studied were properly validated in a cohort. However, most of the studies were performed 

using convenience sampling of heterogenous collection of patients and difficult to use such 

results in therapeutic decision making for individual patients. Finally, most of the 

publications were based on research assays without demonstration of robustness or 

analytical validity. Without a diagnostic company to develop a robust assay for a test with a 

clear and important medical application, the publication is unlikely to be part of successful 

translational research (169).  

Third, does the classifier only assess prognosis? Or does it help with selection of a certain 

type of therapy? What is the therapeutic relevance of the classifier? Prognostic multigene 

classifiers assess the likelihood of disease recurrence, whereas predictive multigene 

classifiers evaluate the potential benefit from certain types of chemotherapy or anti-estrogen 

therapy. However, a prognostic classifier may also exhibit predictive significance. If a 

classifier is a predictive classifier, the bar for utility is often quite low. For example, 

approximately half of patients with HER2 positivity respond to trastuzumab. However, if 

the assay assesses low likelihood for recurrence or metastases (a prognostic assay), patients 

classified as low risk need to have such a low risk that they can be spared from adjuvant 

therapy without affecting their long-term prognosis (172).  

Fourth, the incorporation of the classifier into the clinic might be more beneficial if it 

outperforms or adds predictive power to existing prognostic methods; this would help 

justify the money and time invested in its external validation in a trial of a much larger scale. 

In other words, it is important to determine cost-effectiveness. The “intrinsic” classification 

was the first assay to use modern molecular tools to classify breast cancers. MammaPrint 
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(111) and the Oncotype DX(118) have been tested in more than one validation cohort and are 

being tested for further clinical utility in large prospective trials in Europe (MINDACT; 

MammaPrint assay) (140) and in the United States (TAILORx; Oncotype DX assay)(173). Both 

assays have completed a cost-benefit analysis on the utility of the assay in clinical practice 

(174-178). Both assays demonstrate cost effectiveness in guiding adjuvant chemotherapy 

treatment in patients with early-stage breast cancer. Another assay in an advanced stage of 

development is a 50-gene assay (PAM50) (179), although the clinically applicable platform 

of intrinsic subtype classification is still a long away from clinical application. 

The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working 

Group (EWG) assessed the value of the Oncotype DX and MammaPrint assay. The EWG 

found insufficient evidence to make a recommendation for or against the use of tumor gene 

expression profiles to improve outcomes in defined populations of women with breast 

cancer (180). The EWG encouraged further development and evaluation of these 

technologies. It is clear that the molecular profiling tests have a great potential to improve 

clinical decision making, since they address the complexity of breast cancer. It was 

suggested that the combinatorial use of these assays with the existing traditional 

clinicopathologic parameters to be more favorable, as clinicians are hesitant to do away with 

the existing clinicopathologic parameters. Indeed, a recent study used a similar 

combinatorial approach in which the Oncotype DX RS was integrated with 

clinicopathological parameters to develop a tool, the RS-Pathology-Clinical (RSPC) 

assessment (181). This model although requires validation, might have the greatest 

predictive and/or prognostic utility in cases classified as “intermediate risk” by the Oncotype 

DX (182).These studies highlight the difficulties in prognostication in patients with breast 

cancer and the need to use anatomical, histological, and biological approaches to assist with 

clinical decision-making. It is indisputable that multigene classifiers cannot replace, but 

rather strengthen, prognostication and prediction in combination with clinicopathological 

parameters. They do not have a role in cases in which the patient (or the clinician) has 

already made the decision to proceed with systemic adjuvant therapy. However, these tests 

have a role to play in those patients who are undecided or for whom a definite decision 

cannot be made based on clinicopathological findings. No test should be ordered if its 

results are not going to influence clinical decisions (168). 

i. Problems related to early detection 

Scientists postulate the basic underlying prognostic microarray studies is that all 

tumors acquire a metastasis phenotype through the same unique mechanism, and that 

gene expression data in tumor tissue obtained at resection of the primary tumor can be 

used to clearly distinguish between tumors that will relapse or will not relapse. The 

results of the pioneering prognostic microarray study concerning breast cancer (111) are 

considered proof of concept and have led to general acceptance of the postulate. 

However, the performances of microarray studies are poorer than initially thought and 

published gene signature lists are unstable (161). Some of the multi-biomarker scores do 

show consistent prognostic value such as in breast cancer, but until the recent advent of 

large validation studies, microarray studies are not significantly better prognostic 
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classification than conventional prognostic models (113, 122). In addition, it has been 

shown that almost all first-generation gene signatures in breast cancer provide a 

quantitative read-out of the same biological pathway of proliferation (183, 184). As of 

today we are still in need of a precise estimation of the incremental value (185-187). 

Moreover, by assuming a unique mechanism for the metastasis phenotype, the 

postulation contradicts with the concept of cancer heterogeneity and consequently with 

personalized treatments. The potential interest of microarrays could not be rejected 

provided true critical consideration, incorporating, and not opposed to, full clinical 

evidence is now necessary.  

ii. Problems related to prognosis indicator 

The validation of “first-generation” prognostic signatures, usually based exclusively on 

gene expression profiling, has proven particularly challenging (188). It has been even 

more difficult to identify and validate predictors of response to nontargeted therapies 

(radiotherapy and chemotherapy), although analysis of large sample sets from clinical 

trials have already provided preliminary evidence of novel markers (189).  

Limitations to the current prognostic multigene signatures 

The ability of the Oncotype Dx and MammaPrint, to determine prognosis seems to be 

directly correlated to the assessment of proliferation/cell cycle-related genes (183, 190). 

The fact that these multigene signatures are mere surrogates of proliferation poses some 

important problems for their uses. First, given that proliferation has been shown to be 

prognostic in ER-positive disease and not in ER-negative cancers, first-generation 

signatures are applicable only for the prognostication of patients with ER-positive and 

HER2-negative breast cancers (190, 191). As the expression level of proliferation related 

genes in ER-positive cancers has been demonstrated to follow a continuum rather than 

a bimodal distribution, the subdivision of ER-positive cancers into good-prognosis 

(luminal A) and poor-prognosis (luminal B) groups is considered artificial (183, 190). In 

fact, the continuous nature of the Oncotype DX RS is more representative of the ranges 

of prognosis of patients with ER-positive disease. It should be noted, however, that this 

approach for clinical decision-making might be problematic. For instance, the 

prognostication and management of patients with an intermediate RS remain unclear, 

and up to 40% to 60% of clinically intermediate-risk patients (that is, breast cancers 

combining ER-positive, HER2-negative, and grade II status) are allocated to the 

intermediate-risk RS group (175). Therefore, the actual contribution of Oncotype DX to 

the management of this particular group of patients remains to be elucidated, and is 

currently being examined in the TAILORx trial (173, 175). Lack of prognostic power of 

first-generation prognostic signatures in ER-negative breast cancer and their 

associations with proliferation in ER-positive breast cancer have brought to the 

forefront of cancer research the limitations of histological grading. Classical histological 

grade is not prognostic in ER-negative disease and is strongly associated with 

proliferation (190, 192). It should be noted, however, that the levels of intra- and inter-

observer agreement of histological grade remain suboptimal, despite the numerous 



 
Genomic Expression Profiles: From Molecular Signatures to Clinical Oncology Translation 33 

efforts to implement a standardized histological grading system (192). It could be 

argued, on the basis of the above observations that the major contribution of first-

generation prognostic gene signatures is to provide a standardized proliferation assay 

for breast cancer. A second limitation of the first-generation prognostic signatures stems 

from the fact that most of them were developed to predict short-term distant recurrence 

(<5 years) and were shown to have a strong ‘time dependence’ and a reduced 

prognostic value after 5 to 10 years of follow-up (113, 193). Hence, these signatures may 

represent merely early distant recurrence surrogates and are unable to predict late 

relapses with the same accuracy. Thus, there is still a need to develop signatures that 

could identify patients who have a higher risk of late relapse and who may benefit from 

prolonged therapy. 

iii. Problems related to therapeutic response 

There is also increasing evidence that better classifiers and improved prognostication 

can be derived from combined analysis that profile both tumour DNA and RNA (194-

196). Neoadjuvant therapy trials hold great promise as the right framework to identify 

these predictive biomarkers for chemotherapy (and targeted therapies) response. ER 

and Her2 are predictors of a lack of benefit from targeted therapies, hormone therapy 

and anti-Her2-targeted agents, when the cancers do not express the markers. These 

predictors, however, fail to identify tumours that despite expressing the biomarkers still 

fail to respond to the targeted therapies (197). 

7.6. Gene expression signatures and response to chemotherapy 

With the clinical need for predictive markers for specific chemotherapy agents and 

multidrug regimens, several groups have developed multigene signatures specifically 

designed to predict response in patients receiving either chemotherapy or endocrine 

therapy. Using supervised approaches, several studies have attempted to identify multigene 

signatures of response to chemotherapy by comparing gene expression profiles between 

high sensitivity and low-responsiveness tumors (198-201). The majority of the studies 

focused on neoadjuvant chemotherapy and analyzed tumor samples obtained from biopsies 

taken at diagnosis before initiation of chemotherapy by microarrays or RT-PCR. 

Chemotherapy sensitivity usually was estimated with rate of pathological complete 

response to neoadjuvant therapy (pCR) as a surrogate of long-term benefit from the 

treatment. For example, a 30-gene signature was developed by the MD Anderson Cancer 

Center group in 82 breast cancer patients receiving T/FAC chemotherapy (paclitaxel, 

fluorouracil, doxorubicin, cyclophosphamide). This predictor signature was then validated 

in 51 independent patients and predicted pCR probability with higher sensitivity and 

negative predictive value than clinical variables based on age, grade, and ER status (198, 

200), which were later confirmed in an independent study (202). Despite these interesting 

preliminary results, the accuracy of the 30-gene predictor was not found in a recent study in 

which it was not an independent predictor of pCR after multivariate analysis and did not 

perform better than clinical variables (203). A similar 78-gene signature to MammaPrint that 
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was developed from a dataset of metastatic breast cancerpatients who did and did not 

respond to tamoxifen treatment was identified as truly predictive of tamoxifen response. 

They found that their signatures seemed to be more predictive than prognostic compared 

with the RS in an independent set of tamoxifen-treated ER-positive metastatic breast cancer 

patients (204). Whilst the metastatic setting may be the most logical way to investigate the 

true predictive ability of a biomarker, it remains plausible that metastatic breast cancer 

patients have different disease biology compared with those having early-stage disease. 

Miller et al (205) used the neoadjuvant or preoperative setting to uncover gene profiles for 

which baseline expression and relative change with 14 days of treatment differed between 

breast cancers that were clinically responsive or resistant toletrozole therapy. The advantage 

of the neoadjuvant settingis that it allows multiple ways of assessment of response to 

therapy, eg, monitoring of changes in tumor size during the first months of treatment and 

sequential tumor biopsiesbefore and after neoadjuvant treatment with letrozole. Gene 

expression profiles were then related to clinical responses as assessed from tumor volume 

measurements after three months of treatment. This study underscores the potential of the 

neoadjuvant setting for high-level correlative science, but also supports the need for 

biologically driven hypotheses and stratification of luminal subtypes, and also highlights 

the difficulties of serial analyses using high-dimensional data. 

An alternative attempt to predict chemosensitivity to specific chemotherapy regimens was 

developed with the use of in vitro models. Using a combination of in vitro signatures 

associated with drug sensitivity in cell lines, a composite signatures that could predict 

response to multidrug regimens were derived and translated to patients receiving 

multidrug chemotherapy (206). These ‘regimen-specific’ signatures tested in patients who, 

as participants in the European Organization for Research and Treatment of Cancer 

(EORTC) BIG00-01 clinical trial, received TET (docetaxel, epirubicin-docetaxel) or FEC 

(fluorouracil, epirubicin, and cyclophosphamide) chemotherapy resulted in a validation 

study (207). Importantly, problems with the methodology of these studies have been 

identified (208) and serious concerns about the validity of the published results were raised. 

Subsequently, after a series of investigations, the findings derived from in vitro studies were 

considered invalid, and this led to the discontinuation of the clinical trials based on these 

prediction models (166, 209). 

Another method to develop multigene classifiers of chemosensitivity is based on the use of 

metagenes, groups of co-expressed genes associated with a small number of biological 

processes. A retrospective microarray analysis of prospectively collected ER-negative breast 

cancer samples demonstrated that increased stromal gene expression predicted resistance to 

FEC chemotherapy, which was subsequently validated in two independent cohorts (210). 

Despite the promising initial results, the signatures of chemotherapy sensitivity have so far 

had limited use in clinical practice. Most of them have been developed in small, convenience 

cohorts and require further external validation. None of the different predictors of 

chemosensitivity is commercially available, and additional evidence is still required before 

they can be implemented in clinical practice. A recent review has discussed the reasons for 

the limited success of the predictive signatures available to date (166). On the basis of the 
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design employed in most of the studies, the predictive signatures for multidrug regimens 

are likely to capture the transcriptomic features of sensitivity/resistance to cytotoxic agents 

in general. These mechanisms may constitute convergent phenotypes, that are multiple 

genetic/epigenetic aberrations that may lead to resistance to cytoxic agents (211). 

8. Conclusion 

Cancer is a multi-factorial disease that involves multiple genes and distinct pathways. The 

ultimate objective in the high throughput gene expression study approach is to fill the gap 

in the early biomarker detection, prognostication improvement and gene-targetted therapy. 

Outcomes from these studies can be obtained from the literatures and some are available as 

open public databases. Scientists have taken steps forward by using the data either as a 

single gene studies or multiple genes with related molecular pathways to investigate further 

on an individual cancer. However, there is a great challenge to devise the suitable gene lists 

from heterogenous data especially for drug discovery studies. With a great amount of 

genomic data avaiable, nearly all cancers faced the same setbacks of unable to pick the right 

genes for the right cancer. Among all cancer, breast cancer has the most advance experience 

in translating the lab findings into the clinical practice with the emergence of multigene 

signatures. The current array data can provide a platform for future scientists to explain the 

complexity of cancer in combination with the latest advancement in deep sequencing 

technology, 
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