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1. Introduction

Hydraulic engineers and geologists have studied sediment transport in natural streams and
rivers for centuries due to its importance in understanding river hydraulics. Erosion and
deposition of sediment alters the hydraulic geometry of the channel and may cause increase
of flood frequency as well as navigation problems from excessive deposition. Moreover, dis‐
charge of industrial and agricultural residuals sets the sediment particles to be the primary
transporters of toxic substances that contaminate aquatic systems. High sediment discharge
peaks may be destructive for fish habitats and ecosystems, and long-term sediment yield af‐
fects the design and function of constructions such as dams and reservoirs, as well as the
coastal erosion at the basin outlet.

Sediment transport in sand bed rivers and natural streams is a complex process.  For its
quantification,  numerous sediment transport  functions have been introduced in the past
years based on different concepts. There are four basic approaches used in the derivation
of sediment transport formulae (Yang, 1977): 1) The deterministic approach, which obeys
the  laws  of  physics  and  usually  is  based  on  an  independent  variable  like  slope,  shear
stress,  stream  power,  unit  stream  power  etc.  2)  The  regression  approach,  which  has
emerged from the thought that  sediment transport  is  such a complex phenomenon that
cannot  be  described  by  a  single  dominant  variable.  3)  The  pioneering  probabilistic  ap‐
proach of Einstein (1942),  which highlighted the complexity and the stochastic nature of
the sediment transport in a rather laborious way for common usage in engineering, and 4)
The  regime  approach,  which  was  developed  as  a  result  of  long-term  measurements  in
equilibrium conditions.
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The emerging results from all these concepts usually differ drastically from each other and
from the measured data. Consequently, none of the published sediment transport equations
has gained universal acceptance in confidently predicting sediment transport rates, especial‐
ly in rivers. An alternative approach may be the usage of data-driven modeling, which is
especially attractive for modeling processes, in which knowledge of the physics of the prob‐
lem is inadequate. The scope of this chapter is the utilization of some widely used data-driv‐
en techniques, namely artificial neural networks (ANNs) and symbolic regression based on
genetic programming (GP) in order to determine the dominant dimensionless variables that
can be used as inputs in such schemes and generate sediment transport models for natural
streams and rivers that are based solely on the data without presuming anything about their
structure and their degree of nonlinearity.

For the proper training of a data-driven scheme, data of good quality are needed. Since field
measurements accommodate the peculiarities of the considered streams and the inclusion of
noise in the measurement process is inevitable, the training data comprise solely laboratory
flume measurements. The testing data, however, comprise exclusively field measurements
in order to implement the models in actual applications. Based on this concept, the approach
of the basic trend of the function is feasible and the derived model will be applicable to the
data range for which it will be trained. Regarding the efficiency of scaling in the sediment
transport context, model-prototype comparisons have shown that correspondence of behav‐
ior is often well beyond expectations, as has been attested by the successful operation of
many structures designed from model tests (Pugh, 2008). This study exhibits the potential of
machine learning in capturing functions with physical meaning since the training and test‐
ing sets have significant differences in their statistical distributions. The determination of the
input variables that best define the problem is accomplished by the assessment of some
common independent dimensionless variables based on their correlation with the sediment
concentration and the aid of ANNs on the basis of a tentative trial-and-error procedure. Sub‐
sequently, ANNs and symbolic regression are utilized in order to derive equations from the
selected input combinations.

2. Data mining and data-driven techniques in the context of sediment
transport

The recorded observations of a system can be further analyzed in the search for the informa‐
tion they encode. Such automated search for models accurately describing data constitutes a
direction that can be identified as that of data mining. Data mining and knowledge discov‐
ery aim at providing tools to facilitate the conversion of data into a number of forms, such as
equations. The latter provide a better understanding of the process generating or producing
these data. These models combined with the already available understanding of the physical
processes result in an improved understanding and novel formulations of physical laws and
improved predictive capability (Babovic, 2000).
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Data-driven modeling (DDM) and machine learning techniques used for predictions are es‐
sentially modernized regression schemes with the significant advantage over the classical
regression schemes that they do not have to presume the structure of the nonlinear model,
which they attempt to fit. They are based on simple ideas, usually inspired from the way
nature works, and their only prerequisite is a good, although usually large, data set. The da‐
ta are usually divided into three sets, namely the training, validation and testing set. The
training set trains the scheme on the basis of a minimization criterion and the validation set
is used as a stopping criterion for training to avoid overfitting to the data used for training.
The test set is used to evaluate the generated model. The minimization criterion, on the basis
of which the training process takes place, is usually a sum of errors between the computed
outputs and the actual measured data. The optimization model that is used for the minimi‐
zation depends on the data-driven scheme and may be deterministic as well as stochastic.

Inferring models from data is an activity of deducing a closed-form explanation based solely
on observations. These observations, however, represent a limited source of information.
The question emerges as to how this, a limited flow of information from a physical system
to the observer, can result in the formation of a model that is complete in the sense that it
can account for the entire range of phenomena encountered within the physical system in
question and describe even the data outside the range of previously encountered observa‐
tions. The present efforts are characterized by the search for a model that is capable of ac‐
quiring semantics from syntax. Clearly, every model has its own syntax. Artificial neural
networks have the syntax of a network of interconnected neurons, whereas genetic pro‐
gramming has the syntax of treelike networks of symbolic expressions in reverse Polish no‐
tation. The question is whether such a syntax can capture the semantics of the system it
attempts to model (Babovic, 2000). Witten et al. (2011) argued that the universal learner is an
idealistic fantasy since experience has shown that no single machine learning scheme is ap‐
propriate to all data mining problems. Certain classes of model syntax may be inappropriate
as a representation of a physical system. One may choose the model whose representation is
complete, in the sense that a sufficiently large model can capture the data’s properties to a
degree of error that decreases with an increase in the model size. For example, one may de‐
cide to expand Taylor or Fourier series and decrease the error by adding terms in a series.
However, in these cases, semantics almost certainly would not be caught (Babovic, 2000).

2.1. Artificial neural networks

ANN is the most widely used data-driven method. Since abundant information on ANNs is
available in the literature [e.g. Haykin (2009)], only a brief description of ANNs is provided,
with regard only to the methodology applied herein. ANN is a broad term covering a large
variety of network architectures and structures. The most common of them, and the one uti‐
lized herein, is the multilayer feedforward network. This type of network is a parallel dis‐
tributed information processing system that consists of the input layer, the hidden layer(s),
and the output layer, and the information goes only in a forward direction. Each layer com‐
prises a number of neurons, each one of which is connected with those in the successive lay‐
er with synaptic weights that determine the strength of the connections. The hidden and
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output layer neurons have an inherent activation function, which accommodates the nonlin‐
ear transformation of the input data to the targets. In this study, the neurons of the hidden
layer(s) will have the hyperbolic tangent activation function, which squashes the data be‐
tween (-1, 1), and the single neuron of the output layer will have the linear activation func‐
tion, which simply returns the value that is passed to it. The input data are scaled to the
range (-0.9, 0.9) because, if the values are scaled to the extreme limits of the transfer func‐
tion, the size of the weight updates is extremely small and flat-spots in training are likely to
occur (Maier and Dandy, 2000).

The training process of an ANN may be viewed as a “curve fitting” problem and the net‐
work itself may be considered simply as a nonlinear input-output mapping (Haykin, 2009).
Supposing that a deterministic relation between sediment load concentration and some spe‐
cific independent variables exists, a multilayer feedforward ANN is able to approximate this
function, if it includes at least one hidden layer with a sufficient number of neurons (Hornik
et al., 1989). However, this universal approximation theorem does not specify if a single hid‐
den layer is optimal in the sense of learning time, ease of implementation, or (more impor‐
tantly) generalization (Haykin, 2009). As a result, several network architectures are tested in
order to determine the optimal one.

Although the implementation of ANNs is extensive and successful in water resources appli‐
cations [e.g. Maier and Dandy (2000)] and in the prediction of daily suspended sediment da‐
ta [e.g Cigizoglu (2004)], it is quite sparse in the prediction of sediment concentration from
other independent hydraulic variables. Nagy et al. (2002) reviewed some widely used sedi‐
ment discharge equations and selected some of the dominant dimensionless variables of the
problem as input neurons for an ANN that was trained and tested with field data. Bhatta‐
charya et al. (2005) used dimensionless parameters obtained from the Engelund and Hansen
(1967) formula in order to train and test an ANN with a mixture of flume and field data,
whilst in similar studies Bhattacharya et al. (2004, 2007) scrutinized further the possible in‐
put parameters based on the same data. Yang et al. (2009) chose as input variables combina‐
tions of dimensional quantities and applied them to field data. All of these works used the
back-propagation algorithm (Rumelhart et al., 1986) for training the ANNs and compared
the results with some of the most popular sediment transport formulae. For all the cases, the
ANNs generated superior results.

2.2. Symbolic regression based on genetic programming

Many seemingly different problems in artificial intelligence, symbolic processing and ma‐
chine learning can be viewed as requiring discovery of a computer program that produces
some desired outputs for particular inputs. The process of solving these problems can be re‐
formulated as a search for a highly fit individual computer program in the space of possible
ones. GP extends the concept of genetic algorithms and provides a way to search for this fit‐
test individual computer program (Koza, 1992).

GP works by randomly generating a population of computer programs (represented by tree
structures) and each individual program in the population is measured in terms of how well
it performs in the particular problem environment. This measure is called the fitness meas‐
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ure (Koza, 1992) and usually is a sum of errors between the outputs predicted by the pro‐
gram and the actual ones. Initially, the generated computer programs will have exceedingly
poor fitness. Nonetheless, some individuals in the population will turn out to be somewhat
fitter than others. These differences in performance are subsequently exploited. The Darwin‐
ian principle of reproduction and survival of the fittest and the genetic operations of sexual
recombination (crossover) and mutation are used to create a new offspring population of in‐
dividual programs from the current population. The reproduction principle involves the se‐
lection, in proportion to fitness, of a computer program from the current population that
survives from the generation by being copied into the new population. The genetic process
of sexual recombination is used to create new offspring programs from two parental pro‐
grams selected in proportion to fitness. The parental programs are typically of different sizes
and shapes. The offspring programs are composed of subexpressions from their parents and
are, typically, of different sizes and shapes as well. Intuitively, if two programs are some‐
what effective in solving a problem, then some of their parts probably have some merit. By
recombining randomly chosen parts of somewhat effective programs, the result may be the
production of new programs that are even fitter in solving the problem (Koza, 1992). Muta‐
tion serves the potentially important role of restoring lost diversity in a population by re‐
placing random subtrees of variable length with other random ones. Its purpose is to
prevent premature convergence to unsatisfactory solutions. After the operations of repro‐
duction, crossover and mutation are performed on the current population, the offspring
population replaces the old one. Each individual in the new population of programs is then
measured for fitness and the process is iterated for a predetermined number of generations.
This algorithm will produce populations of programs, which over many generations tend to
exhibit increasing average fitness in dealing with their environment. The individual com‐
puter program that performs best in the evolved generations is considered to be the fittest.

A multigene individual consists of multiple genes, each of which is a GP evolved tree. In multi‐
gene symbolic regression, each prediction ŷ of the output variable y is formed linearly by the
weighted output of each of the genes plus a bias term (Searson, 2009). Each tree is a function of
the input variables. Mathematically, a multigene regression model can be written as:

0 1ˆ 1 ... My d d tree d treeM= + ´ + + ´ (1)

where d0=bias (offset) term; d1, …, dM are the gene weights and M is the number of genes
comprising the current individual. The gene weights are automatically determined by a
least squares procedure for each multigene individual. The number and structure of the
trees is evolved automatically during a run (subject to user defined constraints) using the
training data. Hence, multigene symbolic regression combines the power of classical linear
regression with the ability to capture nonlinear behavior without needing to pre-specify the
structure of the nonlinear model. During a run, genes are acquired and deleted using a tree
crossover operator called two-point high level crossover. This allows the exchange of genes
between individuals and it is used in addition to the “standard” GP recombination opera‐
tors (Searson et al., 2010).
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GP has been implemented in hydraulic engineering in the last years with very good re‐
sults.  Babovic and Abbott (1997) applied GP to some representative problems, while Ba‐
bovic and Keijzer (2000) highlighted the usage of GP as a data mining tool in which the
human expert interprets models suggested by the computer, aiming at knowledge discov‐
ery.  Minns (2000) suggests that the symbolic expressions obtained from GP may be less
accurate  than the  ANN in  mapping the  experimental  data.  However,  these  expressions
may be more easily examined in order to provide insights into the processes that created
the data.  In the context of sediment transport,  Zakaria et al.  (2010) applied gene-expres‐
sion programming, which is similar to multigene symbolic regression, to predict the total
bed  material  load  for  rivers  using  dimensional  quantities  from  field  data,  and  outper‐
formed some of the traditional sediment load formulae. Azamathulla et al. (2010) utilized
GP in order to predict  the scour depth at  bridge piers  and obtained results  superior  to
those of ANNs and regression equations.

3. Sediment transport

Sediment load is the material being transported, and it can be divided into wash load and
bed material load. The wash load is the fine material of sizes, which are not found in appre‐
ciable quantities on the bed, and is not considered to be dependent on the local hydraulics of
the flow, but instead is dependent on the upstream supply. As a practical definition, the
wash load is considered to be the fraction of the sediment load finer than 0.062 mm. The bed
material load is the material of sizes, which are found in appreciable quantities on the bed
and it can be conceptually divided into the bed load (the portion of the load that moves near
the bed) and the suspended load (the portion of the load that moves in suspension), al‐
though the division is not precise. The consequent difficulty, however, to separate bed load
from turbulence dominated suspended load leads to a total load definition for the quantifi‐
cation of sediment transport in sand bed rivers. A dimensionless, commonly used measure
for sediment quantification is concentration by weight in parts per million (ppm), which is
the ratio of the sediment discharge to the discharge of the water-sediment mixture, both ex‐
pressed in terms of mass per unit time, here called Ct. This can be given as

610 s st
t

s st

Q
C

Q Q
r

r r
=

+ (2)

For practical reasons, the density of the water-sediment mixture is taken to be approximate‐
ly equivalent to the density of water. This approximation will cause errors of less than one
percent for concentrations less than 16000 ppm (Brownlie, 1981a).

The parameters governing a sediment transport process can be described by (Yalin, 1977)

( ), , , , , , ,t sq f V D d S g r r n= (3)
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Since the data-driven schemes are trained and validated with flume data but tested with
field data and in order to ensure dimensional consistency in the derived models, the input
and output variables should be dimensionless. Instead of applying dimensional analysis
and Buckingham’s π theorem, the independent variables of Eq. (3) will be introduced by
some common and well-known dimensionless variables that have physical meaning and
have been utilized for the creation of various sediment transport formulae. These variables
are directly related to quantities the engineer can readily visualize and measure; they are
listed as follows and summarized in Table 1.

Froude number, which gives a measure of the ratio of inertial forces to gravitational forces
of the flow. For the flume data, the depth will be the hydraulic radius of the bed which is
equivalent to the mean depth of an infinitely wide channel with the same slope, velocity and
bed friction as the flume, and is calculated according to the sidewall correction of Vanoni
and Brooks (1957). This elaboration is due to the fact that in flume experiments the sand cov‐
ered bed will generally be much rougher than the flume walls, and thus will be subjected to
higher shear stresses.

VFr
gD

= (4)

Reynolds number, which gives a measure of the ratio of inertial forces to viscous forces of
the flow

Re VD
n

= (5)

Shear Reynolds number, the physical meaning of which, is the ratio of particle size to the
thickness of the viscous sublayer δ, because δ is proportional to v/U*.

* * 50Re
U d
n

= (6)

Dimensionless shear stress or Shields number

( )
*

50s d
tt

g g
=

- (7)

Dimensionless grain diameter. It is a dimensionless expression for grain diameter that can
be derived by eliminating shear stress from the two Shields parameters (Shields, 1936); or
from the drag coefficient and Reynolds number of a settling particle, by eliminating the set‐
tling velocity; or dimensionally, with immersed weight of an individual grain, fluid density,
and viscosity as the variables (Ackers and White, 1973). The dimensionless grain diameter
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is, therefore, generally applicable to coarse, transitional, and fine sediments and is the cube
root of the ratio of immersed weight to viscous forces. Thus

( ) 1 3

50 2

1s
gr

g
d d

g g

n

é ù-
= ê ú

ê úë û
(8)

Dimensionless stream power. The power equation appears first to have been applied to
sediment transport by Rubey (1933) and later by Velikanov (1955). It was again suggested
by Knapp (1938), and was later introduced by Bagnold (1956) in a paper wherein the flow‐
ing fluid was regarded as a transporting machine. The available power supply, or time rate
of energy supply, to unit length of a stream is the time rate of liberation in kinetic form of
the liquid’s potential energy as it descends the gravity slope S. Denoting this power by Ω,
Bagnold (1966) derived the formula

gQSrW = (9)

The mean available power supply to the column of fluid over unit bed area, to be denoted
by ω, is therefore

gQS gDSV V
W W

r
w r tW
= = = = (10)

In order to define a dimensionless transport parameter that encapsulates Bagnold’s view of
sediment transport as a stream power related phenomenon, Eaton and Church (2011) devel‐
oped the following formula

( )
*

3 2
1sg d

ww
r g g

=
é ù-ë û

(11)

Dimensionless unit stream power. Yang (1972) reviewed the basic assumptions used in the
derivation of conventional sediment transport equations. He concluded that the assumption
that sediment transport rate could be determined from water discharge, average flow veloci‐
ty, energy slope, or shear stress is questionable. Consequently, the generality and applicabil‐
ity of any equation derived from one of these assumptions is also questionable. The rate of
energy per unit weight of water, available for transporting water and sediment in an open
channel with reach length x and total drop of Y, is

dY dx dY VS
dt dt dx

= = (12)
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Yang (1972) defines the unit stream power as the velocity-slope product and argues that
the rate of work being done by a unit weight of water in transporting sediment must be
directly related to the rate of work available to a unit weight of water.  Thus, total sedi‐
ment concentration or total bed material load must be directly related to unit stream pow‐
er.  While  Bagnold  (1966)  emphasized  the  power  that  applies  to  a  unit  bed  area,  Yang
(1972,  1973)  emphasized the power available  per  unit  weight  of  fluid to  transport  sedi‐
ments. The fact that sediment discharge or concentration is dominated by the unit stream
power  has  been  confirmed  by  Vanoni  (1978)  as  well.  While  Yang  divided  unit  stream
power VS by fall velocity ωs to obtain a dimensionless variable, Vanoni (1978) divided the
product VS by (gd50)1/2. Both d50 and ωs are commonly used for describing the size of sedi‐
ment particles. However, d50 can only reflect the physical size of sediment particles, while
ωs can also reflect the interaction between sediment particles and water, which is affected
by particle shape, water viscosity and temperature. On the other hand, the computation of
fall  velocity  is  problematic  and a  common source  of  errors.  The emerging variables  ex‐
pressing dimensionless unit stream power according to Yang and Vanoni are, respective‐
ly, the following

s

VS
w (13)

and

50

VS
gd (14)

No Dimensionless variables

1

2

3

4

5

6

7

8

Froude number, Fr

Reynolds number, Re

Shear Reynolds number, Re*

Dimensionless shear stress, τ*

Dimensionless grain diameter, dgr

Dimensionless stream power, ω*

Yang’s dimensionless unit stream power, VS/ωs

Vanoni’s dimensionless unit stream power, VS/(gd50)1/2

Table 1. Dimensionless variables assessed for the determination of the dominant ones

Yang (1977, 2003) argued that total sediment discharge correlates best with unit stream pow‐
er based on the plots of Figure 1. Nonetheless, equations based on the other hydraulic varia‐
bles have been used successfully as well.
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Figure 1. Relationships between total sediment discharge and (a) water discharge, (b) velocity, (c) slope, (d) shear stress, (e)
stream power, and (f) unit stream power, for 0.93 mm sand in an 8 ft wide flume [obtained from Yang (2003)]

4. Data preparation and determination of the inputs

Since data-driven techniques require a large number of quality data that represent a wide
spectrum of the considered problem in order to be trained efficiently, the database assem‐
bled by Brownlie (1981b) is utilized. Brownlie’s (1981b) database contains 7027 records (5263
laboratory records and 1764 field records) in 77 data files. These data were subjected to a
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screening process similar to the one Brownlie (1981a) used for the derivation of his formula.
Firstly, the measurements that were not verified by Brownlie, were incorrect or incomplete,
were removed. Secondly, because only flows with sand beds were considered, median parti‐
cle sizes were limited to values between 0.062 mm and 2.0 mm. To avoid samples with large
amounts of gravel or fine, cohesive material, geometric standard deviations were restricted
to values smaller than 5, and some other constraints were imposed in order to reduce side‐
wall effects, eliminate shallow water effects, and overcome accuracy problems associated
with low sediment concentration. In addition to these, only flume measurements with uni‐
form flows were considered and supercritical flows were removed due to the subcritical
flows that usually prevail in nature, in sand bed rivers. Finally, the measurements with spe‐
cific gravity outside the quartz density range were neglected as well as measurements that
had extreme temperature values. Wherever the temperature was missing, a value of 15 oC
was used for the calculation of kinematic viscosity. For the laboratory data, the sidewall cor‐
rection of Vanoni and Brooks (1957) was utilized to adjust the hydraulic radius to eliminate
the effects of the flume walls. If sediment concentration is correlated with velocity, however,
the sidewall correction will be of little use. These restrictions are shown in Table 2.

Restriction Reason

0.062 mm ≤ d50 ≤ 2.0 mm

σg ≤ 5

W/D > 4

R/d50 > 100

C > 10 ppm

Fr < 1

2.57 ≤ Specific gravity ≤ 2.68

Sand only

Eliminate bimodal distributions

Reduce sidewall effects (only for laboratory data)

Eliminate shallow water effects

Accuracy problems associated with low concentration

Subcritical flows

Natural sediments

Table 2. Restrictions imposed on data

Since measurements in natural streams and rivers are notoriously difficult, and sometimes
inaccurate, and the inclusion of field data to the training set would result in a model applica‐
ble only to rivers similar to those the data were obtained from, field data are excluded from
the training set. Consequently, the training set consists solely of laboratory flume data so
that the noise embedded in the training set is minimized. The testing set, however, compris‐
es exclusively field data in order to test the derived mathematical models in actual problems
that occur in nature. With this technique, the generated models will have general applicabil‐
ity to the data range for which they are trained. The final database consists of 984 laboratory
records and 600 field records that lie within the range of the laboratory records that consti‐
tute the training set, due to the data sensitive nature of DDM.

Further pruning of the outliers in the training dataset and the subsequent increase of data
homogeneity would be beneficial for the training procedure, however, this would be at the
expense of the amount of training data, which are already significantly reduced from the
screening process. Since most DDM methods perform well when the data has a distribution
that is close to normal (Bhattacharya et al., 2005), a log-transformation of the input and out‐
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put variables of all datasets was applied so that the distributions of the transformed varia‐
bles were closer to normal. Figure 2 depicts the distribution of the flume sediment
concentrations for the original and the log-transformed values.

 

Figure 2. Distribution of flume sediment concentration in ppm (a) before log-transformation and (b) after log-trans‐
formation

For the creation of training and validation sets the available 984 laboratory measurements
were placed in descending order with respect to sediment concentration and for every three
successive measurements that were picked for the training set, the fourth one was selected
for the validation set. This procedure was iterated for all the laboratory data and the
emerged training and validation sets comprise 739 and 245 measurements, respectively. The
600 field measurements constitute the test set. Table 3 shows some statistical measures of the
potential variables of these sets. Table 4 shows the datasets from which the data used in this
study were obtained and some representative values of each set. The abbreviations used in
Table 4 are the same with those Brownlie (1981b) used in his data compilation; consequent‐
ly, all the references to the original datasets may be obtained from that study.

Statistical measures dgr Fr Re* VS/ωs VS/(gd50)0.5 ω* τ* Ct
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Standard deviation

Skewness coefficient

2.531

33.931

10.654

6.968

1.705
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1.027

6.165
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27.910
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0.0017
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5.805
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0.648

1.726

11

11400

1239.3

1472.2

2.554

Table 3. Statistical measures of the train, validation and test sets
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Range of field variables

Code No.
Velocity (m/s) Depth (m) Slope (‰) Ct (ppm)

min max min max min max min max

BAL 25 0.226 1.093 0.091 0.256 0.44 2.1 19 3776

BEN 1 0.205 0.205 0.038 0.038 0.5 0.5 10.2 10.2

BRO 6 0.372 0.616 0.047 0.060 2.4 3.5 1200 5300

CHY 7 0.423 0.586 0.066 0.101 1.11 2 99.4 345

COS 12 0.403 0.503 0.140 0.156 0.45 1.01 10.954 102.08

DAV 69 0.244 0.792 0.076 0.305 0.248 2.67 11.3 1760

EPA 16 0.440 0.706 0.088 0.300 0.6 3.68 32 1017

EPB 19 0.265 0.762 0.148 0.304 0.262 1.6 45 1810

FOL 6 0.388 0.599 0.036 0.047 3.74 4.02 845 1848

FRA 11 0.361 0.450 0.129 0.161 0.938 1.693 39.979 166.34

GKA 27 0.302 0.635 0.032 0.124 1.8 6.401 205 3160

GUY 145 0.225 1.321 0.058 0.405 0.37 9.5 12 47300

JOR 7 0.401 0.557 0.070 0.105 1.12 1.67 95.8 306.7

KEN 6 0.412 0.799 0.047 0.109 1.7 4.2 550 2070

KNB 9 0.277 0.674 0.070 0.168 0.56 2.5 14 1740

LAU 10 0.326 0.671 0.076 0.221 0.8 2.1 550 4240

MCD 11 0.480 0.660 0.082 0.146 1.11 1.67 151.2 615.8

MPR 15 0.426 0.835 0.112 0.490 0.42 4.066 14.357 1091.1

MUT 17 0.131 0.505 0.029 0.102 0.5 7.5 11 10630

NOR 27 0.524 1.802 0.256 0.585 0.47 5.77 33 8870

OBR 45 0.214 0.953 0.088 0.165 0.57 3.23 17 1332.5

OJK 14 0.338 0.586 0.075 0.135 1.09 2.67 66.791 3355.7

PRA 25 0.254 0.701 0.076 0.305 0.282 2.87 11.63 560

SAT 1 0.332 0.332 0.193 0.193 0.44 0.44 66.877 66.877

SIN 58 0.277 0.597 0.066 0.117 1 4 35.7 1105

SON 1 0.465 0.465 0.043 0.043 6.7 6.7 6300 6300

STE 27 0.514 1.364 0.091 0.302 2.01 4.03 640 4615

STR 15 0.345 0.835 0.047 0.223 0.950 4.62 417 6300

TAY 11 0.348 0.878 0.077 0.160 0.89 2.09 13.979 2269.7

VAB 12 0.234 0.772 0.071 0.169 0.7 2.8 37 2500

VAH 6 0.319 0.558 0.176 0.238 0.642 1.303 31 1490

WLM 5 0.538 0.669 0.204 0.223 0.912 2.14 31.125 196.1

WLS 61 0.358 1.360 0.110 0.302 0.269 1.98 102 11700

WSA 195 0.165 0.555 0.034 0.170 1 2 11.3 587.19

WSB 36 0.444 0.578 0.108 0.176 1 2 55.8 379

WSS 13 0.377 0.388 0.073 0.075 1 1 53.8 94.6

ZNA 13 0.224 0.783 0.05 0.783 1.66 4.7 150 1975

Total 984 0.131 1.802 0.029 0.585 0.248 9.5 10.2 47300

(a)
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Range of field variables

Code No.
Velocity (m/s) Depth (m) Slope (‰) Ct (ppm)

min max min max min max min max

AMC 5 0.473 0.739 0.796 1.009 0.237 0.33 52 448

ATC 6 1.739 2.028 10.881 14.112 0.038 0.0513 102.374 567.343

CHO 26 0.846 1.597 2.103 3.414 0.115 0.254 149.826 1316.9

COL 58 0.617 1.266 1.134 3.371 0.107 0.407 35.6 768.7

HII 34 0.186 0.930 0.025 0.732 0.84 10.7 116.311 5638.6

MID 35 0.593 1.125 0.247 0.412 0.928 1.572 437.760 2269.2

MIS 5 1.756 2.423 11.400 17.282 0.082 0.134 178.001 511.707

MOU 91 0.366 1.350 0.040 0.438 1.36 3.15 26.763 2600.6

NIO 40 0.625 1.271 0.398 0.588 1.136 1.799 392 2750

RGC 8 0.805 1.518 0.923 1.512 0.53 0.8 674 2695

RGR 254 0.295 2.384 0.159 2.326 0.69 2.31 11 11400

RIO 38 0.624 2.384 0.332 1.463 0.74 0.89 463.65 4544.38

Total 600 0.186 2.423 0.025 17.282 0.038 10.7 11 11400

(b)

Table 4. (a) Range of laboratory variables, (b) Range of field variables

Data-driven techniques can be used for data mining since the only prerequisite for their function
is the determination of the input parameters without the need to predefine the structure of the
model and the degree of nonlinearity. The determination of the input parameters for the data-
driven schemes will be made with a tentative assessment through a trial-and-error procedure.
The correlation coefficient r has been employed in order to reveal any existing linear depend‐
ence in log-log plots between sediment concentration and any of the variables listed in Table 1
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where Y denotes sediment concentration and X denotes the independent variable. Table 5
shows the correlation coefficient for log-log plots for the flume and field data of Tables 4a and 4b.
From the techniques proposed, the trial-and-error process will be accomplished with the aid of
ANNs, due to their speed, and after the determination of the most promising combinations that
may serve as an input layer, the other data-driven techniques will be implemented as well.

VS/ω VS/(gd50)1/2 ω* τ* Fr Re Re* dgr

Flume data r

Field data r

0.862

0.730

0.885

0.687

0.754

0.601

0.681

0.587

0.759

0.492

0.463

0.148

-0.014

-0.144

-0.314

-0.405

Table 5. Correlation between sediment concentration and independent dimensionless variables of the flume and
field data of Table 4 in log-log plots
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The findings shown in Table 5 partially agree with the diagrams depicted in Figure 1, since
sediment discharge is best correlated with unit stream power and stream power both for
laboratory and for field data.

After the tentative assessment based on ANNs, of several input combinations, the most po‐
tent ones, which will be applied to the data-driven schemes, seem to be those listed in Table
6. These combinations include the independent variables of Eq. (3) and others that are rela‐
tively easily measured and commonly used in engineering. It is noteworthy that all combi‐
nations comprise dimensionless grain diameter and Froude number among others. Whilst
Froude number gives a measure of the ratio of inertial forces to gravitational forces of the
flow and is a commonly used variable in hydraulic engineering, the potential usage of di‐
mensionless grain diameter is twofold. Firstly, it introduces kinematic viscosity and median
grain diameter and secondly provides homogeneity in the input data. The necessity for the
provided homogeneity can be seen from combination (a) where shear Reynolds number,
which essentially includes dimensionless grain diameter, is included as well. The absence of
any of these two terms in combination (a) has detrimental effects in the predictive capability
of the generated model. The other variables for the combinations examined herein are those
that most sediment transport formulae rely heavily on, namely dimensionless unit stream
power, dimensionless stream power and dimensionless shear stress, and are best correlated
with sediment concentration as shown in Table 5. For combination (a) Yang’s dimensionless
unit stream power was preferred to Vanoni’s because, despite the fact that the calculation of
fall velocity may be problematic, it reduced significantly the sum of errors between calculat‐
ed and observed values. The other two combinations (b) and (c) comprise just three varia‐
bles because shear is embedded in dimensionless stream power and dimensionless shear
stress, respectively. Furthermore, it seems that there is no other potential input combination,
besides those listed in Table 6, since any other combination tested gave results that declined
by orders of magnitude.

Input combinations

a

b

c

dgr, Fr, Re*, VS/ωs

dgr, Fr, ω*

dgr, Fr, τ*

Table 6. Input combinations that will be applied to the data-driven schemes

5. Applications and results

The potential of training a DDM scheme solely with flume data and subsequently applying
it to a test set comprising exclusively field data has been shown in Kitsikoudis et al. (2012a,
2012b) where ANNs and symbolic regression were utilized, respectively, for the prediction
of sediment concentration in sand bed rivers. In these studies, however, the data were not
subjected to elaboration and screening, in order to demonstrate the potential modeling abili‐
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ty of this technique with crude data. As a result, input data were kept in large numbers, and
the generated models yielded very good results, better than those obtained from the com‐
mon sediment transport formulae. However, it is known that the incorporation of knowl‐
edge can be proved beneficial to the predictive capability of DDM schemes as long as this is
accomplished by transformation and elaboration of the fundamentals. Sediment transport
and open channel hydraulics rely heavily on empirical equations and ideal flows; therefore,
data transformation based on such assumptions does not guarantee the enhancement of the
predictive capabilities of the DDM scheme. Nevertheless, the sidewall correction of Vanoni
and Brooks (1957) was applied for the proper calculation of the shear stress in flume meas‐
urements and additionally the restrictions of Table 2 were imposed to the data for the re‐
moval of various biases resulting to a significantly reduced data amount. On the contrary, a
criterion for the initiation of motion has been omitted, due to the stochastic character of tur‐
bulence, and was left up to the DDM scheme to define the effective portion of the flow that
quantifies the transport rate.

Since every data-driven technique has its own syntax, the three possible input combinations
of Table 6 are tested individually with the aid of both ANNs and symbolic regression. The
evaluation of the modeled results Pi with respect to the observed ones Oi will be made on
the basis of the root mean square error (RMSE),
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coefficient of determination (R2) or Nash-Sutcliffe model efficiency coefficient (E) (Nash and
Sutcliffe, 1970),
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and discrepancy ratio (DR). The latter is the percentage of calculated concentrations that lie
between one half and two times the respective measured concentrations.

5.1. ANNs application

This study was implemented in MATLAB with the aid of the neural network toolbox (Demuth
et al., 2009). Since the usage of Levenberg-Marquardt training function gave the best results in a
similar study in Kitsikoudis et al. (2012a), it was utilized for training in this application as well.
Due to the importance of the initial values of the synaptic weights in the search for local mini‐
ma of the error function, which is the mean square error between calculated and observed val‐
ues, a MATLAB code was written, which determines the most efficient ANN within 5000
training executions, for each network architecture, with random initial weights for every repe‐
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tition. The most efficient ANN is taken to be the one that yields only positive sediment concen‐
trations, in order for the results to have physical meaning, and after the training provides the
highest DR in the test set. For this evaluation, DR is preferred over RMSE, because the latter em‐
phasizes on large concentrations. Models that derived slightly worse results than others, but
had much simpler structure were preferred due to the principle of parsimony. Figures 3-5 de‐
pict the scatter plots of the best derived models, for each input combination of Table 6, for the
field data of the test set. These models that perform best are described in Table 7. Table 8 shows
the best models and their performance measures for the training, validation and test sets. Final‐
ly, Table 10 shows a comparison between the ANN induced models and some of the common‐
ly used sediment transport functions for the rivers data constituting the test set. It should be
mentioned that several of these formulae are calibrated with part of the data (especially the
Brownlie formula) that are used for the comparison and despite that significant advantage they
still generate inferior results to those of the ANNs.

Input combination from Table 6
Network architecture (neurons in input-hidden-

output layers)

ANN (a) a 4-5-1

ANN (b) b 3-6-1

ANN (c) c 3-11-2-1

Table 7. Best performing models for each possible input combination

Figure 3. Scatter plot for the field data of the test set, of measured sediment concentration and computed from ANN,
based on input combination (a)
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Figure 4. Scatter plot for the field data of the test set, of measured sediment concentration and computed from ANN,
based on input combination (b)

Figure 5. Scatter plot for the field data of the test set, of measured sediment concentration and computed from ANN,
based on input combination (c)
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DR 0.5-2 (%) DR 0.25-4 (%) RMSE R2

A
N

N
 (a

) Training set

Validation set

Test set

85.12

82.86

72.50

98.51

97.55

92.33

722.20

936.72

1168.76

0.9213

0.5582

0.3687

A
N

N
 (b

) Training set

Validation set

Test set

82.81

85.71

71.67

97.56

95.92

93.17

734.13

884.41

1202.69

0.9187

0.6062

0.3315

A
N

N
(c

) Training set

Validation set

Test set

84.84

84.08

70.67

98.24

98.37

91.33

509.42

872.36

1221.72

0.9608

0.6169

0.3102

Table 8. Performance measures of the optima ANNs

From Table 8 can be inferred that any of the three combinations listed in Table 6 has its own
merit and that sediment transport can be quantified by physical quantities that can be either
vectors or scalars.

5.2. Symbolic regression application

The basic computation tool for the implementation of symbolic regression is provided by
GPTIPS (Searson, 2009), which is an open source MATLAB toolbox. Since every problem has
its own peculiarities, proper adjustments must be made to the GPTIPS parameters in order
to obtain good results. The most important parameters are the population size, the number
of generations, the using functions, the maximum number of genes and the maximum tree
depth. Searson et al. (2010) have found that enforcing stringent tree depth restrictions often
allows the evolution of relatively compact models that are linear combinations of low order
nonlinear transformations of the input variables. After several runs, only input combination
(b) gave results superior to those of the classical formulae. The GPTIPS derived formula for
this combination is the following

( ) ( )0.4* 3
31542 0.4794 313.6

6.218 1
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æ ö
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è ø

(18)

Figure 6 depicts the scatter plot of measured and calculated from Eq. (18) sediment concentra‐
tions for the field data of the test set, whilst Table 9 and Table 10 show its performance for the
training, validation and testing set, and the comparison with other formulae, respectively.
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Figure 6. Scatter plot for the field data of the test set, of measured sediment concentration and computed from sym‐
bolic regression, based on input combination (b)

DR 0.5-2 (%) DR 0.25-4 (%) RMSE R2

Training set

Validation set

Test set

68.20

66.53

71.00

84.84

85.31

91.33

632.21

964.70

1218.12

0.9397

0.5315

0.3143

Table 9. Performance measures of symbolic regression, based on combination (b)

DR 0.5-2 (%) DR 0.25-4 (%) RMSE R2

ANN (a) 72.50 92.33 1168.76 0.3687

ANN (b) 71.67 93.17 1202.69 0.3315

ANN (c) 70.67 91.33 1221.72 0.3102

Symb. regression (b) 71.00 91.33 1218.12 0.3143

Ackers & White 58.33 88.67 1405.38 0.0872

Brownlie 68.33 91.00 1274.44 0.2494

Engelund & Hansen 69.67 92.33 1244.83 0.2838

Karim & Kennedy 64.83 91.50 1341.34 0.1685

Molinas & Wu 52.83 84.83 1423.06 0.0641

Yang 49.50 83.33 1403.07 0.0902

Table 10. Comparison of ANNs of the input combinations (a), (b) and (c) and Eq. (18), derived from symbolic
regression for the combination (b), with sediment transport formulae based on the river data of the test set
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The results obtained from ANNs for all the combinations are superior to those of the classi‐
cal sediment transport formulae in terms of DR, RMSE and R2. Combination (a) performed
best in all evaluation measures, besides the second DR criterion in the range 0.25-4 where
combination (b) gave better results. The third combination came up third with respect to all
evaluation measures. However, these results by no means can be considered conclusive,
since it is essentially unknown whether they are the best results derived from the ANN or
just results obtained from the trapping in a local minimum of the minimization process in
the network’s training algorithm. From the results generated from symbolic regression, only
combination (b) managed to surpass the classical sediment transport functions. The other
two combinations gave results inferior to those of Engelund and Hansen and Brownlie for‐
mulae, but superior to those of the others. In addition, symbolic regression derived its best
results without utilizing the log-transformation of the input data. Regarding the other sedi‐
ment transport functions, the formula of Engelund and Hansen performed best. The small
values of the coefficient of determination R2 in Table 10 reflect the difficulty of predicting
sediment transport rates in natural streams and rivers, due to random turbulent bursts that
accentuate the stochastic nature and exacerbate the complexity of the problem.

Although these results cannot be considered conclusive, it seems that the ANNs yield better
results. GPTIPS sometimes (usually when only a few input variables are involved) lags be‐
hind a neural network model in terms of raw predictive performance, but the equivalent GP
models are often simpler, shorter and may be open to physical interpretation (Searson,
2009). This is partially due to the fact that ANNs are much faster than the time consuming
GP and for given time they can run multiple times comparing to GP. Moreover, since the
testing set comes from a database with different statistical distributions than the one from
which the training set originates, the exploration of as many as possible local minima of the
training function may prove beneficial to the training process. ANNs have this property,
whilst GP is based on a stochastic concept seeking the global minimum. This may be one
reason for the superiority of ANNs in this study, where the training data comprise flume
measurements, whilst the testing data consists of field measurements.

6. Conclusions

This study utilized two widely used data-driven techniques, namely ANNs and symbolic
regression, in a novel way since the data used for training and those used for testing came
from datasets with different statistical distributions. This difference is owned to the fact that
the training and validation set comprises exclusively laboratory flume data, while the test‐
ing set consists solely of field data. Based on this concept, the inclusion of noise emanated
from the field measurements will not be embedded in the training data and additionally the
generated models will have general applicability since the inclusion of field data in the
training set would confine them to the specific streams from which the data were obtained.
The determination of the input parameters was accomplished by a tentative assessment of
some of the widely used dimensionless parameters in sediment transport and open channel
hydraulics. This assessment showed that three combinations had the potential to serve as in‐
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puts and were involved in this application, in which they all yielded very good results, bet‐
ter than those obtained from the commonly used formulae on the basis of root mean square
error and the ratio of computed to measured transport rates. Unit stream power, stream
power, and shear stress were the dominant independent variables of the three combinations,
respectively, and the results have shown that each one, of these widely used variables in the
context of sediment transport, has its own merit. The results generated from the ANNs were
better from those obtained from symbolic regression; however, the explicit equation that
was derived from the latter can be more easily interpreted. Finally, the results obtained in
this study may enhance the confidence in using data-driven techniques, despite their black-
box nature, because, in order to perform well in a dataset from a different system from the
one they were trained, the induced equations must have physical meaning.

Notation

The following symbols are used in this chapter:

Ct = sediment concentration by weight in parts per million (ppm)

D = mean flow depth (m)

Q = water discharge (m3/s)

Qst = sediment discharge (m3/s)

R = hydraulic radius (m)

S = energy slope

T = water temperature (oC)

u* = shear velocity (m/s)

u*c = critical shear velocity (m/s)

V = mean flow velocity (m/s)

W = channel width (m)

d = grain diameter (m)

d50 = median grain diameter (m)

f = friction factor

g = gravitational acceleration (m/s2)

γ = specific weight of water (N/m3)

γs = specific weight of sediment (N/m3)

ν = kinematic viscosity of water (m2/s)
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ρ = density of water (kg/m3)

ρs = density of sediment (kg/m3)

σg = geometric standard deviation of bed particles [(d84/d50 + d50/d16)/2]

τ = shear stress [kg/(m.s2)]

τ* = dimensionless shear stress

ω = stream power (kg/s3)

ω* = dimensionless stream power

ωs = settling or fall velocity of sediment (m/s)

Appendix A

In flume experiments, the sand covered bed will generally be much rougher than the flume
walls, and thus will be subjected to higher shear stress. Separation of the shear force exerted
on the bed from that on the lateral boundaries was first proposed by Einstein (1950). The
line of analysis pursued as follows is that proposed by Johnson (1942) and modified by Va‐
noni and Brooks (1957). The principal assumption is that the cross-sectional area can be div‐
ided into two parts, Ab and Aw, in which the streamwise component of the gravity force is
resisted by the shear force exerted in the bed and walls, respectively. It is further assumed
that the mean velocity and energy gradient are the same for Ab and Aw, and that the Darcy-
Weisbach relation can be applied to each part of the cross section as well as to the whole, i.e.

2 8 88 b w

b b w w

gA gAgAV
S fp f p f p

= = = (19)

in which, p = the wetted perimeter; and the subscripts b and w refer to the bed and wall
sections, respectively. For a rectangular channel p=2D+W; pw=2D; pb=W. Introducing the
geometrical requirement A=Ab+Aw into Eq. (19) results in

( )2
b w

Df f f f
W

= + - (20)

The wall friction factor fw is further related to the ratio of Re/f, where Re=4VR/ν and f can be
calculated from the experimental data. This relationship, which was originally given as a
graph of fw against Re/f by Vanoni and Brooks (1957), can also be described by the function

( )
10.120 Re 39wf f
-

é ù= -ê úë û
(21)
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which is obtained by curve fitting (Cheng and Chua, 2005). Finally, fb is calculated from Eq.
(20) and Rb = Ab/pb from Eq. (19). Rb is consequently used for the calculation of the bed shear
velocity and bed shear stress.

Despite its several obvious deficiencies (division of the cross section into two noninteracting
parts, determination of friction factors for section components on the basis of a pipe friction
diagram, use of the same mean velocity for each subsection, etc.), the side-wall correction
procedure appears to yield fairly reliable estimates of the friction factors for flow over sand
beds with no flume walls present (Vanoni, 2006).

Appendix B

For the calculation of particle fall velocity in a clear, still fluid, van Rijn (1984) suggested the
use of the Stokes law for sediment particles smaller than 0.1 mm

21
18
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r n
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= (22)

For suspended sand particles in the range 0.1 to 1 mm, the following type of equation, as
proposed by Zanke (1977), can be used
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For particles larger than about 1 mm, the following simple equation can be used (van Rijn, 1982)
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Appendix C

Ackers and White formula: Ackers and White (1973) applied dimensional analysis to ex‐
press  the  mobility  and  transport  rate  of  sediment  in  terms  of  some  dimensionless  pa‐
rameters.  It  has  been shown that  the transport  of  fine materials  is  best  related to  gross
shear,  shear  velocity  being  the  representative  variable,  and that  the  transport  of  coarse
materials  is  best  related  to  the  net  grain  shear,  mean  velocity  being  the  representative
variable.  The  following equations  do not  necessarily  apply  in  an upper  phase  of  trans‐
port.  However,  it  was  shown  that  the  following  relationships  are  not  sensitive  to  bed
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form; they apply to plain, rippled, and duned configurations. Their mobility number for
sediment is

( ) ( )
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(25)

Coefficients C, A, m and n are related to the dimensionless grain diameter dgr based on best-
fit curves of laboratory data with sediment sizes greater than 0.04 mm and Froude numbers
less than 0.8. They are shown in Table 11.
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Finally, they related the bed material load to the mobility number as follows
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where X = rate of sediment transport in terms of mass flux per unit mass flow rate

dgr ≥ 60 1 < dgr < 60

n = 0.00

A = 0.17

m = 1.50

C =0.025

n = 1.00-0.56logdgr

A = 0.23dgr -0.5+0.14

m = 9.66dgr -1+1.34

logC = -3.53+2.86logdgr-(logdgr) 2

Table 11. Coefficients of the Ackers and White formula

Brownlie formula: The Brownlie (1981a) relations are based on regressions of over 1000 ex‐
perimental and field data points. For normal or quasi-normal flow, the transport relation
takes the form

( )
0.3301
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cf = 1 for laboratory flumes and 1.268 for field channels.

Engelund and Hansen formula: Using Bagnold’s stream power concept and the similarity
principle, Engelund and Hansen (1967) established the following sediment transport formula

5 2' 0.1f f q= (33)

where

2
2' gDSf
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= (34)

( ) 3
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r r r
=

-
(35)

( ) 50s d
tq

g g
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- (36)

where qt = total sediment discharge by weight per unit width. Strictly speaking, the Engelund
and Hansen formula should be applied to those flows with dune beds in accordance with the
similarity principle. However, many tests have shown that it can be applied to the upper flow
regime with particle size greater than 0.15 mm without serious deviation from the theory.

Karim and Kennedy formula: Karim and Kennedy (1990) applied nonlinear multiple regres‐
sion analysis to derive relations among flow velocity, sediment discharge, bed form geome‐
try, and friction factor of alluvial rivers. A database comprising 339 river flows and 608 flume
flows was used in their analysis. The obtained sediment load predictor is given by
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( ) ( ) ( )
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where qs =volumetric total sediment discharge per unit width.

Molinas  and  Wu formula:  This  empirical  relation  is  based  on  Velikanov’s  gravitational
power theory,  which assumes that  the power available in flowing water is  equal  to the
sum of the power required to overcome flow resistance and the power required to keep
sediment in suspension against  gravitational  forces.  Molinas and Wu (2001) argued that
the predictors of  Ackers and White,  Engelund and Hansen,  and Yang have been devel‐
oped with flume experiments  representative  of  shallow flows and cannot  be  applied to
large rivers having deep flow conditions.  Motivated by the need for having a total  bed
material load predictor for application to large sand bed rivers, they used stream power
and energy considerations  together  with  data  from large  rivers  (e.g.,  Amazon,  Atchafa‐
laya, Mississippi, Red River), to obtain an empirical fit for the total bed material load con‐
centration in ppm

( ) 1.51430 0.86

0.016tC
+ Y Y

=
+ Y

(38)

where Ψ = universal stream power, which is defined as

( ) ( )

3

2
501 logs s

V

g D D dr r w
Y =

é ù- ë û
(39)

One advantage of this approximation is that the energy slope does not have to be measured
directly, which is always a challenge in large alluvial rivers. On the other hand, since Moli‐
nas and Wu (2001) do not mention how the wash load was separated from the bed material
load and the same large river data were used both to develop and to test their formulation,
Eq. (38) might overestimate bed material load concentrations when applied to other large
rivers not included in the calibration (Garcia, 2008).

Yang formula: To determine total sediment concentration, Yang (1973) used Buckingham’s
π theorem and the concept of unit stream power, which is given by the product of mean
flow velocity and energy slope. The coefficients in Yang’s equation were determined by run‐
ning a multiple regression analysis for 463 sets of laboratory data. The equation obtained is
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The critical dimensionless unit stream power VcrS/ω is the product of the dimensionless crit‐
ical velocity Vcr/ω and the energy slope S, where
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