
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



857 

 
30 

 
 

On Direct Adaptive Control for Uncertain Dynamical 

Systems - Synthesis and Applications 
 

 

Simon Hsu-Sheng Fu and Chi-Cheng Cheng 

 

1. Introduction 

In the rapidly growing research on nonlinear control theory, much work has 

been focused on the problems of uncertainties exist in the system model or sys-

tems with unknown disturbances and nonlinearities. A direct adaptive control 

framework for adaptive stabilization, disturbance rejection, and command fol-

lowing of multivariable nonlinear uncertain systems with exogenous distur-

bances, where the bounded disturbances were assumed to be a known vector, 

has developed in (Haddad & Hayakawa, 2002) and guarantees partial stability 

of the closed-loop system. However, it is worth to note that the disturbances 

may be the result of unmodeled dynamics, noisy measurements, parameter 

uncertainty, or non dissipative forces affecting the plant, and most of time not 

available for the control design. 

There are considerable amount of literatures published the area of adaptive 

control synthesis for uncertain systems. However, the application of Lyapunov 

stability theory along this track still shown relative limited results, especially 

for discrete-time systems. The major difficulty encountered concerns the proof 

of the global stability of the overall adaptive control loop. The main reason is 

that the Lyapunov candidate cannot easily be constructed, such that the nega-

tive definiteness of the Lyapunov difference could not easily shown (Zhao & 

Kanellakopoulos, 1997). 

For direct adaptive control gains are adjusted without explicit parameter iden-

tification. In this Chapter, we are investigating the problem of direct adaptive 

control of uncertain systems, where both discrete-time and continuous-time 

systems are considered. For continuous time case, motivated by the result of 

robust stabilization of nonlinear systems affected by time-varying uniformly 

bounded affine disturbances (Loria et al., 1998), where a passive-based control 

framework has formulated and achieved global uniform convergence. Facili-

tating the direct adaptive scheme, our framework guarantees that the closed-

Source: Manufacturing the Future, Concepts - Technologies - Visions , ISBN 3-86611-198-3, pp. 908, ARS/plV, Germany, July 2006, Edited by: Kordic, V.; Lazinica, A. & Merdan, M.

O
p
e
n
 A

c
c
e
s
s
 D

a
ta

b
a
s
e
 w

w
w

.i
-t

e
c
h
o
n
lin

e
.c

o
m



Manufacturing the Future: Concepts, Technologies & Visions 858

loop system is Lyapunov stable under the assumption of matched distur-

bances. In addition, the asymptotic stable of solution x  with respect to origin 

can be proved. 

There were considerable amount of discrete-time adaptive results have been 

published. For example, discrete-time neural net adaptive controller was de-

picted in (Levin & Narendra, 1996), the MIT rule for adaptive control refers to 

the combination of model reference control together with a gradient type pa-

rameter update law (Mareels & Polderman, 1996), and a stable and convergent 

direct adaptive control has been developed in (Johansson, 1989). An 

ARMARKOV model for MIMO uncertain systems achieved adaptive distur-

bance rejection and traction (Venugopal & Bernstein, 1999). In addition, Shi-

bata et al. proposed a simplified adaptive control scheme based on Lyapunov 

analysis while the system satisfies the so called almost strictly positive real 

(ASPR) condition (Shibata et al., 1996). Bar-Kana (Bar-Kana, 1989) also used 

ASPR assumption and presented a robust discrete-time adaptive algorithm 

subjected to the condition of BIBO and the boundedness of the residual term. 

Guo (Guo, 1997) examined the global stability for a class of discrete-time adap-

tive nonlinear control systems and proved critical stability for least square-

based adaptive control systems. 

Furthermore, several most recent works were published and the results were 

close to our results presented in this Chapter. A direct adaptive control for 

reachable linear discrete-time systems with exogenous disturbances (Fu & 

Cheng, 2003, a) and  2l  disturbances (Fu & Cheng, 2003, b), direct adaptive 

control application to a class of linear discrete-time systems, where the nomi-

nal system A  is known and the deviation of gc BKAA =−  is bounded, were 

investigated by (Fu & Cheng, 2004, a); (Fu & Cheng, 2004, b), and direct adap-

tive control for a class of nonlinear normal discrete-time systems were pre-

sented in (Fu & Cheng, 2004, c), all results above satisfied Lyapunov stability 

theory. In addition, robust direct adaptive control of nonlinear uncertain sys-

tems with unknown disturbances were proposed in (Fu & Cheng, 2005, a); (Fu 

& Cheng, 2005, b). However, these solutions were limited by the hypothesis of 

trajectory dependence. In this paper we successfully release this limitation and 

obtain stability results, such that the discrete-time system stability theory (Hitz 

& Anderson, 1969) can be applied. 

The contents of this paper are as follows. In Section 2, we present the adaptive 

control framework for uncertain continuous-time nonlinear systems with 

matched disturbances and discrete-time systems with exogenous and  2l  dis-
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turbances. Next, several numerical examples are presented in Section 3, which 

include van der Pol oscillator, one linked rigid robot, and active suspension 

systems, to demonstrate the efficacy of the proposed frameworks. Finally, we 

illustrate the results of this paper and future research in Section 4. 

2. Adaptive Control for Uncertain Continuous-Time Nonlinear Systems 
with Matched Disturbances 

Our main concern in this paper is to deal with uncertain nonlinear systems 

perturbed by affine disturbances. We begin by considering the problem of 

characterizing adaptive feedback control laws for nonlinear uncertain MIMO 

systems G given by 

 

))(,())(())(())(())(( txtwtxJtxutxGtxfx ++=&  (1)

 

where n
Rtx ∈)(  is the state vector, 0)0( xx = , mn

RRtu →:)(  is the control vec-

tor, nn
RRf →:  characterize system dynamics with uncertain entries, and 

0)0( =f . mnn
RRG

×→:  and dnn
RRJ

×→:  are the input and disturbance 

weighting matrix functions, respectively, with unknown entries. In addition, 

the disturbance vector ddn
RRRw

×→×:  satisfies Assumption 2.1 illustrated 

next. 

 

Assumption 2.1 (Loria et al., 1998) 

The vector function ))(,( txtw  is bounded, and can be characterized by 

 

21))(,())(,( θθ +≤ txtwtxtw  (2)

 

where d
R∈1θ  and d

R∈2θ  are unknown constants, and ddn
RRRw

×→×:   is a 

known continuous matrix function. 

 

It is important to note that the disturbance ))(,( txtw  may be the result of un-

modeled dynamics, noisy measurement, parameter uncertainty or exogenous 

disturbances. For the nonlinear system G, we assume that the existence and 

uniqueness of solutions are satisfied and zero-state observability of (1) while 
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0))(,( ≡txtw . Furthermore, assume there exits sn
RRF →:  with F(0)=0, 

sn

g RK ×: , and mmn
RRG

×→:  such that 

 

))(())(())(())(())(( txFKtxGtxGtxftxf gc +Δ  (3)

 

is globally asymptotically stable, where a scalar function RRV
n

s →:  is 

Lyapunov function, and tn
RR →:l  . Then 

 

.:)),(())(()()( nT

cs RxtxtxxfxV ∀−=′ ll  (4)

 

Theorem 2.1 (Fu & Cheng, 2005) 

Consider the nonlinear uncertain system G given by (1) is zero state observable 

with 0))(,( ≡txtw , where the disturbances ))(,( txtw  satisfy Assumption 2.1. In 

addition, let that the zero solution of (1) defined in (3) is globally asymptoti-

cally stable. Furthermore, there exists matrix functions dm
R

×Ψ :  and  
mmn

RRJ
×→: , such that the matching condition )()()( xJxJxG =Ψ  is satisfied. 

Then the adaptive feedback control law 
 

),ˆˆ),()(()()()()()( 21 θθ +Φ+= txwtxJxFtKxGxu  (5)

 

where nm
RtK

×:)( , dm
Rt

×Φ :)( , 111
ˆ~

θθθ −Δ , and 222
ˆ~

θθθ −Δ . Now, let the design 

matrices 01 >P , 02 >P , 01 >Q , 0>Y , 02 >Q , and 0>Z  with the update laws 
 

,)()()()(
2

1
1 YxFxVxGxGQK

TT

s

TT ′−=&  (6)

 

,)ˆˆ),()(()()(
2

1
212 ZtxwxVxGxJQ

TT

s

TT θθ +′−=Φ&  (7)

And 

),()(),(
2

1ˆ 1

11 xVxJtxwP
T

s

TT ′= −θ
&

 (8)

),()(
2

1ˆ 1

22 xVxJP
T

s

T ′= −θ
&

 (9)
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where 
x

xV
xV s

s
∂

∂
Δ′

)(
)( , guarantees that the closed-loop system, given by (1) and 

(5) to (9), is Lyapunov stable. In addition, if (4) is applied and let the output 

)()( xty lΔ , then 0)( →xl  as ∞→t . Furthermore, the asymptotic stable solution 

x  with respect to origin will arrive when 0)()( >xx
T ll .  

 

Proof 

To show Lyapunov stability of the closed-loop system (1) and (5) to (9), we 

first consider the Lyapunov function candidate 
 

222111

11

2

11

1

21

~~~~
)()(

)()()(

),,,,(

θθθθ

θθ

PPZtrQ

KKYKKtrQxV

KxV

TTT

T

ggs

++Ψ−ΦΨ−Φ+

−−+

=Φ

−−

−−  (10)

 

where )(xVs  satisfies the condition of (4) and tr  represents trace operator. 

Note that the Lyapunov candidate 0)0,0,,,0( =Ψ−gKV  and 0),,,,( 21 >Φ θθKxV  

for all )0,0,,,0(),,,,( 21 Ψ−≠ gg KKKx θθ . In addition, ),,,,( 21 θθΦKxV  is radially 

unbounded. Furthermore, ),,,,( 21 θθΦ• KV  and K are continuous in x  for 0≥t . 

The corresponding Lyapunov derivative is given by  
 

)()(   

~ˆ2
~

),()()(
~

),()()( 

)ˆˆ),(()()()()(2

~ˆ2)())(()()(

)(2 )]ˆˆ),(()(

)()()()[()()()( 

)(2

)(2 
~~

2
~~

2

)]),()(()()()()[(

22221

21

11

1

111

11

221

11

2

11

1222111

21

xfxV

PtxwxJxVtxwxJxV

txwxJxGxVKYKKtrQ

PxFKKxGxGxV

ZtrQtxwxJ

xKFxGtuxGxVxfxV

ZtrQ

KYKKtrQPP

txwxJtuxGxfxVV

cs

T

ss

s

T

g

T

gs

T

ss

T

T

g

TT

s

′=

+′−′−

+Φ′+−+

+−′+

ΦΨ+Φ++Φ−

−′+′=

ΦΨ+Φ+

−+++

+++′=

−−

−−

−−

−−

θθθθ

θθ

θθ

θθ

θθθθ

θθ

&

&

&

&

&

&&&

&

(11) 

 

Next, since the condition (4) is satisfied, the resulting Lyapunov derivative 

along the system trajectory is 
 

.0)()(),,,,( 21 ≤−=Φ xxKxV
T ll& θθ  (12)
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This completes the proof. Furthermore, if 0)( →xl  as ∞→t , and the asymp-

totic stable solution x  with respect to origin will arrive when 0)()( >xx
T ll . 

We further extend the above result to the case where the entries of the system 

matrix and the input matrix are uncertain. Note that the adaptive control law 

(5) does not require explicit knowledge on the desire gain matrix gK , distur-

bances ))(,( txtw , system dynamics )(xf , and matching matrix Φ .  

Theorem 2.1 also requires that the zero solution to (3) is globally asymptoti-

cally stable. Next, we consider the case where )(xf , input weighting matrix 

BxG =)( , and disturbance weighting matrix DxJ =)(  are uncertain. Specifi-

cally, given as the following 
 

),,()()( txDwtBuxfx ++=&  (13)

 

where ))(,( txtw  satisfies Assumption 2.1, and  
 

),()()( xFBKxfxf gc +Δ  (14)

 

is global asymptotically stable. Next, let mm

s RB
×:  is the sign definite matrix 

with unknown entries; such that (Fu & Cheng, 2004) 
 

T

smnm BB ],0[ )( −×=
⎪⎩

⎪
⎨
⎧

<−

>
Δ

−×

−×

0,],0[

0,],0[

)(

)(

0

s

T

mmnm

s

T

mmnm

BI

BI
B  (15)

 

and 
 

,  , 2

ssBs BBUUDB =Δ  (16)

 

Where U  is orthogonal and BD  is real diagonal. Similarly, assume that 
dd

s RD
×:  is the sign definite matrix with unknown matrix; that is  

 

T

sdnd DD ],0[ )( −×=
⎪⎩

⎪
⎨
⎧

<−

>
Δ

−×

−×

0,],0[

0,],0[

)(

)(

0

s

T

ddnd

s

T

ddnd

DI

DI
D  (17)

and 
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,  ,ˆˆ 2

ssDs DDUDUD =Δ  (18)

 

Corollary 2.1 

Consider the nonlinear uncertain system given by (13) is zero state observable. 

Let B  and D  satisfy (15) and (17), respectively. Then, the adaptive feedback 

control law 
 

),ˆˆ),()(()()()( 21 θθ +Φ+= txwtxFtKxu  (19)

 

with the update laws 
 

,)()(
2

1
0 YxFxVBK

TT

s

T ′−=&  (20)

 

,)ˆˆ),()(()(
2

1
210

ZtxwxVxB
TT

s

T
θθ +′−=Φ&  (21)

 

and 
 

),(),(
2

1ˆ
01 xVDtxw

T

s

TT ′=θ
&

 (22)

 

),(
2

1ˆ
02 xVD

T

s

T ′=θ
&

 (23)

 

guarantees that the closed-loop system, given by (13), (19), and (20) to (23) is 

Lyapunov stable. Furthermore, if (14) is applied and let the output )()( xty lΔ , 

then 0)( →xl  as ∞→t . Furthermore, the asymptotic stable solution x  with 

respect to origin will arrive when 0)()( >xx
T ll . 

 
Proof 

The result is a direct extension of Theorem 2.1. Let mIxG =)(  and mIxJ =)(ˆ , 

and the matching condition be DxJB =Ψ)(ˆ . In addition, let 01 >P , 02 >P , 

01 >Q , 02 >Q ,  0>Y , 0>Z , and assume that 1

1

1

1 ),(),( −− = PtxwtxwP
TT , and let 
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1Q  be replaced by 
1

1

−

sBq , 2Q  be replaced by 
1

2

−

sBq , 1P  be replaced by 

sDq3 , and 2P  be replaced by sDq4 , where 0>iq , 4,3,2,1=i  are arbitrary real. 

Next, let Yq1  and Zq2 be replaced by  Y  and Z  respectively. Finally, let 

143 == qq , then the resulting update laws (20) and (21) are obtained. 

 

Note that the frameworks of Theorem 2.1 and Corollary 2.1 can extend to lin-

ear systems such that Axxf =)(  and xAxf cc =)( , where gc BKAA +=  is an as-

ymptotically stable matrix. Also, applied to nonlinear time-varying uncertain 

systems given by 
 

))(,()),(())(()),(()),(( txtwttxJtxuttxGttxfx ++=&  (24)

 

and tracking problems given by 
 

))(,())(())(())(())(( tetwteJteuteGtefe ++=&  (25)

 

where )()()( trtxte d−=  is tracking error, and )(trd  is reference. Next, we pre-

sent the discrete-time counterpart of direct adaptive control for Uncertain 

Nonlinear Systems given as Section 3. 

3. Adaptive Control Designs for Nonlinear Uncertain Discrete-Time 
Systems 

3.1 Discrete-Time Systems with Disturbance Measurement 

In this section, we extend the results of Theorem 2.1 to nonlinear uncertain 

discrete time MIMO systems with disturbances measurement given by 

 

),())(())(())(())(()1( kwkxJkxukxGkxfkx ++=+ (26) 

which is zero state observable when 0)( ≡kw , where n
Rkx ∈)(  is the state vec-

tor,  mn
RRku →:)(  is the control vector,  nn

RRf →:  characterize system dy-

namics with uncertain entries, and 0)0( =f . mnn
RRG

×→:  and dnn
RRJ

×→:  

are the input and disturbance weighting matrix functions, respectively. In ad-
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dition, let the disturbance vector ddn
RRRw

×→×:  is measurable, then the 

feedback law given by 
 

),()())(())(()())(())(( kwkkxJkxFkKkxGkxu Φ+=  (27)

 

where nm
RkK

×:)( , dm
Rk

×Φ :)( , and sn
RRF →: . 

 

Theorem 3.1 (Fu & Cheng, 2005) 

Consider the nonlinear discrete time MIMO systems with exogenous distur-

bances given by (26). Next, assume there exist dnn RRJ ×→:ˆ  and dm
R

×Ψ :  , 

such that the matching condition )()(ˆ)( xJxJxG =Ψ  is satisfied. Furthermore, 

let mn

u RRP
×→ 1

1 : , mmn

u RRP
×→:2 , dmn

uw RRP
×→: , dn

w RRP
×→ 1

1 : , and 
ddn

w RRP
×→:2 , the Lyapunov function sV  is defined as 

 

),()()()()()()()(

)()()()()())(())1((

21

21

kwxPkwkwxPkwxPxu

xuxPxuxuxPxfVkxV

w

T

wuw

T

u

T

uss

+++

++Δ+
 (28)

 

In addition, let RRR
dn →×Γ :  is a positive scalar function, pn

RR →:l  is out-

put vector, then 
 

).,()()()())((0 wxkxxVxfV
T

scs Γ++−= ll  (29)

 

The adaptive feedback control law (27), with the measurable disturbances, and 

the update laws 
 

,))](()()())((ˆ  ))(())(()(2[

))(())(())((ˆ)()1( 1

YkxFkwkkxJkxFkxFkK

kxPGkxGkxGQkKkK

TT

TT

Φ+

−=+
(30)

 

,)()())](())((ˆ))((2 ))(([

))(())(())(())((ˆ)()1( 2

ZkwkwkxkxJkxGkxJ

PkxGkxPGkxGkxGQkk

T

TTT

Φ−

−Φ=+Φ
(31)

where 01 >Q , 0>Y , 02 >Q , and 0>Z , guarantees that the closed-loop sys-

tem given by (26), (27), (30) and (31) is Lyapunov stable.   

 

 



Manufacturing the Future: Concepts, Technologies & Visions 866

Proof 

To show Lyapunov stability of the closed-loop system, given by (26), (27), (30) 

and (31). We first consider the Lyapunov function candidate 
 

,))(())((

))(())(())((

))(),(),((

1

2

1

1

T

T

ggs

kZktrQ

KkKYKkKtrQkxV

kkKkxV

Ψ−ΦΨ−Φ+

−−+

=Φ

−

−
 (32)

 

Note that the Lyapunov candidate 0),,0( =ΨgKV , and 0),,( >ΦKxV  for all 

),,0(),,( Ψ≠Φ gKKx . In addition, ),,( Φ• KV  and K are continuous with respect 

to x ,  ),,( •KxV  and Φ  are continuous with respect to w  for 1≥k . Let )(kx , 

0≥k , denotes the solution of the closed-loop system (26) and (27), and is 

global asymptotic stability when 0)( ≡kw . The corresponding Lyapunov dif-

ference is given by 
 

)),(),(),(( )1(),1(),1((

))(),(),(()(

kkKkxVkkKkxV

kkKkxVkV

Φ−+Φ++

=ΦΔ=Δ
 (33)

 

and follow the similar proof of Theorem 2.1 with the following adaptive laws 
 

,))(())(),((ˆ)()1( 1 YkxFkwkxFQkKkK
T−=+  (34)

 

,)())(()()1( 2 ZkwkwRQkk T

w−Φ=+Φ  (35)

 

where 
 

)],()()(ˆ)(

)()()(ˆ)()()[(ˆ
2

1
),(ˆ

2

21

kwkxJxP

xFkKxGxPxPxGwxF

u

u

T

u

T

Φ+

+=
 (36)

 

),())](())((

))(())[((ˆ
2

1
))((

kwkxPJkxG

kxPkxJkwR

T

uw

T

w

+

−=
 (37)
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Next, let NNP
T= , nn

RN
×: , and chose the following 

 

),())((ˆ))((4))(( 2 kkxJkxPkxP uuw Φ−=  (38)

 

)),(())((ˆ)())((2))(( 21 kxPkxGkKkxFkxP u

TTT

u = (39)

 

)),(())(())((2 kxPGkxGkxP T

u =  (49)

 

),())((ˆ))(())((ˆ)()(2

))((

2

1

kkxJkxPkxJkkw

kxP

u

TTT

w

ΦΦ

=
 

(41)

 

))],(()())((ˆ)([

))](()())((ˆ)([))((2

kxJkkxJkGP

kxJkkxJkGkxP

TT

TTT

w

−Φ

−Φ=
 (42)

 

by substituting (34) and (35) into (33), after some manipulations yields 
 

),()()()(

)()()(ˆ)()(ˆ)()(2

)()()(ˆ)()(ˆ)()(

)())(()(ˆ)(ˆ)]()([

)()()]()([)(

2

2

1

2

xxPGxGx

xFkxJxPxJkkw

kwkxJxPxJkkw

xVxfVxFQxFxYFxF

xRQxRkZwkwkV

F

TT

F

u

TTT

u

TTT

scs

TT

w

T

w

T

ΓΓ−

ΦΦ

ΦΦ−

−+

+=Δ

 (43)

 

)),((])())[((ˆ))(( kxFKkKkxGkx g

T

F −=Γ  (44)

Since (29) is satisfied, and let 

).()( )()(

)()()(ˆ)()(])()[(ˆ)()(
2

2

xxxx

kwkxJxNGxFKkKxGxNGkV

TT

g

llll −≤−

Φ+−−=Δ
(43)

where )(kx  denotes the solution to the closed-loop dynamical system (26) and 

(27). Then the resulting Lyapunov difference becomes 
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This completes the proof. If 0)( ≠xl , 0≥k , then 0→x  as ∞→k . Furthermore, 

if 0)( →xl  as ∞→k , and the asymptotic stable solution x  with respect to ori-

gin will arrive when 0)()( >xx
T ll . 

 

Note that the adaptive control laws (30) and (31) do not require explicit 

knowledge of the matrix gK , the disturbance matching matrix Ψ  and system 

dynamics ))(( kxf . Next, we extend the solution of Theorem 3.1 to the follow-

ing dynamic system 

 

),())(())(()1( kDwkxBukxfkx ++=+  (44)

 

where the entries of B  and D  are unknown and satisfy the conditions given in 

(15) and (17), respectively. 

 

Corollary  3.1 

Consider the nonlinear discrete time system given by (44). Next, let 
sn

RRF →:  and there exists sn

g RK ×:  such that )()()( xFBKxfxf gc +Δ  is 

exponentially stable. In addition, let dm
R

×Ψ :  and the matching condition 

DB =Ψ  is satisfied. Then the feedback law 
 

),()())(()())(( kwkkxFkKkxu Φ+=  (45)

 

with the adaptive gain matrices 
 

,))(()]()(

))(()(2[)()1( 00

2

YkxFkwk

kxFkKPBBqkKkK

T

T

Φ+

−=+
 (46)

 

),()(])(2[)()1( 000

2
kwkwDkBPBqkk

TT −Φ−Φ=+Φ (47)

 

where )()( kKBkK s= , 
1

)()(
−

Φ=Φ ss DkBk , )()( kwDkw s= , and 0>q , guar-

antees that the closed-loop system given by (44), (45), (46), and (47) is 

Lyapunov stable, and equivalent to the following 
 

),())(())(()())(()1( 000 kwDkBkxFkKBkxfkx +Φ++=+ (48)
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Proof  

The proof is a direct extension of Theorem 3.1. First, we consider the 

Lyapunov candidate given by (32), the feedback law (45), with the assump-

tions that (15), (17), (28) and (29) are satisfied. Next, consider the following 

adaptive laws 
 

,))(())(()(2                      

))(()()()()1(

001

1

001

YkxFkxFkKPBBBQB

YkxFkwDDkPBBBQBkKBkKB

TT

ss

T

ss

T

ssss

−

Φ+=+
−

(49)

 

,)()(2)(         

)()1(

11

002

1

111

002

1

ssws

T

ssss

sswss

T

ssss

DZDkDkPBBBQBDkB

DZDkDDPDBBQBDkB

−−−

−−−−

ΦΦ−Φ+

Φ=+Φ
(50)

 

Where 
 

,)()()( s

T

sw DkwkwDk =Φ  

,
112

21

−−
== ss BBqQQ   

 ,ss DDZ =  

 

The resulting Lyapunov difference becomes 
 

).()( )( xxkV
T ll−≤Δ  (51)

 

Then (49) and (50) reduce to (46) and (47), respectively. This complete the 

proof. Finally, since the adaptive gains we obtained are actually )(kKBs  and 
1

)(
−

Φ ss DkB ,  and the measured disturbance is )(kwDs . The closed-loop sys-

tem given by (44), (45), (46) and (47) can be rewritten as (48).  

Lastly, we propose a robust adaptive solution to the linear uncertain systems 

given as following 

),())(()()1( kDwkxBukAxkx ++=+  (52)
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where B  and D  matrices satisfy the conditions given by (15) and (17), pair 

),( BA  is controllable, and there exists a gain matrix nm

g RK ×: , such that 

gc BKAA +=  is exponentially stable. In addition, let AAA c −=Δ  is 

bounded, and the norm AΔ  indicates the system dynamics A  deviates from 

the stable solution cA  (Fu & Cheng, 2004). 

 

Corollary 3.2  

Consider the nonlinear discrete time system given by (52). Assume that B  and 

D  satisfy  (15) and (17), respectively. Next, let  dm
R

×Ψ :  and the matching con-

dition DB −=Ψ  is satisfied. The feedback law given by 
 

),()()()())(( kwkkxkKkxu Φ+=  (53)

 

where )()( kKBkK s= , 
1

)()(
−

Φ=Φ ss DkBk , )()( kwDkw s= , and 0>q . Fur-

thermore, the adaptive gain matrices 
 

,)()]())((

)())([()()1(

00

00

2

YkxkwDkB

kxAkKBPBqkKkK

T

c

T

+Φ+

+−=+
 (54)

 

),()]()()

)([()()1(

0

00

2

kwkxAkwD

kBPBqkk

T

c

T

−−

Φ+Φ=+Φ
 (55)

 

guarantees that the closed-loop system given by (52), (53), (54), and (55) is 

Lyapunov stable, and equivalent to the following form 
 

).())(()())(()1( 000 kwDkBkxkKBAkx +Φ++=+ (56) 

 

Proof  

The proof is a direct extension of Corollary 3.1. First, we consider the 

Lyapunov function candidate 
 

,))(())((                                   

))(())(()()())(),(),((

1

2

1

1

T

T

gg

T

kZktrQ

KkKYKkKtrQkPxkxkkKkxV

Ψ−ΦΨ−Φ+

−−+=Φ

−

−

(57)
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Next, consider the Lyapunov difference (33), and assume that (15), (17), (28) 

and (29) are satisfied. Then the feedback control (53) with the adaptive laws 

given by 
 

,)()(]

)([      )()(]

)([)()1(

0

1

001

001

YkxkwDD

DkBBPBBQBYkxkxA

kKBBPBBQBkKBkKB

T

s

ss

T

ss

T

c

s

T

ssss

+

Φ−+

−=+

− (58)

 

,)( 

)()(])([ 

)()()1(

1

111

0002

11

02

1

−

−−−

−−−

Φ+

Φ+−

−=+Φ

ss

sss

T

sss

T

ss

sss

T

c

T

ssss

DkB

DZDDkwkwDDkBBDPBBQB

DZDDkwkxPABBQBDkB

(59) 

 

After some manipulations, the Lyapunov difference VΔ  reduced to 
 

,)()()()()()()(

)())](),((ˆ))(),((ˆ

))(),(())(),((

)[()(

2

2

1

2

kNDwkwkNBkxkPBKBkKkx

kxkwkxFQkwkxF

ZkwkxRQkwkxR

PBKBKPPAAkxkV

TTT

T

w

T

w

g

TT

gc

T

c

T

+Φ−−

++

+−=Δ

(60) 

 

where 
 

)],())(()()

)([())(),((ˆ

kwDkBkxA

kBKPBkwkxF

c

T

+Φ+

+=
 (61)

)],())((

)([))(),((

kwDkB

kxAPBkwkxR c

T

w

+Φ+

=
 

(62)

Since )(kx  be the solution of the closed-loop system, and the following condi-

tions are satisfied 
 

g

TT

g

T PBKBKAPAPA =ΔΔ≥Δ
2

 (63)

PAZwxRQwxRYwxFR w

T

w

2

2 )ˆ),0(()ˆ),0(()ˆ),0((ˆ Δ++≥  (64)
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The resulting Lyapunov difference becomes 
 

).()( )( xxkV
T ll−≤Δ  (65)

 

Next, let 
112

21

−−
== ss BBqQQ  and ss DDZ = , then (58) and (59) reduce to 

(54) and (55), respectively. In addition, since a normalized adaptive gains 

)(kKBs  and 
1

)(
−

Φ ss DkB  are obtained through this design, with measured 

disturbance )(kw . The closed-loop system given by (52), (53), (54) and (55) can 

be rewritten as (48). This completes the proof. 

Note that, the framework of of Corollary 3.1 and Corollary 3.2 do not require 

the knowledge of sB  and sD . 

3.2 Discrete-Time Systems with 2l  Disturbances 

In this section we propose an adaptive feedback control solution for nonlinear 

uncertain discrete time MIMO systems with bounded  2l  disturbances given 

by 
 

),())(())(())((

))(()1(

kwkxJkxukxG

kxfkx

++

=+
 (66)

 

where d
Rw : , 1≥k , is the unknown bounded energy 2l  disturbance, n

Rkx ∈)(  

is the state vector,  mn
RRku →:)(  is the control vector,  nn

RRf →:  character-

ize system dynamics with uncertain entries, and 0)0( =f . mnn
RRG

×→:  and 
dnn

RRJ
×→:  are the input and disturbance weighting matrix functions, re-

spectively. and the feedback law  
 

)),(()())((ˆ))(( kxFkKkxGkxu =  (67)

 

guarantees nonexpansivity condition given as Theorem 4.1.  

 

Theorem 4.1 

A nonlinear discrete-time system (66) is nonexpansive when 0)0( xx = , if the 

solution  )(kx , 0≥k , satisfies the following 
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,))0(),0(()()(ˆ)()(
0

2

0

∑∑
==

+≤
k

i

T
k

i

T
KxViwiwiziz γ  (68)

 

where )(kz  is output signal, and the Lyapunov candidate 
 

,))(())((

))(())(),((

1

1

T

gg

s

KkKYKkKtrQ

kxVkKkxV

−−

+=
−

 (69)

 

for all Ν:k , 2)( l∈•w , dn
RD

×: , γ̂  and γ  be positive reals such that 

PDDII
T

dd 2ˆ 22 +≥ γγ . 

Next, we state and prove the discrete-time adaptive result for nonlinear system 

with bounded energy 2l  disturbances. 

 

Theorem 4.2 

Consider the nonlinear discrete time system G given by (66), where the system 

dynamics f  is uncertain. Next, We assume that there exists a gain matrix 
sm

g RK ×∈ , mmn RRG ×→:ˆ , and vector sn
RRF →: , such that 

 

)),(())((ˆ))(())(())(( kxFKkxGkxGkxfkxf gc += (70)

Furthermore, there exist mn

u RRP
×→ 1

1 : , mmn

u RRP
×→:2 , dmn

uw RRP
×→: , 

dn

w RRP
×→ 1

1 : , and ddn

w RRP
×→:2 , the Lyapunov function sV  is defined as 

 

),())(()()())(()())(())((

))(())(())(())(())(()))((())1((

21

21

kwkxPkwkwkxPkwkxPkxu

kxukxPkxukxukxPkxfVkxV

w

T

wuw

T

u

T

uss

+++

++Δ+
(71)

Let RR
n →Γ :  be a positive scalar function and pn

RR →:l  is output vector, 

the following is assumed to be true 
 

)),(())(())(())(()))(((0 kxkxkxkxVkxfV
T

scs Γ++−= ll (72)

 

Then the adaptive feedback control law 
 

)),(()())((ˆ))(( kxFkKkxGkxu =  (72)
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with the update law 
 

,))(())(()())((ˆ))(())((ˆ 

))(())(())((ˆ
2

1
)()1(

2

1

YkxFkxFkKkxGkxPkxGQ

YkxFkxPkxGQkKkK

T

u

u

−

−=+
(74)

 

where 0>Q  and 0>Y , guarantees that the closed-loop system, given by (66), 

(73), and (74), satisfies the nonexpansivity constraint given in Theorem 4.1. 

 

Proof 

The proof is a direct extension of Theorem 2.1 and Theorem 4.1. We first 

consider the Lyapunov function candidate (69), such that 0),0( =gKV , and 

0))(),(( >kKkxV  for all ),0())(),(( gKkKkx ≠ , then ))(),(( kKkxV  is radially un-

bounded. Furthermore, assume that ))(,( kKV •  and )(kK  are continuous in 

)(kx  for 1≥k . The corresponding Lyapunov difference is given by 
 

)).(),(())1(),1(( )( kKkxVkKkxVkV −++=Δ  (75)

 

Next, consider the update law 
 

,))(())((ˆ)()1( YkxFkxFQkKkK T−=+  (76)

 

)),(()())((ˆ))((

))((ˆ))(())((ˆ
2

1
))((ˆ

2

1

kxFkKkxGkxP

kxGkxPkxGkxF

u

T

u

T +=
 (77)

 

we then add and subtract )()(2
kwkw

Tγ  to and from (75), and apply the fact 

xytrxy
TT = , n

Ryx ∈∀ , , then (75) becomes 
 

)(ˆ)(ˆ)]()([).()()(ˆ)()(              

)()()()()(ˆ)()(ˆ)(2              

)()()()()(ˆ)()(ˆ)()(              

)()(ˆ)()(ˆ)())(()))((( )(

12

22

2

xFQxFxYFxFkwxPxGxKxF

kwxPxFxKxGxPxGKxF

xPkwxFxKxGxPxGxKxF

xFKxGxPxGKxFkxVkxfVkV

TT

uw

TTT

wu

TT

g

T

w

T

u

TTT

gu

TT

g

T

scs

++

++

+−

−−=Δ

(78)

 



On Direct Adaptive Control for Uncertain Dynamical Systems - Synthesis and…  875 

Furthermore, let 

,0)(    ),()(

),()(2)(

),()()(

),()()(

),()()(ˆ)()(ˆ)()(          

)(ˆ)(ˆ)]()([))((

2

22

1

2

2

2

≥−=

=

=

=

+

=Γ

xPIkwxP

xPJxGxP

xPJxJxP

xPGxGxP

xFxKxGxPxGkKxF

xFQxFxYFxFkx

wd

T

w

T

uw

T

w

T

u

u

TTT

TT

γγ

and NNP
T= . After some manipulations, the resulting Lyapunov difference 

becomes 
 

))0(),0(()()(                                  

))(),(())0(),0(()()())(())((

)()())(())(())0(),0(())(),((

)()())(())(( )(      

0

2

0

2

0

0

2

0

2

KxViwiw

kKkxVKxViwiwixix

iwiwixixKxVkKkxV

kwkwkxkxkV

k

i

T

k

i

T
k

i

T

k

i

T
k

i

T

TT

+≤

−+≤−→

+−≤−→

+−≤Δ

∑

∑∑

∑∑

=

==

==

γ

γ

γ

γ

ll

ll

ll

(79) 

 

This proves that the closed-loop trajectory satisfies the nonexpansivity cons-

traint given in Theorem 4.1. In addition, if 0))(( ≠kxl , 0≥k , then 0)( →kx  as 

∞→k , n
Rx ∈∀ )0( . Finally, combining (78) and (76), (74) can therefor be obtai-

ned. 

Next, let BkxG =))((  is sign definiteness matrix and satisfies (15). Specifically, 

the nonlinear system given by 
 

).())(())(())(()1( kwkxJkxBukxfkx ++=+  (80)

 

We state without proof the following Corollary, since this is a direct extension 

of Theorem 4.2. 

 

Corollary 4.1 

Consider the nonlinear discrete time system given by (80). Assume that 
sn

RRF →:  and RRR
dn →×Γ : , such that (72) is applied, and sV  is defined as 

(71). The feedback law 
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)),(()())(( kxFkKkxu =  (81)

 

with the normalized adaptive gain matrices 
 

,))(())(()(2)()1( 00

2
YkxFkxFkKPBBqkKkK

TT−=+  (82)

 

where )()( kKBkK s= , and 0>q , guarantees that the closed-loop system gi-

ven by (80), (81), and (82), equivalent to 
 

),())(())(()())(()1( 0 kwkxJkxFkKBkxfkx ++=+  (83)

 

satisfies the nonexpansivity constraint given in Theorem 4.1. 

Note that the solution of adaptive gain matrix (82) is given by the selection of  
 

)).(()(2))((1 kxFkPBKBkxP T

u =  (84)

 

Specifically, if )(2))((1 kPBxBkxP
T

u = , then the adaptive gain matrix can be gi-

ven by 
 

,))(())())((

)(()()1( 00

2

YkxFkxkxF

kKBPBqkKkK

T

T

+

−=+
 (85)

Finally, we consider the linear discrete-time system G , where DkxJ =))((  is a 

sign definiteness matrix and )())(( kAxkxf = . Specifically, given by 
 

),())(()()1( kDwkxBukAxkx ++=+  (86)

 

where nn
RA

×∈  is the time-invariant uncertain system matrix, mn
RB

×∈  is the 

input matrix, and dn
RD

×∈  is the disturbance weighting matrix. Let ),( BA  be 

controllable pair, and B  and D  satisfy (15) and (17), respectively. We then 

state and prove the robust adaptive control design for linear uncertain systems 

as following. 

 

Corollary 4.2 

Consider the reachable linear discrete time system G  given by (86). Assume 

there exists a gain matrix nm

g RK ×: , such that gc BKAA +=  is exponentially 

stable, and let AAA c −=Δ  is bounded, and the norm AΔ  indicates the sys-

tem dynamics A  deviates from the stable solution cA . Next, let γ  be a posi-
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tive real, dn
RL

×∈ , dd
RW

×∈ , 0>R , 0ˆ >R , 0ˆ >Γ , and nn
RP

×∈  be the posi-

tive definite solution to the discrete-time Lyapunov equation given as 
 

,ˆˆ RRPPAA c

T

c −Γ−=−  (87)

 

,LWPDA T

c =  (88)

 

,22 WWPDDI TT

d =−γ  (89)

 

Then the adaptive feedback control as (81), with the update law 
 

,)()())(()()1( 00

2
YkxkxAkKBPBqkKkK

T

c

T +−=+  (90)

guarantees that the closed-loop system, given by (86), (81), and (90), satisfies 

the nonexpansivity constraint given in Theorem 4.1. 
 

Proof 

We first consider the Lyapunov function candidate given by  
 

,))(())((

)()())(),((

11 T

gg

T

KkKYKkKtrQ

kPxkxkKkxV

−−+

=
−−

 (91)

The corresponding Lyapunov difference is given by 
 

)).(),(())1(),1(( )( kKkxVkKkxVkV −++=Δ  (92)

 

During the manipulations, we let 
 

),())(())((ˆ

,)())((ˆ)()1(

kxAkBKPBkxF

YkxkxFQkKkK

c

T

T

+=

−=+
 (93)

 

Next, add and subtract )()(2
kwkw

Tγ  and )()( kxPBKBKkx g

TT

g

T  to and from 

(92), apply the conditions (87) to (89), and the fact xytrxy
TT = , n

Ryx ∈∀ , . In 

addition, assume that 
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,2))((ˆ))((ˆˆ 2

2
PAYkxFQkxFR

T Δ−≥  (94)

 

where is a symmetric positive definite matrix. The resulting Lyapunov diffe-

rence then becomes 
 

).()()()( )( 2
kwkwkRxkxkV

TT γ+−≤Δ  (95)

 

Now, by summing (92) over 0≥k  meets the nonexpansivity constraint given 

in Theorem 4.1. This completes the proof. Next, (93) could be rewritten as 
 

,)()())(()()1( YkxkxAkBKPQBkKkK
T

c

T +−=+ (96)

 

Furthermore, let 
112 −−

= ss BBqQ , )()( kKBkK s= , and apply (15), (17). By si-

milar procedure as in Corollary 3.2, (96) becomes (90). The closed-loop system, 

given by (86), (81), and (90), equivalent to  
 

),()())(()1( 0 kDwkxkKBAkx ++=+  (97)

3.3 Adaptive Stabilization for Nonlinear Discrete-time Uncertain Systems  

The Lyapunov direct method gives sufficient conditions for Lyapunov stability 

of discrete-time dynamical systems. In this section, we begin by characterizing 

the problem of adaptive feedback control laws for nonlinear uncertain discrete 

time MIMO systems given by (Fu & Cheng, 2004) 
 

)),(())(())(()1( kxukxGkxfkx +=+  (98)

 

where d
Rw∈ , 1≥k , is the unknown exogenous disturbance, n

Rkx ∈)(  is the 

state vector, mn
RRku →:)(  is the control vector, nn

RRf →:  characterize sys-

tem dynamics with uncertain entries, and 0)0( =f . mnn
RRG

×→:  is the input 

weighting matrix function. We assume that there exists a gain matrix 
sm

g RK ×∈ , mmn RRG ×→:ˆ , and vector sn
RRF →: , such that 

 

)),(())((ˆ))(())(())(( kxFKkxGkxGkxfkxf gc += (99)



On Direct Adaptive Control for Uncertain Dynamical Systems - Synthesis and…  879 

is exponentially stable. We hereby state the main results of adaptive stabiliza-

tion for nonlinear discrete-time uncertain systems. 

 

Theorem 5.1 

Consider the nonlinear discrete time system G given by (98), where the system 

dynamics f  is uncertain, such that there exists a gain matrix gK  and (99) is 

applied. Next, let mn

u RRP
×→ 1

1 : , mmn

u RRP
×→:2 , and the Lyapunov function 

sV  is given by 
 

)),(())(())((

))(())(()))((())1((

2

1

kxukxPkxu

kxukxPkxfVkxV

u

T

uss

+

+=+
 (100)

 

In addition, let RR
n →Γ :  is a positive scalar function, pn

RR →:l  is output 

vector, then 
 

)),(())(())(())(()))(((0 kxkxkxkxVkxfV
T

scs Γ++−= ll (101)

 

The adaptive feedback control law 
 

)),(()())((ˆ))(( kxFkKkxGkxu =  (102)

 

with the update law 
 

,))(())(()())((ˆ))(())((ˆ 

))(())(())((ˆ
2

1
)()1(

2

1

YkxFkxFkKkxGkxPkxGQ

YkxFkxPkxGQkKkK

TT

u

T

u

T

−

−=+
 (103)

 

where 0>Q  and 0>Y , guarantees that the closed-loop system, given by (98), 

(102), and (103), is globally asymptotically stable. 

 

Proof 

We first consider the Lyapunov function candidate 
 

,))(())((

))(())(),((

11 T

gg

s

KkKYKkKtrQ

kxVkKkxV

−−+

=
−−  (104)
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such that 0),0( =gKV , and 0))(),(( >kKkxV  for all ),0())(),(( gKkKkx ≠ . In 

addition, ))(),(( kKkxV  is radially unbounded. Furthermore, assume that 

))(,( kKV •  and )(kK  are continuous in )(kx  for 1≥k . The corresponding 

Lyapunov difference is given by 
 

)).(),(())1(),1(( )( kKkxVkKkxVkV −++=Δ  (105)

 

Next, consider the update law 
 

)),(()())((ˆ))(())((ˆ

))(())((ˆ
2

1
))((ˆ

,))(())((ˆ)()1(

2

1

kxFkKkxGkxPkxG

kxPkxGkxF

YkxFkxFQkKkK

u

T

T

u

T

T

+

=

−=+

 (106)

 

and apply the fact xytrxy
TT = , n

Ryx ∈∀ , , then the Lyapunov difference be 

comes 
 

).(ˆ)(ˆ)]()([ 

)()()(ˆ)()(ˆ)(2 

)()()(ˆ)()(ˆ)()( 

)()(ˆ)()(ˆ)()())(( )(

2

2

2

xFQxFxYFxF

xFxKxGxPxGKxF

xFxKxGxPxGxKxF

xFKxGxPxGKxFxVxfVkV

T

u

T

g

T

u

TT

gu

T

g

T

ss

+

+

−

−−=Δ

(107) 

 

Furthermore, we select  
 

.  )),(())(())((

)),((ˆ))((ˆ))](())(([))((

2

nn

nn

T

n

T

u

TT

RPkxGPPkxGkxP

kxFQkxFkxYFkxFkx

×∈=

=Γ  

 

After some manipulations, the resulting Lyapunov difference becomes 
 

)).(())((           

)())()((ˆ))((

))(())(( )(

2

2

kxkx

xFKkKxGkxGP

kxkxkV

T

gn

T

ll

ll

−≤

−

−−=Δ

 (108)
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where 
2

2
•  is Euclidean norm. This proves that the closed loop system is as-

ymptotically stable, if 0))(( ≠kxl , 0≥k , then 0)( →kx  as ∞→k , n
Rx ∈∀ )0( . 

Finally, combining (106), (103) can therefore be obtained. 

Specifically, if ))(()())((ˆ))((2))(( 21 kxFkKkxGkxPkxP uu =  then (103) can be 

otained 

,))(())(()())((ˆ

))(())((ˆ2)()1( 2

YkxFkxFkKkxG

kxPkxGQkKkK

T

u

T−=+
 (109)

 

Note that the adaptive control law (103) or (109) do not require explicit knowl-

edge of the matrix gK  and the system dynamics. Next, we extend the above 

result to the uncertain system given by 
 

)),(())(()1( kxBukxfkx +=+  (110)

 

where B  satisfies (15) is the sign definite matrix with unknown entries. We 

state without proof the following results. 

 

Corollary 5.1 

Consider the nonlinear discrete-time uncertain system G given by (110). As-

sume that there exists a gain matrix gK , such that 

))(())(())(( kxFBKkxfkxf gc +=  is exponentially stable. Next, mn

u RRP
×→ 1

1 :  

and mmn

u RRP
×→:2 , such that Lyapunov function sV  is given by 

 

)),(())(())((

))(())(())(())1((

2

1

kxukxPkxu

kxukxPkxVkxV

u

T

uss

+

+=+
 (111)

 

Furthermore, let RR
n →Γ :  is a positive scalar function, pn

RR →:l  is output 

vector, and (101) is satisfied. The adaptive feedback control law 
 

)),(()())(( kxFkKkxu =  (112)

with the normalized update law 
 

,))(())](()(

)([)()1(

0

0

2

YkxFkxFkKB

kxPBqkKkK

T

T

+

−=+
 (113)
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where )()( kKBkK s= , 0>q  and 0>Y , guarantees that the closed-loop sys-

tem, given by (110), (112), and (113), can be rewritten as 
 

),()())(()1( 0 kxkKBkxfkx +=+  (114)

is Lyapunov stable. 

Note that Corollary 5.1 implies we may have different update law by different 

choice of uP1 . By the end of this section, we can further extend the results from 

above to linear uncertain systems given as following 
 

)),(()()1( kxBukAxkx +=+  (115)

 

where ),( BA  be controllable pair. Next, assume there exists a gain matrix 
nm

g RK ×: , such that gc BKAA +=  is exponentially stable, and let 

AAA c −=Δ  is bounded, and the norm AΔ  indicates the system dynamics 

A  deviates from the stable solution cA . 

 

Corollary 5.2 

Consider the linear discrete-time uncertain system given by (115). Further-

more, let nn
RR

×∈  and nn
RP

×∈  are positive definite matrices, RR
n →Γ :  is a 

positive scalar function, such that the Lyapunov function 
 

)),(( kxRPAAP cc Γ−+=  (116)

 

with the assumption that ))((
2

kxAR Γ+Δ≥ , where )(kx  is the solution. Then 

the adaptive feedback control law )()())(( kxkKkxu =  with the normalized up-

date law 
 

,)()()]([)()1( 00

2
YkxkxkKBAPBqkKkK

T

c

T +−=+  (117)

 

where )()( kKBkK s= , 0>Q  and 0>Y  guarantees that the closed-loop sys-

tem, given by (115), (117), can be rewritten as 
 

),()()()1( 0 kxkKBkAxkx +=+  (118)

is Lyapunov stable. 
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Proof 

The result is a direct extension of Theorem 5.1 and Cororllary 5.1. Specifically, 

we consider the Lyapunov candidate 
 

,))(())((

)()())(),((

11 T

gg

T

KkKYKkKtrQ

kPxkxkKkxV

−−+

=
−−

 (119)

 

Next, let ))((
2

kxAR Γ+Δ≥ , normalized adaptive law )()( kKBkK s= , 
112 −−

= ss BBqQ , ))((ˆ))((ˆ))(( kxFQkxFkx
T=Γ , and  

 

).()()())((ˆ kxkPBKBkxPABkxF
T

c

T +=  (120)

 

Furthermore, we can substitute (117) into (115), the closed-loop form can be 

rewritten as (118). 

4. Numerical Examples 

In this section we illustrate the utility of the proposed direct adaptive control 

frameworks, both discrete-time and continuous-time, in the control problems 

of chaotic oscillator (Loria et al. 1998), one-link rigid robotic manipulator given 

by (Zhihong et al., 1998), and flexible joint robot manipulator (de Leòn-

Morales et al., 2001), (Haddad & Hayakawa, 2002). 

4.1 The van der Pol oscillator  

The first example is a well known perturbed van der Pol equation used to 

model electrical circuit with triode valve (Loria et al. 1998), and given as fol-

lowing 
 

),cos()1( 2
tquvvvv ωµ +=+−+ &&&  (121)

 

where the parameters specifically chosen as 5=µ , 5=q , and 463.2=ω , which 

exhibits chaotic behaviour, and u  is control input. Next, let state space form 

with TT
xxvvx ],[],[ 21== & , (121) be rewritten as 
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Specifically, we chose 
 

[ ],00)0(  ,
1

1
)0(  ,
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= KxPYZR β  

and P  is the solution of Lyapunov equation 
 

,0=++ RPAPA c

T

c  (121)

By Corollary 2.1, the closed-loop system guarantees 0→x  as ∞→t , if 

0),( =txw . Figure 1  shows the phase portrait of the controlled system. The 

adaptive controller regulate the perturbed system to the origin under no 

knowledge of system dynamics, matrix gK , and disturbance, while the distur-

bance exist. Figures 2 illustrates the time response of the feedback gain K  and 

the control inputs. 
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Figure 1 Phase Plot of perturbed van der 

pol equation 

Figure 2 Control Signal and Adaptive 

gains 

4.2 One-Link Rigid Robot under Gravitation Field 

The dynamic equation of the one-link rigid robot placed on a tilted surface 

with an fixed angle θ  is given by (Zhihong et al, 1998) 
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and the reference model is defined as 
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Next, since the tracking error is defined as 
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the tracking model can be formulated as 
 

,

1

)sin(

)cos(

8

1

111116

00000

1
0

0

10

2

22

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡

φ

φ

l

g
l

g
ml

d

w

u

ml
q

q

ml

d
e

e

&&&

&

 
(125)

where 
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Specifically, we chose 
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and P  is the solution of Lyapunov equation (121). In addition, let 1=== dlm  

and 8.9=g . Since (125) fits (13), and Corollary 2.1 can be directly applied. The 

initial conditions given [ ]Te 00)0( = and [ ]00)0( =K . To demonstrate the ro-

bustness of the controller handle the uncertainty of the system dynamics, we 

introduce a changed to 8.0=m  at time 5.0=t  second. The simulation results, 

Figure 3 shows the states for each time step. The adaptive controller regulate 

the perturbed system to the origin under no knowledge of system dynamics, 

matrix gK , and disturbance, while the disturbance exist. Figures 4 illustrates 

the time response of the control input, a constant force is applied to compen-

sate the gravitation field. It shows that the controller can readapt the sudden 

change and stabilize the system. 
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Figure 3. The states of one-link Rigid Robot 
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Figures 4. Control input 

4.3 Continuous-time Active Suspension System 

The dynamic equation for this quarter-car suspension is (Chantranuwathana & 

Peng, 1999) 
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(127) 

where 
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wx , cx , and rx  are displacements of wheel, vehicle, and road, cw xx −  is hy-

draulic piston displacement, kgms 253=  is sprung mass, kgmu 26=  is un-

sprung mass, 
sec

5.348
⋅

=
m

N
Cs  is suspension damping, 

sec
10

⋅
=

m

N
Cus  is tire 

damping, 
m

N
K s 12000=  is suspension stiffness, 

m

N
Kus 90000=  is tire stiffness, 

and aF  is force of suspension actuator. Next, let cA  is asymptotically stable. 
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First, we apply the framework of Corollary 2.1 and choosing the design matri-
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Figure 5 Displacement of wheel and Hydraulic pistion displacement 
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Figure 6 Velocity of vehicle and wheelhydraulic piston 

 

where P  satisfies the lyapunov condition (121). The simulation start with 

[ ]Tx 2.01.000)0( = . At time sec2=t , the states are perturbed 

[ ]Tx 05.003.000)2( −−= , and the system parameters are changed to 

kgms 213= , kgmu 20= , 
sec

320
⋅

=
m

N
Cs , 

sec
9

⋅
=

m

N
Cus , 

m

N
K s 11500= , and  
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m

N
Kus 85000= . The controller can re-adapt and stabilize the system in 

sec5 under no information of the system parameters, either the perturbation of 

the states. Figure 5 depicts displacement of wheel and hydraulic piston dis-

placement versus the time, Figure 6 shows the velocity of vehicle and wheel 

versus time, Figure 7 and Figure 8 illustrate the control inputs and adaptive 

gains at each time step. 
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Figure 7 Control Input 
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Figure 8 Adaptive Gains 
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4.4 Discrete-time Active Suspension System 

We use the quarter car model as the mathematical description of the suspen-

sion system, given by (Laila, 2003) 
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[ ]Tkxkxkxkxkx )()()()()( 4321= , and 1x  is tire defection, 2x  is unsprung 

mass velocity, 3x  is suspension deflection, 4x  is sprung mass velocity, 

sec
20

rad
πω =  and 10=ρ  are unknown parameters, 001.0=T is sampling time, 

)(kd  is disturbance modeling the isolate bump with the bump height 

mA 01.0= , and )(kΔ  is the perturbation on system dynamics. Next, let cA  is 

asymptotically stable 
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We apply the framework from Corollary 4.2 and choosing the design matrices  
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Figure 9 Tire defection and unsprung mass Velocity  
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Figure 10 Suspension deflection and mass velocity 
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P  satisfies the Lyapunov equation (121). The simulation start with 

[ ]Tx 001.0005.0)0( = . To demonstrate the efficacy of the controller, the 

states are perturbed to [ ]Tx 5.002.000)800( =  at 800=k , and the system 

parameters are changed to 4=ρ . The controller stabilizes the system in sec  2  

under no information of the system changes, either the perturbation of the 

states. Figure 9 depicts tire defection and unsprung mass velocity versus the 

time steps, Figure 10 shows the suspension deflection and sprung mass veloc-

ity versus the time step, Figure 11 and Figure 12 illustrate the control inputs 

and adaptive gains at each time step. 
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Figure 12 Adaptive Gains 

 

4.4 Nonlinear Discrete-time Uncertain System 

We consider the uncertain nonlinear discrete-time system in normal form 

given by (Fu & Cheng, 2004); (Fu & Cheng, 2005) 
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where a , b , c , and d  are unknown parameters. Next, let ))(( kxf c  to be 
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and nΘ  and  nΦ  are chosen such that 
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where 32ˆ ×∈ RA  is arbitrary, such that  
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and cA  is asymptotically stable, specifically, chose 
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First, we apply the update law (113) and choosing the design matrices 

61.0 IY = , 32.0 IR = , and 005.0=q , where P  satisfies the Lyapunov condition 

RPAAP c

T

c += . The simulation start with [ ]Tx 15.01)0( −= , and let 5.0=a , 

1.0=b , 3.0=c , and 5.0=d . At time 19=k , the states are perturbed 

[ ]Tx 5.05.01)19( −= , and the system parameters are changed to 65.0=a , 

25.0=b , 45.0=c , and 55.0=d . The controller does not have the information 

of the system parameters, either the perturbation of the states. Figure 13 – Fig-

ure 15 show the states versus the time step, Figures 16 shows the control in-

puts at each time step, and Figure 17 shows the update gains. The results indi-

cate that the proposed controller can stabilize the system with uncertainty in 
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the system parameters and input matrix. In addition, re-adapt system while 

perturbation occurs. The only assumption required is sign definiteness of the 

input matrix and disturbance weighting matrix. 
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Figure 17. Update Gains 
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5. Conclusion 

In this Chapter, both discrete-time and continuous-time uncertain systems are 

investigated for the problem of direct adaptive control. Noted that our work 

were all Lyapunov-based schemes, which not only on-line adaptive the feed-

back gains without the knowledge of system dynamics, but also achieve stabil-

ity of the closed-loop systems. We found that these approaches have following 

advantages and contributions: 
 

1. We have successfully introduced proper Lyapunov candidates for both dis-

crete-time and continuous-time systems, and to prove the stability of the 

resulting adaptive controllers. 

2. A series of simple direct adaptive controllers were introduced to handle 

uncertain systems, and readapt to achieve stable when system states and 

parameters were perturbed. 

3. Based on our research, we claim that a discrete-time counterpart of con-

tinuous-time direct adaptive control is made possible. 
 

However, there are draw backs and require further investigation: 

1. The nonlinear system is confined to normal form, which restrict the results 

of the proposed frameworks. 

2. The assumptions of (63), (64), and (72) still limit our results. 
 

Our future research directions along this field are as following: 

1. Further investigate the optimal control application, i.e. to seek the adaptive 

control input 2Lu∈  or 
2lu∈ , minimize certain cost function )(uf , such that 

not only a constraint is satisfied, but also satisfies Lyapunov hypothesis. 

2. Stochastic control application, which require observer design under the ex-

tension of  direct adaptive scheme. 

3. Investigate alternative Lyapunov candidates such that the assumptions of 

(63), (64), and (72) could be released. 

4. Application to ship dynamic control problems. 

5. Direct adaptive control for output feedback problems, such as 
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