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1. Introduction

The visible light being reflected by the majority of the objects which surround us, we can
apprehend our environment only by the properties of the surface of the objects which com‐
pose it. To exceed this limit and to explore the intimacy of the matter, a dedicated imaging
techniques and instruments, which used penetrating radiations like X-rays, neutrons, gam‐
ma, or certain electromagnetic or acoustic rays to explore internal structure, are developed.
The tomography is one of these developed techniques that allow 2D and 3D interior object
examination. By combination of a set of measures and thanks to computational and images
reconstruction methods, it provides cartography of attenuation parameters characteristic of
the radiation/object interaction, according to one or more transversal plans (slices). It thus
makes possible to see on TV monitor the interior of bodies and objects, whereas before one
had access either by pure imagination, by interpreting indirect measurements, or by cutting
out the objects materially. In the case of the medical imaging, for example, this direct obser‐
vation requires a surgical operation. This formidable invention thus enables us to discover
the interior of human bodies and different objects which surround us and their organization
in space and time, without destroying them.

The tomography thus constitutes an instrument privileged to analyze and characterize mat‐
ter, that it is inert or alive, static or dynamic, of microscopic or macroscopic scale. While giv‐
ing access to the structure and the shape of the components, it makes possible the
apprehension of the complexity of the objects studied. The computed tomography is a tech‐
nique of acquisition of digital images (projections). It generates a computer coding of a digi‐
tal representation of an area of interest through a patient, a structure or an object. The
tomography thus provides a virtual representation of reality, in the intimacy of its composi‐
tion. This numerical coding then will facilitate the exploitation, the exchanges and the infor‐
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mation storage associated. It becomes thus possible by appropriate processing to detect the
presence of defects, to identify the internal structures and to study their form and their posi‐
tion, to quantify the variations of density, to model the internal components and to guide
the instruments of intervention in medicine. Finally, the user will be also able to take benefit
from a large variety of existent software and algorithms for the tomography digital images
processing, analysis and visualization.

A CT system gathers several technological components. Its development requires the partic‐
ipation of the end users - as the doctors, the physicists or the biologists - to specify the
needs, of the engineers and researchers to develop the novel methods and, finally, of the in‐
dustrial teams to develop, produce and market these systems.

In this work, we are interested in the physics and mathematics related to the main phases of
computed tomography, namely: the scanning or projection phase and the phase of 2D or 3D
image reconstruction by various analytical methods such filtered back-projection method
(FBP). In this context, all the mathematical equations and relations which seemed ambigu‐
ous or not clear are explained and mathematically demonstrated with some illustrative ex‐
amples. This chapter is organized in the form of a main body text with sub-sections
presenting a brief explanation of most important concept or the detailed demonstration of
any equation or expression, and this, each time that seemed necessary. The algebraic meth‐
ods for image reconstruction in tomography will be also outlined.

This chapter is intended as an introduction to Computed Tomography. It was written not
only for those persons who have some familiarity with other imaging techniques such radia‐
tion transmission radiography but also for novices in the field of digital imaging. The chap‐
ter begins with some simple, yet fundamental, concepts regarding computed tomography
and the physics and mathematics at the origin of CT. As one progresses through the chapter,
more detail regarding the CT technique and methodology is meet. The reader should not be
alarmed if his or her particular problem or preoccupation is not mentioned here. So many
different CT developments have been achieved in the last thirty-three years that it would be
difficult to describe them all in a single chapter. Some practical information are also present‐
ed that can be vital to obtaining good analytical results; it is sometimes difficult to find.

I hope that this introduction to the CT technique will provide useful information to those
persons who are about to get involved with CT as well as present TC users and those with
simply a curiosity about the technique.

1.1. Analytical methods for image reconstruction in tomography

1.1.1. Projection and scanning of the object

The methodological basis used for describing 2D and 3D image reconstruction was presented
in detail in the work of Kak and Slantay [1] and Rosenfeld and Kak [2]. Other important work
such as that of Herman [3], describes the reconstruction methods such as algebraic reconstruc‐
tion technique (ART). In this work, we focus on the work and analytical methods of Kak and
Stanlay to explain the different steps of tomography from the measurement to the reconstruc‐
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tion of a single layer. The superposition of such layers will constitute the 3D image or volume
representing the studied object. By means of image processing tools, parts of the reconstructed
3D volume can be extracted and analyzed separately from the rest of the data set.

An object O (x, y, z) is considered as a superposition of n layers of the same thickness along z
axis, all located in planes parallel to the plane (x, y) and perpendicular to z (Fig. 1). Each layer
represents a section in the object to be reconstructed. It is considered as a 2D function fn(x, y)
that describes, for example, the distribution of linear attenuation coefficients as a function of
the position or any other 2D function that can be measured and whose measurement signal is
described by a full line. Any function maybe considered in tomography in condition to be
limited and finite in a given region and equal to zero outside this region. The condition of a
finite size is easily achievable for solid samples, liquid or gas contained in a box. The estab‐
lishment of condition is very difficult when it will be used for the tomography of electric or
magnetic fields. The generalization of such function for the tomographic measurements is
closely related to the determination of the nature of the interaction of the scanning beam (comb-
shaped) with the object under examination. The purpose of tomography is the reconstruction
of this 2D function, representing a layer or slice of the object, from the measured projections
in a unique way.
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Figure 1. The geometry of a studied object scanning in the {x,y,z} coordinates system. A layer in the plane (x, y) is scan‐
ned along the angle θ and the transmitted intensity is stored in a system (t, s) of rotational coordinates.

The layer is scanned (scanned) in an angle θ varying from 0 ° to 180 ° for the transmission
tomography. The intensity of the transmitted beam is recorded like a translation function of
of the position parameter t (Fig. 2). The transmitted intensity is given by Lambert's law given
by the following expression:

0( , ) exp( ( , ) )
path

I x y I x y dsm= - ò (1)
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Where I0 is the incident beam intensity and μ(x, y) = f(x,y) is the 2D function to rebuild. A new
square and rotational coordinates system (t, s) is defined to express the detection system
rotatable in comparison to the fixed object coordinates system (or vice versa, if the object is
rotating and the detection system is fixed). In the transformation from the system (x, y) to the
system (t, s), t is given by (see demonstration 2):

.cos( ) .sin( )t x yq q= + (2)

The expression of the ray (path) through the sample expressed in terms of t and θ and by the
substitution of s is: δ(t-x.cos (θ) + x.sin (θ)). The Dirac function δ ensures that only the points
in obedience to the equation (2) that are related to the beam (comb-shaped) contribute to the
projection Pθ (t). Such a projection can be defined by:

Pθ(t)=ln(I I0
)= ∫

path

μ(x,y)ds (3)

Note here that the expression of Pθ (t) can be given by (see demonstration 1):

Pθ(t)= ∫
path

μ(x,y)ds

 y 

x 

Pθ(t)= ln (I/I0) 

θ 

t 

Figure 2. Scanning of a single layer in the plane (x, y). Note that z is the axis of rotation which coincides with the z-axis
of the rotational coordinate’s system {s, t, z}.
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( cos sin ) ( , )x y t x y dxdyd q q m
+¥ +¥

-¥ -¥

= + -ò ò (4)

This last expression is just one of the different forms of the Radon transform basically used for
determining a function from its integral according to certain directions (see math reminder 1).
The two-dimensional Radon transform projects an object f (x, y) to get its projections Pθ (t).
The projections values depend on of the integral of the object values along the line of integral
according to a direction θ. In this work, we are interested in the case of a parallel beam; the
extension to the case of diverging beam (fun beam) is quiet easy.

Demonstration 1

Demonstrating that the projection Pθ (t) as defined by Eq.1 can be written in one form of the Radon transform given by

Eq.D.1:

Pθ(t) = ∫
−∞

+∞

∫
−∞

+∞

δ(xcosθ + ysinθ − t)μ(x, y)dxdy (D.1)

For a convenience and simplicity reasons and for the fact that tomography is a process based on a rotational scanning, a

new square and rotational coordinates system (t, s) is defined as presented above to take into consideration the rotating

aspect of the source and the detection system around the fixed object. The coordinates of this system are given by:

{ t = x.cosθ + y.sinθ
s = − x.sinθ + ycosθ

(D.2)

With:

dsdt = JF dxdy (D.3)

JF is the Jacobian matrix determinant which is given by:

JF =

∂
∂ x

∂
∂ y

t
s

cosθ
− sinθ

sinθ
cosθ

= cos2θ + sin2θ = 1 (D.4)

So, in our case dsdt=dxdy, and we can write the following equation:

Pθ(t) = ∫
ray(θ,t)

μ(x, y)ds = ∫
ray(θ,t)

μ(s, t)ds

= ∫
−∞

+∞

∫
−∞

+∞

δ(xcosθ + ysinθ − t)μ(s, t)dtds

(D.5)

Note that the coordinates system transformation from (x, y) system to (t, s) system has no influence on the values of the

object function μ (x, y) ((μ (x, y) = μ (s, t)).

Thus, it was demonstrated that the tomography projection can be expressed by one of the Radon’s transform

expression.

End of Demonstration 1.
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Before continuing our mathematical development and demonstration specific to the object

scanning in transmission tomography, it is useful to give some math reminder on Radon

transform and its main properties.

Math Reminder 1.

The Radon transform is defined by:

R(p, τ) f (x, y) = ∫−∞
+∞

f (x + τ + px)dx

= ∫−∞
+∞∫−∞

+∞
f (x, y)δ y − (τ + px) dxdy≡U (p, τ),

(R.1)

where p is the slope of the projection line of and τ is its intersection with the y axis. The inverse Radon transform is given

by:

f (x, y) =
1

2π ∫−∞
+∞ d

dy H U (p, y − px) dp, (R.2)

where H is the Hilbert transform. The Radon transform can also be defined by the following expression:

R ′(r , α) f (x, y) = ∫−∞
+∞∫−∞

+∞
f (x, y)δ(r − xcosα− ysinα)dxdy,

(R.3)

Where r is the perpendicular distance of the integral line with respect to the origin and α is the angle formed by this

line and the x axis.

Using the following identification:

Fω,α R f (ω, α) (x, y) = Fu,v
2 f (u, v) (x, y), (R.4)

where F is the Fourier transform, the Radon inversion formula can be expressed by:

f (x, y) = c∫0
π∫−∞

+∞
Fω,α R f (ω, α | ω | e iω(xcosα+ysinα)dωdα (R.5)

This last expression can be simplified as follows:

f (x, y) = ∫0
π∫−∞

+∞
R f (r , α) W (r , α, x, y)drdα, (R.6)

where W is a weight function given by:

W (r , α, x, y) = h (xcosα + ysinα− r) = F −1 | ω | (R.7)

Nievergelt (1986) determined the inversion formula as follows:

f (x, y) =
1
π lim

c→0
∫0

π∫−∞
+∞

R f (r + xcosα + ysinα, α) Gc(r)drdα, (R.8)

with:

Gc(r) = { 1
πc 2 for | r | ≤c

1
πc 2 (1−

1

1−c 2 / r 2 for | r | ≻c
(R.9)

The Ludwig's inversion formula presents the relations between the two forms of the Radon transform of a given

function: R (r, α) and R’ (r, α), which are given by:

Imaging and Radioanalytical Techniques in Interdisciplinary Research - Fundamentals and Cutting Edge Applications86



p = cotα, τ = cscα (R.10)

r =
τ

1 + p 2 , α = cot−1 p (R.11)

The main properties of Radon transform are the followings:

1. Superposition :

R(p, τ) f 1(x, y) + f 2(x, y) = U1(p, τ) + U2(p, τ); (R.12)

2. Linearity:

R(p, τ) af (x, y) = aU (p, τ); (R.13)

3. Scaling:

R(p, τ) f 1(
x
a ,

y
b ) = | a | U (p

a
b ,

τ
b ); (R.14)

4. Rotation:

R(p, τ) RΦ f (x, y) =
1

| cosΦ + psinΦ | U (
p− tanΦ

1 + ptanΦ ,
τ

cosΦ + psinΦ ), (R.15)

RΦ is a rotation operator;

5. Skewing:

R(p, τ) f (ax + by, cx + dy) =
1

| a + bp | U (
c + dp
a + bp , τ

d −b(c + bd )
a + bp ); (R.16)

6. Integral along p:

I = 1 + p 2U (p, τ); (R.17)

7. 1D convolution expression:

R(p, τ) f (x, y)∗g(y) = U (p, τ)∗g(τ); (R.18)

8. Equivalent equation of Plancherel theorem:

∫−∞
+∞

U (p, τ)dτ = ∫−∞
+∞∫−∞

+∞
f (x, y)dxdy; (R.19)

9. Equivalent equation of Parseval theorem:

∫−∞
+∞

R(p, τ) f (x, y) 2dτ = ∫−∞
+∞∫−∞

+∞
f 2(x, y)dxdy; (R.20)

End of Math Reminder 1.

At this level of mathematical development a very important question must be asked: Why the

switching between different coordinates systems, presented above (Fig.1), is so important to

establish the mathematical basis of image projection and reconstruction in CT in the case of

analytical method such as FBP? The response to this question is satisfactory explained in the

2nd demonstration (see Demonstration 2).
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Demonstration 2

Because the CT process is likely rotational in its projection phase, a rotational coordinates system (Fig.D.1) is more

suitable to describe the object scanning and projection. This the first reason for using different coordinates systems.

Fig. D.1. Considered coordinates system: fixed (x, y) and rotational (t, s), used to identify a projection point P of the

object.

According to figure (D.1), for a given point P of the object, the transforms used to switch between a fixed coordinates

system (x,y) to a rotational coordinates system (t,s) are given by:

{ t = x.cosθ + y.sinθ
s = − x.sinθ + y.cosθ

(D.7)

And the inverse transforms are given by:

{ x = t .cosθ− s.sinθ
y = t .sinθ + s.cosθ

(D.8)

According the physical principle of the projection generation in transmission CT, a projection at an angle θ can

mathematically be expressed as integration of the object function (attenuation coefficient) across the line s. Thus it can

be given by:

Pθ(t) = ∫
s

f (x, y)ds = ∫ f (t .cosθ− s.sinθ, t .sinθ + s.cosθ)ds (D.9)

The back-projected function fb(x,y) is then given by:

f b(x, y) = ∫0
π

Pθ(t)dθ (D.10)

Where t is to be determined for each projection using equation (D.7). Thus the second reason for using rotational

coordinates system is the easy representation and manipulation of Fourier transform in this system that facilitate the

understanding and the implementation of the analytical reconstruction process of tomography.

End of Demonstration 2
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In our case of CT, the set of all projections Pθ(t) of the object function μ (x, y) is called the Radon
transform of μ(x, y). Using all these projections, a 2D image can be analytically reconstructed
by exploiting a theorem called “Fourier Central Slice” (see demonstration 3). This theorem
announces that the data of the 1D Fourier transform of a projection Pθ(t) is a subset of the data
of 2D Fourier transform F(u, v) of the object function μ (x, y):

FT Pθ(t) =Fθ(ω)⊂FT μ(x,y) =F(u,v), (5)

where u = ω.cosθ and v = ω.sinθ. To demonstrate this relationship, we will follow the method
presented in references [1] and [2]. Assuming that the function μ (x, y) is finite and limited, so
that it has a Fourier transform (u, v) given by:

F(u,v)=∫-∞
+∞∫-∞

+∞
μ(x,y).e-2πi(ux+vy)dxdy. (6)

To demonstrate the central slice theorem of Fourier, we consider the case of θ = 0. In such a case
the two coordinates systems (x, y) and (u, v) coincide and the projection Pθ(t) is simply given by:

Pθ=0(t)= ∫
-∞

+∞

μ(x,y)dy (7)

The 2D Fourier transform of the object function becomes (by taking into account that v = ω
sin(θ = 0) = 0):

F(u,0)=∫-∞
+∞∫-∞

+∞
μ(x,y)e-2πi(ux)dxdy

=∫-∞
+∞{∫-∞+∞μ(x,y)dy}e-2πi(ux)dx

=∫-∞
+∞

Pθ=0(x)e-2πi(ux)dx

(8)

Note here that the 1D Fourier transform of a projection Pθ(t) is given by:

Fθ(ω)=∫−∞
+∞

Pθ(t≡x)e-2πiωtdt (9)

Thus, we have demonstrate that Fθ=0(ω) is just a subset of F(u, 0) for a particular case of θ=0.
Because the orientation of the object in the coordinates system (u, v) is arbitrary with respect to
the coordinates system (x, y), this particular case can be extended to all angles θ by keeping in
mind that the Fourier transform is conserved by rotation which is necessary process in transmis‐
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sion tomography in the real space. Indeed, the 1D Fourier transform of Pθ(t) produces a values
which are a part (the same) of the values produced by the 2D Fourier transform of μ (x, y).

A dense set of values in the Fourier space can be approximated and simplified by considering
square coordinates that will easily back-transformed into real space. This can, sometimes, lead
to a confused reconstruction which is the consequence of an unachieved adjustment of the high
frequencies in the Fourier space (Fig. 3).

Approximation

Figure 3. Fourier transform of a projection Pθ(t) (left) and the interpolated data in the square coordinates system
(right). The interpolation of high frequencies (high values of (u, v)) is inaccurate.

Demonstration 3.

Here, we demonstrate the Fourier Central Slice Theorem announcing that the Fourier transform of a projection Pθ(t) is a

subset of a of two-dimensional Fourier transform of the μ (x, y) object function (Fig. D.2).

The Fourier transform of a projection Pθ(t) may be given by the following expression:

Pθ(ω) = ∫
−∞

+∞

pθ(t)e −2πiωtdt (D.11)

The projection is given as mentioned before by:

Pθ(t) = ∫
−∞

+∞

∫
−∞

+∞

δ(xcosθ + ysinθ − t)μ(x, y)dxdy (D.12)

The last expression of Pθ(t) can be whiten in the polar coordinates system (r, φ) be the following expression:

Pθ(t) = ∫0
2π∫0

∞
δ(rcosφcosθ + rsinφsinθ− t)μ(r , φ) | r | drdφ

= ∫0
2π∫0

∞
δ(rcos(φ−θ)− t)μ(r , φ) | r | drdφ

(D.13)

If we take the 1D Fourier transform of last expression of Pθ(t), we get the following expression:
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Pθ(ω) = TF (Pθ(t)) = ∫−∞
+∞

Pθ(t)e −2πiωtdt

= ∫−∞
+∞∫0

2π∫0
∞

δ(rcos(φ −θ)− t)μ(r , φ)e −2πiωt | r | drdφdt

= ∫0
2π∫0

∞
μ(r , φ)e −2πiωrcos(φ−θ) | r | drdφ

(D.14)

Similarly, we proceed to the calculation of the 2D Fourier transform of the object function μ (x, y).

F (u, v) = ∫−∞
+∞∫−∞

+∞
μ(x, y)e −2πi(ux+yv)dxdy (D.15)

If we transform this last expression to polar coordinates in both spatial and frequency domains using the following well-

known transformation equations:

{x = rcosφ
y = rsinφ

and {u = ωcosψ
v = ωsinψ

, (D.16)

we obtain the following expression:

F (u, v) = F (ωcosψ, ωsinψ)

= ∫0
2π∫0

∞
μ(r , φ)e −2πiωr (cosφcosψ+sinφsinψ) | r | drdφ

= ∫0
2π∫0

∞
μ(r , φ)e −2πiωrcos(φ−ψ) | r | drdφ

(D.17)

The comparison between the equations (D.13) and (D.16), allow us to write the following equivalence:

T F1D Pθ(t) = Pθ(ω) = T F2D μ(r , φ) = F (ωcosψ, ωsinψ)θ=ψ (D.18)

Thus, it was demonstrated that the 1D Fourier transform of a projection is a subset (central slice) of the 2D Fourier

transform of the object function. Therefore, a simple back-transformation (inverse transform) of the Fourier transform

may allow the reconstruction of a 2D layer (slice) of the object.

Fig. D.2. Illustration of Central Slice Theorem of Fourier.

Image reconstruction using the central slice theorem is theoretically possible for an infinite number of projections. For

real data case, we have only a finite number of projections. In this case, the Fourier transform function F(u,v) is known

only on number points along radial lines. In practice, the number of samples (points) taken is the same for each

projection direction. As well, in the Fourier domain, the sampling is constant regardless of the direction of projection.
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Thus, the digitalization and sampling is a very important process in practical tomography. To be able to reconstruct the

object function, these samples (points) must be interpolated from a polar to a Cartesian coordinates (Fig. D.3). Generally,

this interpolation is done by taking the nearest neighbour value or by a linear interpolation between known points. The

density of points (frequencies) in the polar reference becomes smaller when we move away from low frequencies (i.e.,

the origin). So the interpolation error is larger at high frequencies than at low frequencies, and this causes the

degradation of the image details.

Fig. D.3. Transition from a polar grid to a Cartesian square grid.

End of Demonstration 3

How many projections are needed for good reconstruction? This question has been answered
by the Nyquist-Shannon theorem. This theorem announced that a unique reconstruction of an
object sampled in space is obtained if the object was sampled with a frequency greater than
twice the highest frequency of the object details. In the parallel scan mode, for a sampling for
S points per projection line, a number of P projections (angles θ) is necessary to accomplish
the Shannon theorem in tomography. If D is the diameter of the object to be scanned, and Ax
is the difference between two points of scanning, then the number of points (sampling) in each
projection line to be scanned is given by:

DS=
Δx

(10)

For a scanning of the object over 360 °1, each point is scanned again after a path equal to πD
and this for each point situated on the surface of a circular object of a diameter D (the highest
frequency). For this case, the number of projections must be equal to:

1 Generally if the object is homogenous and symmetric, a scanning over 180° is sufficient.
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DP=
Δy
p

(11)

According to Nyquist-Shannon’s theorem it is required for a good reconstruction that Δy≥
2Δx. If we put Δy ≥ 2Δx, we obtain a relationship between the number of scanned points S in
one projection line (sampling of the object) and the number of necessary projections P (see
demonstration 4):

πP S
2

³ (12)

Indeed, S and P are the most important parameters that determine the quality of the recon‐
struction. If P violates the last condition (Eq.11) when for example a number less than necessary
P projections is recorded, a new reduced diameter (D = D *) which satisfies the Shannon
condition must be calculated. This reduced dimater determines the reduced volume (area) of
the object that can be well reconstructed for this reduced number of projections although the
whole object of real diameter D is scanned.

Demonstration 4.

In computed tomography, it is recommended that the number of projections (P) must be in the same order as the

number of rows of pixels in a single projection (S) [3]. The condition on P and s given by Eq.12 which is established when

considering the Nyquist-Shannon sampling theorem can be proven by the following manner. Let considering P

projections over 180° and S rows of pixels, the angular increment between two successive projections Δθ in the Fourier

space is given by [4]:

Δθ=
π
P (D.18)

For a distance Δx between two adjacent rows, the highest spatial frequency measured (ωmax) in a projection is given

according to the Nyquist-Shannon theorem by [5]:

ωmax=
1

2Δx (D.19)

The scanned object representation in the frequency domain (2D Fourier Transform) correspond to disk’s radius that

contains the measured values (Fig. D. 4). The distance Δf between two consecutive values of the furthest circle from the

origin is given by:

Δf=ωmaxΔθ=
1

2Δx
π
P (D.20)
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Fig. D.4. Density of the measured values in the frequency domain.

For the S values of each projection in spatial domain correspond S measured values in the frequency space (measured

for each line). Therefore, the distance ε between two consecutive values measured on a radial line in the frequency

domain (Fig. D.4) is given by:

ε=
2ωmax

S =
1

DS
(D.21)

A sufficient condition to obtain a good reconstruction is to ensure that the worst azimuth resolution (s) in the frequency

domain (Fig. D.4) is in the same order of radial resolution (ε). This condition can be expressed as follows:

1
2D

π
P ≈

1
DS ⇒ P≈S

π
2 (D.22)

Thus, the ratio between the number of projections (P) and the number of rows (S) must be in the order of π / 2.

An insufficient number of projections may produce a 2D or 3D reconstructed image which present many undesirable

artefacts. In practice, most of the tomography detectors cannot measure below the nominal Nyquist resolution

determined by their dimensions or pixel size. The exploration beam is not perfectly parallel, too; this is another source of

errors on the measured data obtained especially when using a reconstruction method which assumes that the beam is

parallel.

In practice, insufficient number of projection generates artefacts such as those shown in figure (D.5) [3]. The projections

of figure (D.5) have a dimension of 64x64 pixels. So the number of rows S is 64. As it has already been demonstrated, a

number P of projections around a value of 100 (P ≈ Sπ / 2) is sufficient to produce an acceptable reconstructed image.

For the case of this example, it is clear that the reconstruction image obtained from 64 projections is the closest one to

the original image. The 2D reconstruction is performed using the Filtered Back-Projection method (FBP) that will be

described in the next section.
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Fig. D.5. Results of 2D reconstruction of an object by FBP method of tomography and induced artifacts for different

number of projections: (A) original image, (B) 1 projection, (C) 3 projections, (D) 4 projections, (E) 16 projections, (F) 32

projections and (G) 64 projections [7] .

The number of projections is not the only parameter that affects the reconstructed image. The sampling of projections S

(number of rows) and the dimensions of the grid of reconstruction will also affect the reconstructed image dramatically

if they are not well optimized

End of Demonstration 4

1.1.2. 2D and 3D image reconstruction

As already mentioned, the inverse transformation (simple inversion) of the Fourier transform
Pθ(ω) can be directly used to produce the 2D reconstructed layer of μ (x, y). However, a more
efficient way and more elegant has been developed called “ Filtered Back-Projection (FBP)"
making the reconstruction process less expensive and less complicated when compared to the
direct calculation of the inverse Fourier transform [1,2]. The basic idea of this method is derived
from the tomography principle and the scanning mode: the object (set of layers) is scanned
projection by projection from 0 ° to 180 ° which means that Pθ(t) = Pθ+180(-t) and suggesting the
use of a polar coordinates rather than Cartesian square ones. As it was demonstrated the
digitization and sampling details by the right selection of P and S are very important in
Computed tomography. If the projections are recorded in polar coordinates, the projections
Fourier transforms will be discrete values of a polar function. Thus, it seems appropriate to
write the 2D Fourier transform of the object function μ (x, y) in polar coordinates. The inverse
Fourier transform μ (x, y) of F(u, v) written in Cartesian coordinates is given by:

+ + +2πi(ux+vy)
- -

μ(x,y)= F(u,v).e dudv
¥ ¥

¥ ¥ò ò (13)

The same inverse transform in polar coordinates is given by:

2 +2πiω(xcosθ+ysinθ)
0

μ(x,y)= F(ω,θ).e d dθ
p

w w
+¥

-¥ò ò (14)

The substitution of x cos (θ) + y sin (θ) by t and the application of Fourier Central Slice theorem,
allow us to get the following expression:
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μ(x,y)=∫0
π∫−∞

+∞
F(ω,θ).e+2πiωt |ω |dω dθ

=∫0
π ∫−∞

+∞
F(ω,θ).e+2πiωt |ω |dω dθ

(15)

The integral in brackets can be regarded as the inverse Fourier transform Pθ(t) of Pθ(ω).
However, we note that it is multiplied by the function |ω| which plays the role of a special
ramp filter function in the frequency domain. So, we define the filtered projection by:

Qθ(t)=∫-∞
+∞

Pθ(ω)|ω|e+2πiωtdω (16)

Thus, the object function will be simply given by:

θ0 0
μ(x,y)= ( ) dθ= Q (xcosθ+ysinθ) dθQ t

p p
qé ù é ùë û ë ûò ò (17)

Knowing previously that a product (multiplication) in Fourier space (frequency domain)
corresponds to a convolution of inverse Fourier transforms in real space (spatial domain), the
following relation can be written:

FT-1 Pθ(ω)× |ω| =Pθ(t)⊗FT-1 |ω| (18)

The convolution operator is denoted by the symbol ⊗. The function |ω| is not a square-
integrable function, thus it has no inverse Fourier transform. However, the inverse transform
FT-1[|ω|] can be approximated by different filter response functions (convolution with gains,
filter functions). Considering these last remarks and regarding the result of Eq.17, The
reconstruction process of μ (x, y) can be performed from the projections Pθ(t) obtained as
follows:

“In FBP reconstruction process, each projection Pθ(t) is first convoluted with a specific and suitable filtering function (eg Shepp-

Logan, ω/2π sinc(ω)) and the measured values are recorded in (x, y) plans as illustrated in Fig. 4. To control the measurement process

of tomography, the projections are arranged in a sinograms2 recorded as shown in Fig. 5. On the sinogram, each vertical line is a

projection at an angle θ and represents the variation in the gray level as a function of the pixel’s or detector’s position. On Fig. 6 are

shown 4 different reconstructions. The projections Pθ(t) are converted to grayscale, convoluted with a filter with a specific gain and

back-projected onto the entire plan (x, y). The addition of all projections result in the reconstruction of the 2D layer desired. More

the number of projections is high more the reconstruction plans is well covered in terms of data and less the star-shaped artefacts are

present on the reconstructed image. With such reconstructions, 3D images can be obtained by stacking all the 2D layers and a

reconstructed 3D volume data (details of the object) can be extracted from the stack obtained”.

2 the number of sinograms is equal to the sampling number of S
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Figure 4. Scanning a 2D object (details: circle and square) and the corresponding projections [7].

Figure 5. Example of projection Sinogram of the object of Fig. 4: the y-axis shows the projections (gray level variation
as a function of the pixel’s or detector’s position) and on the x-axis, these one pixel width projections are arranged
from the first projection (θ=0) to the last one (θ=180°). Each sinogram will be used for the reconstruction of one pixel
layer of the object.

Figure 6. Reconstructions obtained for 4 different numbers of projections to illustrate the appearance of star-shaped
artefacts when the number of projection is not sufficient.
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1.1.3. Discretization of the analytical methods

In the last sections, many times we have considered the ideal continuous case to model the
projection and the reconstruction processes of tomography and to explain the principle of the
analytical reconstruction methods such as FBP. Indeed, we have worked in an infinite
continuous domain (R2), and tried to reconstruct a continuous function f from continuous
projections Pθ defined for all angle θ in the interval [0, π [. These conditions are obviously not
possible in practice. Acquisition systems allow just obtaining a number of projections Pθ for a
finite number of angles, denoted θk. The limited number of detectors makes these projections
sampled and known only at discrete points uk. It would be unrealistic with such data to try to
reconstruct a continuous function f in R2. Therefore, the object function f(x,y) will be recon‐
structed on a discrete grid for a finite number of points (f(xi,yj)). This is also the limit imposed
by the used numerical reconstruction algorithms. The reconstruction problem then will be
approached as follows: for given a set of projection measurements:

}{ θk lP (u ),0 l S,0 k P ,£ £ £ £ (19)

the reconstruction problem is reduced to finding f at any point of a finite discrete grid:

{ }i jf(x ,y ) ,0 i S,0 j S£ £ £ £ (20)

with:

,,
,,,

k
l

ji

Pk
u ldy j yx i x

q pq q D == D
=

= D= D
(21)

where Δθ is the sampling step of the rotation angles, P is the number of angles (projections),
d is the sampling step on each projection line (ray), Δx and Δy are the sampling step on x and
y in the reconstruction plan.

The discrete reconstruction methods according to this definition can be divided into two
categories:

1. The first class method consists in the definition of discrete operators and functions equivalent
to those defined in the continuous case (Radon transform, back-projection, Fourier transform,
etc.) and all the inversion formulas and theorems defined for the analytical methods already
presented.

2. The second category is based on a completely different approach: in these methods the
projection equation (p=Rf) is directly discredited and a linear equations system is built. The
resolution of this system is possible only by iterative methods called algebraic methods. The
algebraic method will be presented in the next section.
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2. Algebraic methods of image reconstruction in tomography

The algebraic methods are especially iterative methods. These methods are less used when
compared to the easy and well known filtered back-projection method. In this method the
reconstruction problem is see differently and no longer refers to the Radon transform. The
image of the object consists of a number k of pixels whose values fk are unknown. Similarly,
the projections are discrete and formed by a number of l dexels (depth pixels) whose values
"pl" are known since they correspond to measurements in each line of projection. Reconstruc‐
tion of the object image by the iterative method is based on the following hypothesis: each
detected values in a dexel is a linear combination of pixel’s values to be reconstructed [6]. The
reconstruction problem is formulated by a discrete expression of matrix (p = R.f) describing
the projection process. The set of values of the projection lines (dexels) is arranged in projection
vector p. All pixels of the image to be reconstructed are also grouped in a image vector f. The
coefficients which characterize the contribution of each pixel in each line of projection is
determined and stored in a matrix R. The projection of an object is modeled in the case of an
original image of n x n pixels, a number n of projection directions and a number n of dexels in
each projection line, by the following equation [6]:

p=R.f (22)

1 111 14

2 2

41 44

.

n n

p fr r
p f

p fr r

é ù é ùé ù
ê ú ê úê ú
ê ú ê úê ú
ê ú ê úê ú=
ê ú ê úê ú
ê ú ê úê ú
ê ú ê úê ú

ë ûë û ë û

K K K
M O

M MM O
M MM O

K K K

(23)

This last equation expresses the fact that what is detected (p) is the result of values (f) of the
image to be reconstructed, subject to a projection operation represented by the projection
operator R [6]). Through this modeling of the projection process, one looks in practice to find
f according to p by solving the inverse problem f = R-1.p. Because of the size of this equations
system, the resolution cannot be performed except by successive iterations [7]. Fig. 7 shows an
example of projection and back-projection. In the algebraic reconstruction method based on
iterative process, the back-projection is modelled by a back-projection operator Rt who is none
other than the transposed matrix of R. Thus, the reconstruction problem is limited in solving
the inverse problem f = Rt.p.

The resolution of the inverse problem by iterative methods consists in finding a solution f
minimizing the distance d between p and R.f where p and R are known. Here, it is question to
start from an arbitrary estimate of the image solution and to proceed schematically to the
correction the first estimate basing on a principle of trial and error. Each next estimate is
projected and the result obtained is compared to the measured projection. The returned error
is used to improve the next estimate. This method leads to build gradually low-to-high
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frequencies of the image solution. The results of the first iterations are smooth because of the
predominance of low frequencies (internal structure) of the object. Subsequently, more
iteration are applied more high frequencies (overall shape and background noise) are repre‐
sented. The image produced by iterations approximate gradually the image solution (the
algorithm converges) [6]. However, we show that when using such iterative methods and after
a number of iterations, the process begins to diverge (under the influence of noise) and the
image moves away from the true solution. To overcome this inconvenient, we impose a
constraint to the reconstruction process to interrupt the iteration after a certain number of
iterations. This is equivalent to use a low pass filter as in the case of filtered back-projection
method.

 

fk 

pi 
Back-projection 

fk 

pi 
Projection  

Figure 7. Illustration of projection and back-projection processes.

2.1. Projection modeling

The projection process is modeled by considering the coefficients of the projection matrix R
that generate the acquisition data. Some special geometric and physical considerations are
necessary for this modeling. In the iterative reconstruction method the modeling concerns the
following points:

1. Modeling of the pixel (detector) intensity distribution: it is necessary to specify the
real  conditions  of  image  pixels  projection  [6].  It  is  based  on  the  evaluation  of  the
contribution of each pixel in the corresponding projection line (ray). Knowing that the
most  accurate  model  (perfect)  and  the  more  complicated  to  be  applied  consists  in
considering square pixel (uniform); simpler models are possible. Among these simple
models,  there  is  the  model  called  Dirac  model  in  which  all  the  pixel  intensity  is
concentrated in the centre of the pixel. Thus, the whole intensity of the pixel contrib‐
utes to the projection line (ray) if and only if it passes through the Dexel. There is also
another model called the model of concave disc which is considered as a compromise
between the two previous models. In this model, the intensity of the pixel is geometri‐
cally limited to a disk included in the pixel and distributed so that its  projection is
rectangular regardless of the direction of projection [6].
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2. Geometric modeling of the projection operator: for the determination of the coefficients
of the projection matrix R, we must consider the number of projections and their angular
distributions and the projection beam geometry which can be parallel or fan. If, for
example, the intensity model distribution is that of Dirac, a given pixel with an index k
crossed by a ray of an index p

l
 generates a projection coefficient r

lk
 equal to 1; if this is not

the case, zero value is assigned.

3. Physical modeling of the projection operator: this model is based on the distance between
the position of the object pixel to the detector. A pixel located away from the detector will
see its contribution to the projection ray reduced compared to a nearest one. With this
modeling aspect the beam attenuation will be included in the resulting reconstructed
image.

2.2. Main iterative algorithms

There are many algorithms that have been developed that used the iterative method for
tomographic reconstruction (see practical example 1). Among these algorithms, the main ones
are: the Algebraic Reconstruction Technique (ART), the Simultaneous Iterative Reconstruction
Technique (SIRT), and the Iterative Least Squared Technique (ILST). Currently, the most
commonly used algorithms are: the Expectation Maximization algorithm (EM) and the
Conjugate Gradient algorithm (CG).

1. EM algorithm

This algorithm was developed and proposed by Lange and Carson. The formula of this
algorithm is the following [6]:

1

.
n n t

n
pf f R

R f
+ = (24)

Where n is the number of the actual iteration. This algorithm is characterized by the fact that
it keeps the number of iterations for each projection. Moreover its multiplicative form gives a
positivity constraint although it implies a slow convergence.

2. Conjugate gradient algorithm (CG)

It is an algorithm which is used because it converges very quickly. It is based on a classical
descent method. Its formula of iterative updating can be, roughly, given by the following
expression [7]:

1n n n nf f da+ = + (25)

We can verify that the correction is not multiplicative as for EM algorithm, but it is additive.
This formula is characterized by a descent direction d (Eq. 26) and a descent speed α (Eq.27)
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that are recalculated in a conjugated manner for each iteration and this to optimize the speed
of convergence [6].

2

( ) (Rt p - Rt R fn)

t t n
n

t t n t

R p R Rf

R p R Rf R
a

-
=

-
(26)

1 0

1

.1 :

.2 : ( )

t t

n t t n n n

iteration d R p R Rf
iteration d R p R Rf b d -

= -

= - +
(27)

Through this process, the error between the measured projections and those calculated is
minimized progressively. This error evaluation formula is given by:

2e p Rf= - (28)

3. ART algorithm

The formula of the iterative updating of this algorithm is given by the following expression:

( )
( 1) ( )

2

n
j jn n

i i ji

j

p R f
f f R

R

+
-

= + (29)

The correction in this algorithm can be additive (e=pk-pk
n) or multiplicative (e= pk/pk

n).

4. SIRT algorithm

The formula of the iterative updating of this algorithm is given by the following expression:

( )
( 1) ( )

2

n
j jj jn n

i i
jij i Jj

p R f
f f

R R
+ = + -

å å
å å å

(30)

Practical example 1

To illustrate the difference between the iterative algorithms, let consider the example of figure (E.1). In this example we

consider an object (image) composed by 2 pixels which are projected as shown on this figure.
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Fig. E.1. Object (2 pixels) and projection model

For each projected line, the projector matrix is modeled by considering a value proportional the area of the pixel

covered by the ray (projection line).For example for p1 the projection ray cover approximately ¾ of the area of the first

pixel (f1) and ¼ of the area of the second pixel (p2). Therefore, the projection operator (matrix) can is given by:

R =
3 / 4 1 / 4
1 / 4 3 / 4

(E.1)

Supposing that the object function in known (f1=2, f2=3). In this case the projection values are equal to:

p1 = 3
4 f 1 + 1

4 f =2
9
4 (1)

p2 = 1
4 f 1 + 3

4 f =2
11
4 (2)

(E.2)

We try know to compute the object function data (f1, f2) using some practical iterative algorithms and to compare the

values obtained to real ones (f1=2, f2=3). For all of the following algorithms, the initial iteration conditions are:

f1
0=f2

0=0="/> p1
0= p2

0=0.

1. Additive ART algorithm with Kackzmarz method

In this method, the iteration updating is given by:

f i
n+1 = f i

n + (pk − pk n)Rki ∑ j Rkj2 (E.3)

During the iteration process just one ray equation (p1 or p2) is used per iteration alternatively. Results of the iteration and

p1, p2 updating are shown on the following matrix.

Iteration(n) 1 2 3 4 5 6 7 8 9 10 11 12 13
f1n 2.70 3.26 2.25 2.45 2.20 2.25 2.06 2.10 2.02 2.02 2.02 2.02 2.00
f2n 0.90 2.58 2.24 2.84 2.75 2.90 2.84 2.96 2.93 2.98 2.97 2.99 2.98

p1n / 3.09 / 2.54 / 2.41 / 2.31 / 2.27 / 2.26 /
p1n 1.35 / 2.24 / 2.61 / 2.64 / 2.70 / 2.73 / 2.73

(E.4)

We can easily verify that this algorithm gives a solution which approximate well the real one (2,3) after 12 iterations

(2.02, 2.99)

2. SIRT algorithm with Jacobi method

In this method, the iteration updating is given by:

f i
n+1 = f i

n + (pk − pk n) / Rii (E.5)

In this method f1
n is calculated from the equation of P1(Eq.E.3(1)) and f1

n from the equation of P1(Eq.E.3(2)) for each

iteration by taking into consideration p1
n and p2

n updating. The results obtained are shown n the following matrix:
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Iteration(n) 1 2 3 4 5 6 7 8 9
f 1n 3 1.78 2.99 2.73 2.11 2.08 2.01 2.01 2.00
f 2n 3.66 2.66 0.81 2.68 2.75 2.96 2.97 2.99 2.99
p1n 3.16 2 2.44 2.71 2.27 2.30 2.25 2.25 /
p2n 4.49 2.44 1.35 2.69 2.59 2.74 2.73 2.74 /

(E.6)

With this algorithm and method the best solution is obtained after 9 iterations.

3. SIRT algorithm with Gauss-Seidel method

This method is similar to the Jacobi method and use the same updating function (E.5) but just for the first iteration which

allows the determination of f1
1 value. After that f2

1 is estimated from p2 equation considering the obtained value f1
1

which itself will be used to determinate f1
2 from p1 equation and so on (by matching alternatively between p1 and p2)

until obtaining the best results. The results obtained are shown on the following matrix:

Iteration(n) 1 2 3 4
f 1n 3 1.18 1.90 1.98
f 2n 2.66 3.27 3.03 3.00

(E.7)

We remark that this algorithm and method gives good results just after 4 iterations; so it is the very fast one in term of

convergence.

End of practical example 1

2.3. Iteration stopping rules

The iterative process for image reconstruction must be stopped at the end of the conver‐
gence phase before it starts diverging. This can be done using some regularization meth‐
ods. Indeed, well selected regularization parameter can controls the amount of stabilization
imposed on the solution. In iterative methods one can use the stopping index as regulariza‐
tion parameter. When an iterative method is employed for image reconstruction, the user
can also study on-line adequate visualizations of the iterates as soon as they are computed,
and simply halt the iteration when the approximations reach the desired quality. This may
actually be the most appropriate stopping rule in many practical applications, but it requires
a good intuitive imagination of what to expect. If this is not the case, a computer can give
us some aid to determine the optimal approximation. The stopping rules are divided into
two categories: rules which are based on knowledge of the norm of the errors, and rules
which do not require such information. If the error norm is known within reasonable accuracy,
the  perhaps  most  well  known  stopping  rule  is  the  discrepancy  principle  Morozov  [8].
Examples of the second category of methods are the L-curve criterion [9], and the general‐
ized cross-validation criterion [10].

3. Conclusions

After a substantial effort, major breakthroughs have been achieved in the last fourteen years
in the mathematical modeling of CT. The aim of this chapter is to survey this progress and to
describe the relevant models, mathematical problems and reconstruction procedures used in
CT. We give a summary on the mathematics of computed tomography. We start with a short
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introduction to integral computed tomography. We then go over to projection and inversion
algorithms. We give a detailed analysis of the filtered back-projection algorithm in the light of
the sampling theorem. We also describe the convergence properties of iterative algorithms.
We shortly mention Fourier based algorithms used in CT.

Good reconstructions from the interlaced lattice can also be obtained by using the direct
algebraic reconstruction algorithm, or by increasing the amount of data through the interpo‐
lation according to the sampling theorem. As we have seen, the interpolation step can
introduce significant errors in certain cases. It has also been shown that the interpolation can
be avoided by choosing the points x where the reconstruction is computed on a polar grid
rather than on a square Cartesian grid, and interchanging the order of the two summations.
This algorithm should work well for the interlaced lattice and is particularly beneficial in case
of the fan-beam sampling geometry, since the method also avoids the homogeneous approx‐
imation, whose influence on the reconstruction is difficult to estimate.

The cone and fan beam scanning are the standard scanning modes in present day’s clinical
practice. The methods described above assumed that the geometry of the acquisition was a
parallel geometry, like that of first generation systems. In the case a conical geometry (or fan),
three methods are possible:

1. The first is to ignore the discrepancy. The error induced by this approximation is consid‐
ered negligible if the beam angle is low (typically below 15 degrees). This method is
applicable to systems of second generation, but more to the following where the beam
must cover the whole section of the patient to remove the translation.

2. The second method is to rearrange the data in parallel projections, mainly by interpolation.

3. The last method is to reformulate the problem completely. It becomes apparent that the
projection theorem cannot be generalized, which does not have direct inversion method.
The projection theorem can be adapted to different geometries, and then the algorithm is
the same as for a parallel geometry, with the same calculations. Finally, the filtered back
projection formulas can be corrected and result in a slightly different algorithms. The
algebraic methods have some fewer additional problems, but the flexibility in the choice
of basic functions and thus the coefficients of the matrix R, allows these methods to be
adapted to different geometries.

Finally, I want just to add that the purpose of this chapter is to give an introduction to the
studied topic and treat some related aspects in more detail. The reader interested in a broader
overview of the field, its relation to various branches of pure and applied mathematics, and
its development over the years may wish to consult the appropriate bibliography.
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