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1. Introduction

Often experimental work requires analysis of many datasets derived in a similar way. For
each dataset it is possible to find a specific theoretical distribution that describes best the sam‐
ple. A basic assumption in this type of work is that if the mechanism (experiment) to generate
the samples is the same, then the distribution type that describes the datasets will also be the
same [1]. In that case, the difference between the sets will be captured not through changing
the type of the distribution, but through changes in its parameters. There are some advantag‐
es in finding whether a type of theoretical distribution that fits several datasets exists. At first,
it improves the fit because the assumptions concerning the mechanism underlying the experi‐
ment can be verified against several datasets. Secondly, it is possible to investigate how the
variation of the input parameters influences the parameters of the theoretical distribution. In
some experiments it might be proven that the differences in the input conditions lead to quali‐
tative change of the fitted distributions (i.e. change of the type of the distribution). In other
cases the variation of the input conditions may lead only to quantitative changes in the output
(i.e. changes in the parameters of the distribution). Then it is of importance to investigate the
statistical significance of the quantitative differences, i.e. to compare the statistical difference
of the distribution parameters. In some cases it may not be possible to find a single type of dis‐
tribution that fits all datasets. A possible option in these cases is to construct empirical distri‐
butions  according to  known techniques  [2],  and investigate  whether  the  differences  are
statistically significant. In any case, proving that the observed difference between theoretical,
or between empirical distributions, are not statistically significant allows merging datasets
and operating on larger amount of data, which is a prerequisite for higher precision of the
statistical results. This task is similar to testing for stability in regression analysis [3].
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Formulating three separate tasks, this chapter solves the problem of identifying an appropri‐
ate distribution type that fits several one-dimensional (1-D) datasets and testing the statistical
significance of the observed differences in the empirical and in the fitted distributions for each
pair of samples. The first task (Task 1) aims at identifying a type of 1-D theoretical distribu‐
tion that fits best the samples in several datasets by altering its parameters. The second task
(Task 2) is to test the statistical significance of the difference between two empirical distribu‐
tions of a pair of 1-D datasets. The third task (Task 3) is to test the statistical significance of the
difference between two fitted distributions of the same type over two arbitrary datasets.

Task 2 can be performed independently of the existence of a theoretical distribution fit valid for
all samples. Therefore, comparing and eventually merging pairs of samples will always be pos‐
sible. This task requires comparing two independent discontinuous (stair-case) empirical cu‐
mulative distribution functions (CDF). It is a standard problem and the approach here is based
on a symmetric variant of the Kolmogorov-Smirnov test [4] called the Kuiper two-sample test,
which essentially performs an estimate of the closeness of a pair of independent stair-case CDFs
by finding the maximum positive and the maximum negative deviation between the two [5].
The distribution of the test statistics is known and the p value of the test can be readily estimated.

Tasks 1 and 3 introduce the novel elements of this chapter. Task 1 searches for a type of the‐
oretical distribution (out of an enumerated list of distributions) which fits best multiple da‐
tasets by varying its specific parameter values. The performance of a distribution fit is
assessed through four criteria, namely the Akaike Information Criterion (AIC) [6], the Baye‐
sian Information Criterion (BIC) [7], the average and the minimal p value of a distribution fit
to all datasets. Since the datasets contain random measurements, the values of the parame‐
ters for each acquired fit in Task 1 are random, too. That is why it is necessary to check
whether the differences are statistically significant, for each pair of datasets. If not, then both
theoretical fits are identical and the samples may be merged. In Task 1 the distribution of the
Kuiper statistic cannot be calculated in a closed form, because the problem is to compare an
empirical distribution with its own fit and the independence is violated. A distribution of
the Kuiper statistic in Task 3 cannot be estimated in close form either, because here one has
to compare two analytical distributions, but not two stair-case CDFs. For that reason the dis‐
tributions of the Kuiper statistic in Tasks 1 and 3 are constructed via a Monte Carlo simula‐
tion procedures, which in Tasks 1 is based on Bootstrap [8].

The described approach is illustrated with practical applications for the characterization of
the fibrin structure in natural and experimental thrombi evaluated with scanning electron
microscopy (SEM).

2. Theoretical setup

The approach considers N 1-D datasets χ i = (x1
i, x2

i, ..., xni

i ), for i=1,2,…,N. The data set χ i

contains ni>64 sorted positive samples (0< x1
i ≤ x2

i ≤ ...≤ xni

i ) of a given random quantity under
equal conditions. The datasets contain samples of the same random quantity, but under
slightly different conditions.
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The procedure assumes that M types of 1-D theoretical distributions are analyzed. Each of
them has a probability density function PDF j(x, p→ j), a cumulative distribution function
CDF j(x, p→ j), and an inverse cumulative distribution function invCDF j(P , p→ j), for j=1, 2, …,

M. Each of these functions depends on nj
p-dimensional parameter vectors p→ j (for j=1, 2, …,

M), dependent on the type of theoretical distribution.

2.1. Task 1 – Theoretical solution

The empirical cumulative distribution function CDFe
i(.)  is  initially linearly approximated

over (ni+1) nodes as (ni –1) internal nodes CDFe
i(xk

i / 2 + xk +1
i / 2)=k / ni  for k=1,2,…,ni–1 and

two  external  nodes  CDFe
i(x1

i −Δd
i)=0  and  CDFe

i(xni

i + Δu
i)=1,  where

Δd
i =min(x1

i, (x16
i − x1

i) / 30)  and Δu
i = (xni

i − xni−15
i ) / 30 are  the  halves  of  mean inter-sample in‐

tervals  in  the  lower  and  upper  ends  of  the  dataset  χ i.  This  is  the  most  frequent  case
when the sample values  are  positive  and the lower external  node will  never  be  with a
negative abscissa because (x1

i −Δd
i)≥0. If both negative and positive sample values are ac‐

ceptable then Δd
i = (x16

i − x1
i) / 30 and Δu

i = (xni

i − xni−15
i ) / 30.  Of course if  all  the sample values

have to  be negative then Δd
i = (x16

i − x1
i) / 30 and Δu

i =min(− xni

i , (xni

i − xni−15
i ) / 30).  In  that  rare

case the upper external node will never be with positive abscissa because (xni

i + Δu
i)≤0.

It is convenient to introduce “before-first” x0
i = x1

i −2Δd
i and “after-last” xni+1

i = xni

i + 2Δu
i sam‐

ples. When for some k=1,2,…,ni and for p>1 it is true that xk−1
i < xk

i = xk +1
i = xk +2

i = ... = xk + p
i < xk + p+1

i ,
then the initial approximation of CDFe

i(.) contains a vertical segment of p nodes. In that case
the p nodes on that segment are replaced by a single node in the middle of the vertical seg‐
ment CDFe

i(xk
i)=(k + p / 2−1 / 2) / ni. The described two-step procedure [2] results in a strictly

increasing function CDFe
i(.) in the closed interval x1

i −Δd
i; xni

i + Δu
i . That is why it is possible

to introduce invCDFe
i(.) with the domain [0; 1] as the inverse function of CDFe

i(.) in
x1

i −Δd
i; xni

i + Δu
i . The median and the interquartile range of the empirical distribution can be

estimated from invCDFe
i(.), whereas the mean and the standard deviation are easily estimat‐

ed directly from the dataset χ i:

•
mean: meane

i = 1
ni
∑
k=1

ni

xk
i

• median: mede
i = invCDFe

i(0.5)

•
standard deviation: stde

i = 1
ni − 1∑

k=1

ni (xk
i −meane

i)
2
;

• inter-quartile range: iqre
i = invCDFe

i(0.75)− invCDFe
i(0.25).
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The non-zero part of the empirical density PDFe
i(.) is determined in the closed interval

x1
i −Δd

i; xni

i + Δu
i  as a histogram with bins of equal area (each bin has equal product of densi‐

ty and span of data). The number of bins bi is selected as the minimal from the Scott [9],
Sturges [10] and Freedman-Diaconis [11] suggestions: bi =min{bi

Sc, bi
St , bi

FD}, where

bi
Sc = fl(0.2865(xni

i − x1
i) ni

3 / stde
i), bi

St = fl(1 + log2(ni)), and bi
FD = fl(0.5(xni

i − x1
i) ni

3 / iqre
i). In the

last three formulae, fl(y) stands for the greatest whole number less or equal to y. The lower
and upper margins of the k-th bin md ,k

i  and mu,k
i  are determined as quantiles (k–1)/bi and k/bi

respectively: md ,k
i = invCDFe

i(k / bi −1 / bi) and mu,k
i = invCDFe

i(k / bi). The density of the kth bin is

determined as PDFe
i(x)=bi

−1 / (mu,k
i −md ,k

i ). The described procedure [2] results in a histo‐

gram, where the relative error of the worst PDFe
i(.) estimate is minimal from all possible

splitting of the samples into bi bins. This is so because the PDF estimate of a bin is found as
the probability that the random variable would have a value in that bin divided to the bin’s
width. This probability is estimated as the relative frequency to have a data point in that bin
at the given data set. The closer to zero that frequency is the worse it has been estimated.
That is why the worst PDF estimate is at the bin that contains the least number of data
points. Since for the proposed distribution each bin contains equal number of data points,
any other division to the same number of bins would result in having a bin with less data
points. Hence, the relative error of its PDF estimate would be worse.

The improper integral ∫
−∞

x

PDFe
i(x)dx of the density is a smoothened version of CDFe

i(.) linear‐

ly approximated over (bi+1) nodes: (invCDFe
i(k / bi); k / bi) for k=0, 1, 2, …, bi.

If the samples are distributed with density PDF j(x, p→ j), then the likelihood of the dataset χ i

is L j
i(p→ j)=∏

k=1

ni

PDF j(xk
i, p→ j). The maximum likelihood estimates (MLEs) of p→ j are determined

as those p→ j
i , which maximize L j

i(p→ j), that is p→ j
i =arg{max

p→ j

L j
i(p→ j) }. The numerical character‐

istics of the jth theoretical distribution fitted to the dataset χ i are calculated as:

•
mean: meanj

i = ∫
−∞

+∞

x.PDF j(x, p→ j
i )dx

• median: medj
i = invCDF j(0.5, p→ j

i )
• mode: modej

i =arg{max
x

PDF j(x, p→ j) }
•

standard deviation: stdj
i = ∫

−∞

+∞

(x −meanj
i)2PDF j(x, p→ j

i )dx
2

;

Theory and Applications of Monte Carlo Simulations4



• inter-quartile range: iqrj
i = invCDF j(0.75, p→ j

i )− invCDFj(0.25, p→ j
i ).

The quality of the fit can be assessed using a statistical hypothesis test. The null hypothe‐
sis H0  is that CDFe

i(x) is equal to CDF j(x, p→ j
i ),  which means that the sample χ i  is drawn

from  CDF j(x, p→ j
i ).  The  alternative  hypothesis  H1  is  that  CDFe

i(x)  is  different  from

CDF j(x, p→ j
i ), which means that the fit is not good. The Kuiper statistic V j

i  [12] is a suitable
measure  for  the  goodness-of-fit  of  the  theoretical  cumulative  distribution  functions
CDF j(x, p→ j

i ) to the dataset χ i:

V j
i =max

x
{CDFe

i(x)−CDF j(x, p→ j
i )} + max

x
{CDF j(x, p→ j

i )−CDFe
i(x)}. (1)

The theoretical Kuiper’s distribution is derived just for the case of two independent staircase
distributions, but not for continuous distribution fitted to the data of another [5]. That is
why the distribution of V from (1), if H0 is true, should be estimated by a Monte Carlo proce‐
dure. The main idea is that if the dataset χ i = (x1

i, x2
i, ..., xni

i ) is distributed in compliance with
the 1-D theoretical distributions of type j, then its PDF would be very close to its estimate
PDF j(x, p→ j

i ), and so each synthetic dataset generated from PDF j(x, p→ j
i ) would produce Kuip‐

er statistics according to (1), which would be close to zero [1].

The algorithm of the proposed procedure is the following:

1. Construct the empirical cumulative distribution function CDFe
i(x) describing the data

in χ i.

2. Find the MLE of the parameters for the distributions of type j fitting χ i as

p→ j
i =arg{max

p→ j

∏
k=1

ni

PDF j(xk
i, p→ j) }.

3. Build the fitted cumulative distribution function CDF j(x, p→ j
i ) describing χ i.

4. Calculate the actual Kuiper statistic V j
i according to (1).

5. Repeat for r=1,2,…, nMC (in fact use nMC simulation cycles):

a. generate a synthetic dataset χr
i ,syn = {x1,r

i ,syn, x2,r
i ,syn, ..., xni ,r

i ,syn} from the fitted cumulative

distribution function CDF j(x, p→ j
i ). The dataset χr

i ,syn contains ni sorted samples

(x1,r
i ,syn ≤ x2,r

i ,syn ≤ ...≤ xni ,r
i ,syn);

b. construct the synthetic empirical distribution function CDFe,r
i ,syn(x) describing the

data in χr
i ,syn;

c. find the MLE of the parameters for the distributions of type j fitting χr
i ,syn as

Monte Carlo Statistical Tests for Identity of Theoretical and Empirical Distributions of Experimental Data
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p→ j ,r
i ,syn =arg{max

p→ j

∏
k=1

ni

PDF j(xk ,r
i ,syn, p→ j) };

d. build the theoretical distribution function CDF j ,r
syn(x, p→ j ,r

i ,syn) describing χr
i ,syn;

e. estimate the rth instance of the synthetic Kuiper statistic as
V j ,r

i ,syn =max
x

{CDFe,r
i ,syn(x)−CDF j ,r

syn(x, p→ j ,r
i ,syn)} + max

x
{CDF j ,r

syn(x, p→ j ,r
i ,syn)−CDFe,r

i ,syn(x)}.

6. The p-value Pvalue, j
fit ,i  of the statistical test (the probability to reject a true hypothesis H0

that the jth type theoretical distribution fits well to the samples in dataset χ i) is estimat‐
ed as the frequency of generating synthetic Kuiper statistic greater than the actual Kuip‐
er statistic V j

i from step 4:

Pvalue, j
fit ,i = 1

n mc ∑
r=1

V j
i<V j ,r

i ,syn

n mc

1 (2)

In fact, (2) is the sum of the indicator function of the crisp set, defined as all synthetic data‐
sets with a Kuiper statistic greater than V j

i.

The performance of each theoretical distribution should be assessed according to its good‐
ness-of-fit measures to the N datasets simultaneously. If a given theoretical distribution can‐
not be fitted even to one of the datasets, then that theoretical distribution has to be discarded
from further consideration. The other theoretical distributions have to be ranked according
to their ability to describe all datasets. One basic and three auxiliary criteria are useful in the
required ranking.

The basic criterion is the minimal p-value of the theoretical distribution fits to the N data‐
sets:

minPvalue, j
fit =min{Pvalue, j

fit ,1 , Pvalue, j
fit ,2 , ..., Pvalue, j

fit ,N }, for j=1, 2, ...,M . (3)

The first auxiliary criterion is the average of the p-values of the theoretical distribution fits to
the N datasets:

meanPvalue, j
fit = 1

N ∑
j=1

N
Pvalue, j

fit ,i ,  for j =1,  2,  .., M . (4)

The second and the third auxiliary criteria are the AIC-Akaike Information Criterion [6] and
the BIC-Bayesian Information Criterion [7], which corrects the negative log-likelihoods with
the number of the assessed parameters:

Theory and Applications of Monte Carlo Simulations6



AI Cj = −2∑
i=1

N
log(L j

i(p→ j
i )) + 2log(N .nj

p)=

= −2∑
i=1

N
∑
j=1

M
logPDF j(xk

i, p→ j
i ) + 2log(N .nj

p)
(5)

BI Cj = −2∑
i=1

N
log(L j

i(p→ j
i )) + 2log(N .nj

p).log(∑
i=1

M
ni)=

= −2∑
i=1

N
∑
j=1

M
logPDF j(xk

i, p→ j
i ) + 2log(N .nj

p).log(∑
i=1

M
ni)

(6)

for j=1,2,..,M. The best theoretical distribution type should have maximal values for
minPvalue, j

fit  and meanPvalue, j
fit , whereas its values for AICj and BICj should be minimal. On top,

the best theoretical distribution type should have minPvalue, j
fit >0.05, otherwise no theoretical

distribution from the initial M types fits properly to the N datasets.

That solves the problem for selecting the best theoretical distribution type for fitting the
samples in the N datasets.

2.2. Task 2 – Theoretical solution

The second problem is the estimation of the statistical significance of the difference between
two datasets. It is equivalent to calculating the p-value of a statistical hypothesis test, where
the null hypothesis H0 is that the samples of χ i1 and χ i2 are drawn from the same underly‐
ing continuous population, and the alternative hypothesis H1 is that the samples of χ i1 and
χ i2 are drawn from different underlying continuous populations. The two-sample asymp‐
totic Kuiper test is designed exactly for that problem, because χ i1 and χ i2 are independently
drawn datasets. That is why “staircase” empirical cumulative distribution functions [13] are
built from the two datasets χ i1 and χ i2:

CDFsce
i (x)= ∑

k=1

xk
i≤x

ni

1 / ni, for i ∈ {i1, i2}. (7)

The ”staircase” empirical CDFsce
i (.) is a discontinuous version of the already defined empiri‐

cal CDFe
i(.). The Kuiper statistic V i1,i2 [12] is a measure for the closeness of the two ‘stair‐

case’ empirical cumulative distribution functions CDFsce
i1(.) and CDFsce

i2(.):

V i1,i2 =max
x

{CDFsce
i1(x)−CDFsce

i2(x)} + max
x

{CDFsce
i2(x)−CDFsce

i1(x)} (8)
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The distribution of the test statics V i1,i2 is known and the p-value of the two tail statistical
test with null hypothesis H0, that the samples in χ i1 and in χ i2 result in the same ‘staircase’
empirical cumulative distribution functions is estimated as a series [5] according to formulae
(9) and (10).

The algorithm for the theoretical solution of Task 2 is straightforward:

1. Construct the ”staircase” empirical cumulative distribution function describing the data

in χ i1 as CDFsce
i1(x)= ∑

k=1

xk
i1≤x

ni1

1 / ni1.

2. Construct the ”staircase” empirical cumulative distribution function describing the data

in χ i2 as CDFsce
i2(x)= ∑

k=1

xk
i2≤x

ni2

1 / ni2.

3. Calculate the actual Kuiper statistic V i1,i2 according to (8).

4. The p-value of the statistical test (the probability to reject a true null hypothesis H0) is esti‐
mated as:

Pvalue,e
i1,i2 =2∑

j=1

+∞ (4 j 2λ 2−1)e-2 j 2λ 2
 (9)

where

λ = 1
V i1,i2

( ni1ni2

ni1 + ni2
+ 0.155 + 0.24

ni1 + ni2

ni1ni2
) (10)

If Pvalue,e
i1,i2 <0.05 the hypothesis H0 is rejected.

2.3. Task 3 – Theoretical solution

The last problem is to test the statistical significance of the difference between two fitted dis‐
tributions of the same type. This type most often would be the best type of theoretical distri‐
bution, which was identified in the first problem, but the test is valid for any type. The
problem is equivalent to calculating the p-value of statistical hypothesis test, where the null
hypothesis H0 is that the theoretical distribution CDF j(x, p→ j

i1) and CDF j(x, p→ j
i2) fitted to the

datasets χ i1 and χ i2 are identical, and the alternative hypothesis H1 is that CDF j(x, p→ j
i1) and

CDF j(x, p→ j
i2) are not identical.

The test statistic again is the Kuiper one V j
i1,i2 :

Theory and Applications of Monte Carlo Simulations8



V j
i1,i2 =max

x
{CDF j(x, p→ j

i1)−CDF j(x, p→ j
i2)} + max

x
{CDF j(x, p→ j

i2)−CDF j(x, p→ j
i1)}. (11)

As it has already been mentioned the theoretical Kuiper’s distribution is derived just for the
case of two independent staircase distributions, but not for the case of two independent con‐
tinuous cumulative distribution functions. That is why the distribution of V from (11), if H0

is true, should be estimated by a Monte Carlo procedure. The main idea is that if H0 is true,
then CDF j(x, p→ j

i1) and CDF j(x, p→ j
i2) should be identical to the merged distribution

CDF j(x, p→ j
i1+i2), fitted to the merged dataset χ i1+i2 formed by merging the samples of χ i1 and

χ i2 [1].

The algorithm of the proposed procedure is the following:

1. Find the MLE of the parameters for the distributions of type j fitting χ i1 as

p→ j
i1 =arg{max

p→ j

∏
k=1

ni1

PDF j(xk
i1, p→ j) }.

2. Build the fitted cumulative distribution function CDF j(x, p→ j
i1) describing χ i1.

3. Find the MLE of the parameters for the distributions of type j fitting χ i2 as

p→ j
i2 =arg{max

p→ j

∏
k=1

ni2

PDF j(xk
i2, p→ j) }.

4. Build the fitted cumulative distribution function CDF j(x, p→ j
i2) describing χ i2.

5. Calculate the actual Kuiper statistic V j
i1,i2 according to (11).

6. Merge the samples χ i1 and χ i2, and form the merged data set χ i1+i2.

7. Find the MLE of the parameters for the distributions of type j fitting χ i1+i2 as

p→ j
i1+i2 =arg{max

p→ j

∏
k=1

ni1

PDF j(xk
i1, p→ j)∏

k=1

ni2

PDF j(xk
i2, p→ j) }.

8. Fit the merged fitted cumulative distribution function CDF j(x, p→ j
i1+i2) to χ i1+i2.

9. Repeat for r=1,2,…, nMC (in fact use nMC simulation cycles):

a. a. generate a synthetic dataset χr
i1,syn = {x1,r

i1,syn, x2,r
i1,syn, ..., xni1,r

i1,syn} from the fitted cu‐

mulative distribution function CDF j(x, p→ j
i1+i2);

b. b. find the MLE of the parameters for the distributions of type j fitting χr
i1,syn as

p→ j ,r
i1,syn =arg{max

p→ j

∏
k=1

ni1

PDF j(xk ,r
i1,syn, p→ j) };

c. c. build the theoretical distribution function CDF j ,r
syn(x, p→ j ,r

i1,syn) describing χr
i1,syn;

Monte Carlo Statistical Tests for Identity of Theoretical and Empirical Distributions of Experimental Data
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d. d. generate a synthetic dataset χr
i2,syn = {x1,r

i2,syn, x2,r
i2,syn, ..., xni2,r

i2,syn} from the fitted cu‐

mulative distribution function CDF j(x, p→ j
i1+i2);

e. e. find the MLE of the parameters for the distributions of type j fitting χr
i2,syn as

p→ j ,r
i2,syn =arg{max

p→ j

∏
k=1

ni2

PDF j(xk ,r
i2,syn, p→ j) };

f. f. build the theoretical distribution function CDF j ,r
syn(x, p→ j ,r

i2,syn) describing χr
i2,syn;

g. g. estimate the rth instance of the synthetic Kuiper statistic as:

V j ,r
i1,i2,syn =max

x
{CDF j ,r

syn(x, p→ j ,r
i1,syn)−CDF j ,r

syn(x, p→ j ,r
i2,syn)}+

+max
x

{CDF j ,r
syn(x, p→ j ,r

i2,syn)−CDF j ,r
syn(x, p→ j ,r

i1,syn)}.

10. The p-value Pvalue, j
i1,i2 of the statistical test (the probability to reject a true hypothesis H0

that the jth type theoretical distribution function CDF j(x, p→ j
i1) and CDF j(x, p→ j

i2) are identi‐
cal) is estimated as the frequency of generating synthetic Kuiper statistic greater than
the actual Kuiper statistic V j

i1,i2 from step 5:

Pvalue, j
i1,i2 = 1

n mc ∑
r=1

V j
i1,i2<V j ,r

i1,i2,syn

n mc

1 (12)

Formula (12), similar to (2), is the sum of the indicator function of the crisp set, defined
as all synthetic dataset pairs with a Kuiper statistic greater than V j

i1,i2.

If Pvalue, j
i1,i2 <0.05 the hypothesis H0 is rejected.

3. Software

A platform of program functions, written in MATLAB environment, is created to execute
the statistical procedures from the previous section. At present the platform allows users to
test the fit of 11 types of distributions on the datasets. A description of the parameters and
PDF of the embodied distribution types is given in Table 1 [14, 15]. The platform also per‐
mits the user to add optional types of distribution.

The platform contains several main program functions. The function set_distribution contains
the information about the 11 distributions, particularly their names, and the links to the func‐
tions that operate with the selected distribution type. Also, the function permits the inclusion
of new distribution type. In that case, the necessary information the user must provide as input
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is the procedures to find the CDF, PDF, the maximum likelihood measure, the negative log-

likelihood, the mean and variance and the methods of generating random arrays from the giv‐

en  distribution  type.  The  function  also  determines  the  screen  output  for  each  type  of

distribution.

Beta distribution Lognormal distribution

Parameters α>0, β>0 Parameters μ∈ (−∞; + ∞) , σ>0,

Support x∈ 0; 1 Support x∈ 0; +∞)

PDF f (x; α, β) = x α−1(1− x)β−1

B(α , β) ,

where B(α, β) is a beta function

PDF
f (x; μ, σ) = 1

xσ 2π
e
−

(ln(x )−μ)2

2σ 2

Exponential distribution Normal distribution

Parameters λ>0 Parameters μ, σ>0

Support x∈ 0; +∞) Support x∈ (−∞; +∞)

PDF
f (x; λ) = {λe −λx for x ≥0

0 for x < 0

PDF
f (x; μ, σ) = 1

σ 2π
e
−

(x−μ)2

2σ 2

Extreme value distribution Rayleigh distribution

Parameters α, β≠0 Parameters σ > 0

Support x∈ (−∞; +∞) Support x∈ 0; +∞)

PDF
f (x ; α, β) = e (α−x )/β −e

(α−x )/β

β

PDF
f (x; σ) =

1
σ 2 × xexp( − x 2

2σ 2 )
Gamma distribution Uniform distribution

Parameters k>0, θ>0 Parameters a, b∈ (−∞; +∞)

Support x∈ 0; +∞) Support a≤ x ≤b

PDF f (x; k , θ) = x k−1 e −x/θ

θ kΓ(k ) ,

where Γ(k ) is a gamma function

PDF
f (x; a, b) = { 1

b − a for a≤ x ≤b

0 for x < a or x > b

Generalized extreme value distribution Weibull distribution

Parameters μ∈ (−∞; +∞), σ∈ (0; +∞), ξ∈ (−∞; +∞) Parameters λ > 0, k > 0

Support x > μ −σ / ξ (ξ > 0), x < μ −σ / ξ (ξ < 0),

x∈ (−∞; +∞) (ξ = 0)
Support x∈ 0; +∞)

PDF 1
σ (1 + ξz)−1/ξ−1e −(1+ξz)−1/ξ

where z =
x - μ

σ

PDF f (x; λ, k ) =

= { k
λ ( x

λ )k−1
e −(x/λ)k

for x ≥0

0 for x < 0

Generalized Pareto distribution

Parameters xm > 0, k > 0

Support x∈ xm; +∞)
PDF

f (x; xm, k ) =
k xm

k

x k +1

Table 1. Parameters, support and formula for the PDF of the eleven types of theoretical distributions embodied into
the MATLAB platform
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The program function kutest2 performs a two-sample Kuiper test to determine if the inde‐
pendent random datasets are drawn from the same underlying continuous population, i.e. it
solves Task 2 (see section 2.2) (to check whether two different datasets are drawn from the
same general population).

Another key function is fitdata. It constructs the fit of each theoretical distribution over each
dataset, evaluates the quality of the fits, and gives their parameters. It also checks whether
two distributions of one type fitted to two different arbitrary datasets are identical. In other
words, this function is associated with Task 1 and 3 (see sections 2.1 and 2.2). To execute the
Kuiper test the function calls kutest. Finally, the program function plot_print_data provides
the on-screen results from the statistical analysis and plots figures containing the pair of dis‐
tributions that are analyzed. The developed software is available free of charge upon request
from the authors provided proper citation is done in subsequent publications.

4. Source of experimental data for analysis

The statistical procedures and the program platform introduced in this chapter are imple‐
mented in an example focusing on the morphometric evaluation of the effects of thrombin
concentration on fibrin structure. Fibrin is a biopolymer formed from the blood-borne fibri‐
nogen by an enzyme (thrombin) activated in the damaged tissue at sites of blood vessel wall
injury to prevent bleeding. Following regeneration of the integrity of the blood vessel wall,
the fibrin gel is dissolved to restore normal blood flow, but the efficiency of the dissolution
strongly depends on the structure of the fibrin clots. The purpose of the evaluation is to es‐
tablish any differences in the density of the branching points of the fibrin network related to
the activity of the clotting enzyme (thrombin), the concentration of which is expected to
vary in a broad range under physiological conditions.

For the purpose of the experiment, fibrin is prepared on glass slides in total volume of 100 μl
by clotting 2 mg/ml fibrinogen (dissolved in different buffers) by varying concentrations of
thrombin for 1 h at 37 °C in moisture chamber. The thrombin concentrations in the experi‐
ments vary in the range 0.3 – 10 U/ml, whereas the two buffers used are: 1) buffer1 – 25 mM
Na-phosphate pH 7.4 buffer containing 75 mM NaCl; 2) buffer2 - 10 mM N-(2-Hydroxyeth‐
yl) piperazine-N’-(2-ethanesulfonic acid) (abbreviated as HEPES) pH 7.4 buffer containing
150 mM NaCl. At the end of the clotting time the fibrins are washed in 3 ml 100 mM Na-
cacodilate pH 7.2 buffer and fixated with 1% glutaraldehyde in the same buffer for 10 min.
Thereafter the fibrins are dried in a series of ethanol dilutions (20 – 96 %), 1:1 mixture of 96
%(v/v) ethanol/acetone and pure acetone followed by critical point drying with CO2 in
E3000 Critical Point Drying Apparatus (Quorum Technologies, Newhaven, UK). The dry
samples are examined in Zeiss Evo40 scanning electron microscope (Carl Zeiss, Jena, Ger‐
many) and images are taken at an indicated magnification. A total of 12 dry samples of fi‐
brins are elaborated in this fashion, each having a given combination of thrombin
concentration and buffer. Electron microscope images are taken for each dry sample (one of
the analyzed dry samples of fibrins is presented in Fig. 1). Some main parameters of the 12
collected datasets are given in Table 2.
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An automated procedure is elaborated in MATLAB environment (embodied into the pro‐
gram function find_distance.m) to measure lengths of fibrin strands (i.e. sections between two
branching points in the fibrin network) from the SEM images. The procedure takes the file
name of the fibrin image (see Fig. 1) and the planned number of measurements as input.
Each file contains the fibrin image with legend at the bottom part, which gives the scale, the
time the image was taken, etc.

The first step requires setting of the scale. A prompt appears, asking the user to type the
numerical value of the length of the scale in μm. Then the image appears on screen and a
red line has to be moved and resized to fit the scale (Fig. 2a and 2b). The third step re‐
quires a red rectangle to be placed over the actual image of the fibrin for selection of the
region of interest (Fig. 2c). With this, the preparations of the image are done, and the user
can start taking the desired number of measurements for the distances between adjacent
nodes (Fig. 2d).

Using this approach 12 datasets containing measurements of lengths between branching
points of fibrin have been collected (Table 2) and the three statistical tasks described above
are executed over these datasets.

Datasets N meane mede stde iqre
Thrombin

concentration
Buffer

DS1 274 0.9736 0.8121 0.5179 0.6160 1.0 buffer1

DS2 68 1.023 0.9374 0.5708 0.7615 10.0 buffer1

DS3 200 1.048 0.8748 0.6590 0.6469 4.0 buffer1

DS4 276 1.002 0.9003 0.4785 0.5970 0.5 buffer1

DS5 212 0.6848 0.6368 0.3155 0.4030 1.0 buffer2

DS6 300 0.1220 0.1265 0.04399 0.05560 1.2 buffer2

DS7 285 0.7802 0.7379 0.3253 0.4301 2.5 buffer2

DS8 277 0.9870 0.9326 0.4399 0.5702 0.6 buffer2

DS9 200 0.5575 0.5284 0.2328 0.2830 0.3 buffer1

DS10 301 0.7568 0.6555 0.3805 0.4491 0.6 buffer1

DS11 301 0.7875 0.7560 0.3425 0.4776 1.2 buffer1

DS12 307 0.65000 0.5962 0.2590 0.3250 2.5 buffer1

Table 2. Distance between branching points of fibrin fibers. Sample size (N), mean (meane in μm), median (mede in μ
m), standard deviation (stde), inter-quartile range (iqre, in μm) of the empirical distributions over the 12 datasets for
different thrombin concentrations (in U/ml) and buffers are presented
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Figure 1. SEM image of fibrin used for morphometric analysis

Figure 2. Steps of the automated procedure for measuring distances between branching points in fibrin. Panels a and
b: scaling. Panel c: selection of region of interest. Panel d: taking a measurement
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4.1. Task 1 – Finding a common distribution fit

A total of 11 types of distributions (Table 1) are tested over the datasets, and the criteria (3)-
(6) are evaluated. The Kuiper statistic’s distribution is constructed with 1000 Monte Carlo
simulation cycles. Table 3 presents the results regarding the distribution fits, where only the
maximal values for minPvalue, j

fit  and meanPvalue, j
fit , along with the minimal values for AICj and

BICj across the datasets are given. The results allow ruling out the beta and the uniform dis‐
tributions. The output of the former is NaN (not-a-number) since it does not apply to values
of x∉ [0; 1]. The latter has the lowest values of (3) and (4), and the highest of (5) and (6), i.e.
it is the worst fit. The types of distributions worth using are mostly the lognormal distribu‐
tion (having the lowest AIC and BIC), and the generalized extreme value (having the high‐
est possible meanPvalue, j

fit ). Figure 3 presents 4 of the 11 distribution fits to DS4. Similar
graphical output is generated for all other datasets and for all distribution types.

Distribution type 1 2 3 4 5 6

AIC NaN 3.705e+3 3.035e+3 8.078e+2 7.887e+2 1.633e+3

BIC NaN 3.873e+3 3.371e+3 1.144e+3 1.293e+3 2.137e+3

minPvalue
fit 5.490e–1 0 0 5.000e–3 1.020e–1 0

meanPvalue
fit NaN 0 0 5.914e–1 6.978e–1 7.500e–4

Distribution type 7 8 9 10 11

AIC 7.847e+2 1.444e+3 1.288e+3 3.755e+3 1.080e+3

BIC 1.121e+3 1.781e+3 1.457e+3 4.092e+3 1.416e+3

minPvalue
fit 8.200e–2 0 0 0 0

meanPvalue
fit 5.756e–1 2.592e–2 8.083e–2 0 1.118e–1

Legend: The numbers of the distribution types stand for the following: 1- beta, 2 – exponential, 3 – extreme value, 4-
gamma, 5 - generalized extreme value, 6 – generalized Pareto; 7 – lognormal, 8 – normal, 9 – Rayleigh, 10 – uniform, 11
– Weibull

Table 3. Values of the criteria used to evaluate the goodness-of-fit of 11 types of distributions over the datasets with
1000 Monte Carlo simulation cycles. The table contains the maximal values for minPvalue, j

fit  and meanPvalue, j
fit , and the

minimal values for AICj and BICj across the datasets for each distribution type. The bold and the italic values are the
best one and the worst one achieved for a given criterion, respectively.
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Figure 3. Graphical results from the fit of the lognormal (a), generalized extreme value (b), exponential (c), and uni‐
form (d) distributions over DS4 (where μ, σ, X min, X max, k  are the parameters of the theoretical distributions from Ta‐
ble 1)

4.2. Task 2 – Identity of empirical distributions

Table 4 contains the p-value calculated according to (9) for all pairs of distributions. The bolded
values indicate the pairs, where the null hypothesis fails to be rejected and it is possible to as‐
sume that those datasets are drawn from the same general population. The results show that it
is possible to merge the following datasets: 1) DS1, DS2, DS3, D4 and DS8; 2) DS7, DS10, and
DS11; 3) DS5 and DS12. All other combinations (except DS5 and DS10) are not allowed and may
give misleading results in a further statistical analysis, since the samples are not drawn from
the same general population. Figure 4a presents the stair-case distributions over DS4 (with
meane

4=1.002,  mede
4=0.9003,  stde

4=0.4785,  iqre
4=0.5970)  and  DS9  (with  meane

9=0.5575,  mede
9

=0.5284, stde
9=0.2328, iqre

9=0.2830). The Kuiper statistic for identity of the empirical distribu‐

tions,  calculated according to (8),  is  V 4,9=0.5005, whereas according to (9) Pvalue,e
4,9 =2.024e–

24<0.05. Therefore the null hypothesis is rejected, which is also evident from the graphical out‐
put. In the same fashion, Figure 4b presents the stair-case distributions over DS1 (with meane

1
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=0.9736, mede
1=0.8121, stde

1=0.5179, iqre
1=0.6160) and DS4. The Kuiper statistic for identity of the

empirical distributions, calculated according to (8), is V 1,4=0.1242, whereas according to (9)
Pvalue,e

1,4 =0.1957>0.05. Therefore the null hypothesis fails to be rejected, which is also confirmed
by the graphical output.
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Figure 4. Comparison of the stair-case empirical distributions over DS4 and DS9 (a) and over DS1 and DS4 (b)

Datasets DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12

DS1 1.00e+00 3.81e-01 6.18e-01 1.96e-01 5.80e-06 8.88e-125 3.46e-03 5.21e-02 4.57e-19 1.73e-04 1.89e-02 2.59e-10

DS2 3.81e-01 1.00e+00 6.77e-01 6.11e-01 1.94e-05 5.13e-44 2.13e-03 2.92e-01 1.71e-09 7.17e-04 5.34e-03 3.96e-08

DS3 6.18e-01 6.77e-01 1.00e+00 2.01e-01 1.46e-07 1.84e-101 6.94e-05 1.47e-01 1.79e-20 5.05e-06 1.55e-03 1.53e-12

DS4 1.96e-01 6.11e-01 2.01e-01 1.00e+00 5.47e-11 1.73e-123 5.14e-05 8.57e-01 2.02e-24 9.34e-08 3.50e-05 2.02e-17

DS5 5.80e-06 1.94e-05 1.46e-07 5.47e-11 1.00e+00 2.61e-100 9.67e-03 1.59e-11 6.68e-04 2.32e-01 1.65e-02 1.52e-01

DS6 8.88e-125 5.13e-44 1.84e-101 1.73e-123 2.61e-100 1.00e+00 7.45e-124 1.69e-125 3.14e-94 7.35e-125 9.98e-126 1.75e-124

DS7 3.46e-03 2.13e-03 6.94e-05 5.14e-05 9.67e-03 7.45e-124 1.00e+00 9.53e-05 7.13e-11 1.64e-01 4.59e-01 2.49e-05

DS8 5.21e-02 2.92e-01 1.47e-01 8.57e-01 1.59e-11 1.69e-125 9.53e-05 1.00e+00 1.04e-25 1.19e-08 6.36e-06 8.47e-19

DS9 4.57e-19 1.71e-09 1.79e-20 2.02e-24 6.68e-04 3.14e-94 7.13e-11 1.04e-25 1.00e+00 3.48e-06 6.05e-12 4.64e-03

DS10 1.73e-04 7.17e-04 5.05e-06 9.34e-08 2.32e-01 7.35e-125 1.64e-01 1.19e-08 3.48e-06 1.00e+00 1.55e-01 9.18e-03

DS11 1.89e-03 5.34e-03 1.55e-03 3.50e-05 1.65e-02 9.98e-126 4.59e-01 6.36e-06 6.05e-12 1.55e-01 1.00e+00 2.06e-04

DS12 2.59e-10 3.96e-08 1.53e-12 2.02e-17 1.52e-01 1.75e-124 2.49e-05 8.47e-19 4.64e-03 9.18e-03 2.06e-04 1.00e+00

Table 4. P-values of the statistical test for identity of stair-case distributions on pairs of datasets. The values on the
main diagonal are shaded. The bold values are those that exceed 0.05, i.e. indicate the pairs of datasets whose stair-
case distributions are identical.
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4.3. Task 3 – Identity of fitted distributions

As concluded in task 1, the lognormal distribution provides possibly the best fit to the 12
datasets. Table 5 contains the p-values calculated according to (12) for the lognormal dis‐
tribution fitted to the datasets with 1000 Monte Carlo simulation cycles. The bold values
indicate the pairs,  where the null hypothesis fails to be rejected and it  is possible to as‐
sume that the distribution fits are identical. The results show that the lognormal fits to the
following datasets are identical: 1) DS1, DS2, DS3, and DS4; 2) DS1, DS4, and DS8; 3) DS7,
DS10, and DS11; 4) DS5 and DS10; 5) DS5 and DS12. These results correlate with the iden‐
tity of the empirical distribution. Figure 5a presents the fitted lognormal distribution over
DS4  (with  μ=  –0.1081,  σ=0.4766,  mean7

4=1.005,  med7
4=0.8975,  mode7

4=0.7169,  std7
4=0.5077,

iqr7
4dy=0.5870)  and  DS9  (with  μ=  –0.6694,  σ=0.4181,  mean7

9=0.5587,  med7
9=0.5120,  mode7

9

=0.4322, std7
9=0.2442, iqr7

9=0.2926). The Kuiper statistic for identity of the fits, calculated ac‐

cording to (11), is V7
4,9=0.4671, whereas according to (12), Pvalue,7

4,9 =0<0.05. Therefore the null
hypothesis is rejected, which is also evident from the graphical output. In the same fash‐
ion,  Fig.  5b  presents  the  lognormal  distribution  fit  over  DS1  (with  μ=  –1477,  σ=0.4843,
mean7

1=0.9701, med7
1=0.8627, mode7

1=0.6758, std7
1=0.4988, iqr7

1=0.5737) and DS4. The Kuiper

statistic  for identity of  the fits,  calculated according to (11),  is  V7
1,4=0.03288,  whereas ac‐

cording  to  (12),  Pvalue,7
1,4 =0.5580>0.05.  Therefore  the  null  hypothesis  fails  to  be  rejected,

which is also evident from the graphical output.
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Figure 5. Comparison of the lognormal distribution fits over DS4 and DS9 (a) and over DS1 and DS4 (b)
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Datasets DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DS10 DS11 DS12

DS1 1.00 1.39e–1 1.90e–1 5.58e–1 0.00 0.00 0.00 3.49e–1 0.00 0.00 0.00 0.00

DS2 1.39e–1 1.00 6.37e–1 1.05e–1 0.00 0.00 0.00 3.40e–2 0.00 0.00 1.00e–3 0.00

DS3 1.90e–1 6.37e–1 1.00 2.01e–1 0.00 0.00 0.00 3.20e–2 0.00 0.00 0.00 0.00

DS4 5.58e–1 1.05e–1 2.01e–1 1.00 0.00 0.00 0.00 6.65e–1 0.00 0.00 0.00 0.00

DS5 0.00 0.00 0.00 0.00 1.00 0.00 1.00e–3 0.00 0.00 5.70e–2 1.00e–3 5.10e–2

DS6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

DS7 0.00 0.00 0.00 0.00 1.00e–3 0.00 1.00 0.00 0.00 8.70e–2 7.90e–1 0.00

DS8 3.49e–1 3.40e–2 3.20e–2 6.65e–1 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

DS9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

DS10 0.00 0.00 0.00 0.00 5.70e–2 0.00 8.70e–2 0.00 0.00 1.00 1.86e–1 0.00

DS11 0.00 1.00e–3 0.00 0.00 1.00e–3 0.00 7.90e–1 0.00 0.00 1.86e–1 1.00 0.00

DS12 0.00 0.00 0.00 0.00 5.10e–2 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 5. P-values of the statistical test that the lognormal fitted distributions over two datasets are identical. The
values on the main diagonal are shaded. The bold values indicate the distribution fit pairs that may be assumed as
identical.

The statistical procedures described above have been successfully applied for the solution of
important medical problems [16; 17]. At first we could prove the role of mechanical forces in
the organization of the final architecture of the fibrin network. Our ex vivo exploration of the
ultrastructure of fibrin at different locations of surgically removed thrombi evidenced gross
differences in the fiber diameter and pore area of the fibrin network resulting from shear
forces acting in circulation (Fig. 6). In vitro fibrin structures were also generated and their
equivalence with the in vivo fibrin architecture was proven using the distribution analysis
described in this chapter (Fig. 7). Stretching changed the arrangement of the fibers (Fig. 7A)
to a pattern similar to the one observed on the surface of thrombi (Fig. 6A); both the median
fiber diameter and the pore area of the fibrins decreased 2-3-fold and the distribution of
these morphometric parameters became more homogeneous (Fig. 7B). Thus, following this
verification of the experimental model ultrastructure, the in vitro fibrin clots could be used
for the convenient evaluation of these structures with respect to their chemical stability and
resistance to enzymatic degradation [16].
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Figure 6. Fibrin structure on the surface and in the core of thrombi. A. Following thrombectomy thrombi were wash‐
ed, fixed and dehydrated. SEM images were taken from the surface and transverse section of the same thrombus sam‐
ple, scale bar = 2 μm. DG: a thrombus from popliteal artery, SJ: a thrombus from aorto-bifemoral by-pass Dacron graft.
B. Fiber diameter (upper graphs) and fibrin pore area (lower graphs) were measured from the SEM images of the DG
thrombus shown in A using the algorithms described in this chapter. The graphs present the probability density func‐
tion (PDF) of the empirical distribution (black histogram) and the fitted theoretical distribution (grey curves). The num‐
bers under the location of the observed fibrin structure show the median, as well as the bottom and the top quartile
values (in brackets) of the fitted theoretical distributions (lognormal for fiber diameter and generalized extreme value
for area). The figure is reproduced from Ref. [16].
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Figure 7. Changes in fibrin network structure caused by mechanical stretching. A. SEM images of fibrin clots fixed with
glutaraldehyde before stretching or following 2-and 3-fold stretching as indicated, scale bar = 2 μm. B. Fiber diameter
(upper graphs) and fibrin pore area (lower graphs) were measured from the SEM images illustrated in A using the
algorithms described in this chapter. The graphs present the probability density function (PDF) of the empiric distribu‐
tion (black histogram) and the fitted theoretical distribution (grey curves). The numbers under the fibrin type show the
median, as well as the bottom and the top quartile values (in brackets) of the fitted theoretical distributions (lognor‐
mal for fiber diameter and generalized extreme value for area). The figure is reproduced from Ref. [16].

Application of the described distribution analysis allowed identification of the effect of red
blood cells (RBCs) on the structure of fibrin [17]. The presence of RBCs at the time of fibrin
formation causes a decrease in the fiber diameter (Fig. 8) based on a specific interaction be‐
tween fibrinogen and a cell surface receptor. The specificity of this effect could be proven
partially by the sensitivity of the changes in the distribution parameters to the presence of a
drug (eptifibatide) that blocks the RBC receptor for fibrinogen (compare the median and in‐
terquartile range values for the experimental fibrins in the presence and absence of the drug
illustrated in Fig. 8). It is noteworthy that the type of distribution was not changed by the
drug, only its parameters were modified. This example underscores the applicability of the
designed procedure for testing of statistical hypotheses in situations when subtle quantita‐
tive biological and pharmacological effects are at issue.
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Figure 8. Changes. in the fibrin network structure caused by red blood cells and eptifibatide. The SEM images in Panel
A illustrate the fibrin structure in clots of identical volume and fibrinogen content in the absence or presence of 20 %
RBC. Panel B shows fiber diameter measured from the SEM images for a range of RBC-occupancy in the same clot
model. Probability density functions (PDF) of the empirical distribution (black histogram) and the fitted lognormal the‐
oretical distribution (grey curves) are presented with indication of the median and the interquartile range (in brackets)
of the fitted theoretical distributions. In the presence of RBC the parameters of the fitted distributions of the eptifiba‐
tide-free and eptifibatide-treated fibers differ at p<0.001 level (for the RBC-free fibrins the eptifibatide-related differ‐
ence is not significant, p>0.05). The figure is reproduced from Ref. [17].
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5. Discussion and conclusions

This chapter addressed the problem of identifying a single type of theoretical distribution
that fits to different datasets by altering its parameters. The identification of such type of dis‐
tribution is a prerequisite for comparing the results, performing interpolation and extrapola‐
tion over the data, and studying the dependence between the input parameters (e.g. initial
conditions of an experiment) and the distribution parameters. Additionally, the procedures
included hypothesis tests addressing the identity of empirical (stair-case) and of fitted distri‐
butions. In the case of empirical distributions, the failure to reject the null hypothesis proves
that samples come from one and the same general population. In the case of fitted distribu‐
tions, the failure to reject the null hypothesis proves that although parameters are random
(as the fits are also based on random data), the differences are not statistically significant.
The implementation of the procedures is facilitated by the creation of a platform in MAT‐
LAB that executes the necessary calculation and evaluation procedures.

Some parts of the three problems analyzed in this chapter may be solved using similar
methods or software tools different from the MATLAB procedures described in section 3.
Some software packages solve the task of choosing the best distribution type to fit the data
[18, 19]. The appropriateness of the fit is defined by the goodness-of-fit metrics, which may
be selected by the user. The Kolmogorov-Smirnov statistics is recommended for the case of
samples with continuous variables, but strictly speaking the analytical Kolmogorov-Smir‐
nov distribution should not be used to calculate the p-value in case any of the parameters
has been calculated on the basis of the sample as explicitly stated in [19]. Its widespread ap‐
plication, however, is based on the fact that it is the most conservative, i.e. the probability to
reject the null hypothesis is lower compared to the other goodness-of-fit criteria. Some avail‐
able tools [20] also use analytical expressions to calculate the p-value of the Kolmogorov-
Smirnov test in the case of a sample that is normally distributed, exponentially distributed
or extreme-value distributed [21, 22]. Those formulae are applied in the lillietest MATLAB
function from the Statistical toolbox, where Monte-Carlo simulation is conducted for the
other distributions. It is recommended to use Monte-Carlo simulation even for the three
aforementioned distributions in case any of the parameters has been derived from the sam‐
ple. Some applications calculate a goodness-of-fit metrics of a single sample as a Kuiper sta‐
tistics (e.g. in the awkwardly spelled kupiertest MATLAB function of [23]) and the p-value is
calculated analytically. The main drawback of that program is that the user must guarantee
that the parameters of the theoretical distribution have not been calculated from the sample.
Other available applications offer single-sample Kuiper test (e.g. v.test function in [24]) or
single- and two-sample Kuiper tests (e.g. KuiperTest function in [25]), which use Monte-Car‐
lo simulation. The results of the functions v.test and KuiperTest are quite similar to those pre‐
sented in this chapter, the main difference being our better approximation of the empirical
distribution with a linear function, rather than with a histogram. Our approach to calculate
p-values with Monte-Carlo simulation stems from the previously recognized fact that “…if
one or more parameters have to be estimated, the standard tables for the Kuiper test are no
longer valid …” [26]. Similar concepts have been proposed by others too [27].
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An advantage of the method applied by us is that the Kuiper statistics is very sensitive to dis‐
crepancies at the tails of the distribution, unlike the Kolmogorov-Smirnov statistics, whereas
at the same time it does not need to distribute the data into bins, as it is for the chi-square sta‐
tistics. Another advantage is that the method is very suitable for circular probability distribu‐
tions [23, 24], because it is invariant to the starting point where cyclic variations are observed
in the sample. In addition it is easily generalized for multi-dimensional cases [25].

A limitation of our method is that it cannot be used for discrete variables [25], whereas the
Kolmogorov-Smirnov test could be easily modified for the discrete case. The second draw‐
back is that if the data are not i.i.d. (independent and identically distributed), then all Boot‐
strap and Monte-Carlo simulations give wrong results. In that case, the null hypothesis is
rejected even if true, but this is an issue with all Monte-Carlo approaches. Some graphical
and analytical possibilities to test the i.i.d. assumption are described in [19].

Further extension of the statistical procedures proposed in this chapter may focus on the in‐
clusion of additional statistical tests evaluating the quality of the fits and the identity of the
distributions. The simulation procedures in Task 3 may be modified to use Bootstrap, because
this method relies on fewer assumptions about the underlying process and the associated
measurement error [28]. Other theoretical distribution types could also be included in the pro‐
gram platform, especially those that can interpret different behaviour of the data around the
mean and at the tails. Finally, further research could focus on new areas (e.g. economics, fi‐
nance, management, other natural sciences) to implement the described procedures.
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