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1. Introduction

Magnetic Resonance Imaging (MRI), as its name implies, is based on a magnetic resonance
signal originating in the "spins" of hydrogen protons of a given patient's tissue undergoing
magnetic resonance imaging under the action of a magnetic field [1].

Concerning the identification and characterization of tissues, the potential of MRI began to
become apparent only in 1971, when it was realized that the magnetic relaxation properties of
the nuclei differ among biological tissues. Furthermore, in the same tissue, this relaxation relied
on the state of the vitality and integrity of tissues [2].

P. C. Lauterbur was the pioneer of imaging techniques for medical practice using MRI. In 1973,
he described a method that produced a generation of a two-dimensional projection showing
the density of the protons and the distribution of the relaxation times in a sample consisting
of two water tubes. His studies were further improved by groups led by Hinshaw and
Manstield in England, Hutchinson in Scotland, Ernst in Switzerland, and Cho in Korea. Thus,
alternative techniques have been developed to generate images that can assist both medical
diagnoses and "in vivo" studies of biochemical reactions that occur at the cell level [1,3,4].

The most important factor for the formation of MRI is the "spin." In essence, the "spin" is a
fundamental property of particles that make up the nucleus of the atom. Its concept was
proposed by Samuel Abraham Goudsmit and George Eugene Uhlenbeck in 1925 [1].

Unlike the known images of Rx and CT, MRI does not use ionizing radiation but radiofre-
quency pulses.

The phenomenon of Magnetic Resonance Imaging manifests itself in molecular, atomic,
electronic, and nuclear levels. In the latter case, its nature is magnetic, and therefore it is
called nuclear magnetic resonance (NMR). It arises from the fact that certain nuclei possess
an intrinsic angular moment referred to as "spin" and an associated magnetic moment. In
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medicine the term used is MRI. The term nuclear associated to it caused panic among
patients, who believed the tests were harmful and painful to the tissues. In clinical trials,
MRI is used to produce images of the body structures. This method has provided valuable
assistance, since it is not invasive to biological tissues, and provides an excellent contrast
between soft tissues [2,5,6].

2. MRI fundamental

In nuclei in which the "spin" protons are not paired, there is a resultant magnetic field which
can be represented by a dipole magnetic vector. The magnitude of this field is called nuclear
magnetic moment, and its existence causes the nuclei to respond actively to external magnetic
fields. The nuclear magnetic vector does not remain static in one direction, but has a preces-
sional motion or rotation around its axis (Figure 1).

(a) ()

Figure 1. Schematic representation shows the spins in (A) the absence and (B) in the presence of an external magnetic
field [3].

It is noted that in (A) without application of an external magnetic field, the protons are
oriented in a random motion, while in (B) when placed in an external magnetic field B,
the protons are aligned in the same direction, or in an opposite direction to the magnetic
field. The slight preponderance of the spins in the same direction of the field creates a
small resulting magnetization vector named M,. This slight imbalance makes it possible to
obtain images by RMI [3].
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Two-thirds of the atoms that constitute the human body are hydrogen atoms, which contain
only one proton in its nucleus. Therefore, they present a high-intensity magnetic vector, which
increases their sensitivity to respond to external magnetic fields. In addition to hydrogen being
the most abundant nucleus in biological tissues, its single proton results in more powerful
magnetic moment than any other element. Due to these features, the hydrogen nucleus of
biological tissues is the same one currently used to obtain the signal for the formation of images
in MR procedures. However, other types of nuclei may be used to generate information on
both the physiopathologic status and anatomy of tissues. Among other elements, we can cite
carbon, oxygen, and sodium [7,8,9].

A radiofrequency pulse or excitation must be applied perpendicular to the main magnetic field
in the frequency of precession or rotation of the hydrogen atoms (Larmor frequency) in order
to obtain MR images. This radiofrequency pulse supplies energy to the resulting magnetization
vector so that it is deflected to the transverse plane. Once the stimulation ceases, the magnetic
vector returns to balance. This turning back to balance is measured and provides the generated
resonance signal, which will be captured by the antennas of the MR apparatus [2,9].

3. Spin—echo sequence

In MRI, the most important pulse sequence is the "spin-echo" and its parameters are the
repetition time (Ty) and echo time (Tg). Another important additional sequence is the "inver-
sion-recovery" sequence, which promotes fat suppression, highlighting areas of injury with an
additional parameter - the inversion time (T;) [8,9,10].

Therefore, the keys to understanding MRI are physical principles, which include the magnetic
properties of nuclei in biological tissues, the collective behavior of these biological tissues when
excited by radio waves, and their relaxation properties, as well as the devices and techniques
used to differentiate the tissues [7,9,10,11].

The technical parameters used to run a MRI were pulse sequences in "spin-echo” (SE) and "
inversion-recovery " (Short T1 inversion STIR) to obtain images in T1 relaxation time (before
and after injection of gadolinium contrast), in T2 relaxation time, and precontrast proton
density (PD); Repetition time (TR), echo time (TE), and inversion time (TI); Section Plans
(coronal or axial); Field of view (FOV), matrix size, number of acquisitions (NAQ), and number
of sections, thickness, and interval between slices, and increment (F1), besides other functions
to improve image quality [9,11].

The "spin-echo" pulse sequence [9,10,11] is used to obtain a signal by means of a 90° excitation
pulse and a 180° inversion pulse, which were sent to the nuclei of hydrogen atoms of the tissues
present in the region to be analyzed (Figure 2). These nuclei presented a rotating motion
(precession), and when excited by a radio frequency coil (antenna), they start to rotate all at
the same excitation frequency, resonating with each other. Once the stimulation is ceased, the
MR signal is captured in form of signal or echo (Figure 3).
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Pulso de 90° Pulso de 180° Pulso «

Figure 2. Radiofrequency pulse: 90° excitation pulse and a 180° inversion pulse, the pulse can be any value [3].

Figure 3. Illustration of the “spin-echo” (SE) imaging sequence [9,10].

When a pulse of 90° (1/2) is applied, the magnetization M initially in its equilibrium condition
along the Z-axis (1) undergoes a 90°-displacement towards the y-direction (2). The tissues show
a distribution of frequency of precession (3). There is a loss of coherence of the initial state (4).
This loss can be reversed by applying a 180-degree pulse (7t), which causes the spins of
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individual nuclei around the X-axis to rotate 180 degrees (5), rephasing (6) and regenerating
the signal, referred to as spin-echo (7).

The 90° pulse plus the 180° pulse produced an echo, which is repeated several times during
the study in the analyzed region. This echo is referred to as the repetition time (Ty). The
echo time (Tg) is the duration between the middle of a 90° pulse and the middle of an echo
(Figure 4).
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Figure 4. SE pulse of 90° and applied time (TE/2) of pulse RF of 180° [3].

3.1. Conventional spin-echo sequence

The sequences of pulses in conventional spin-echo can be used in almost all tests. T1-weighted
images are useful to demonstrate anatomy, but they can also demonstrate diseases when
associated with contrast enhancement. T2-weighted images also demonstrated diseases.
Tissues affected by diseases appear edematous and/or vascularized. They have higher water
content and therefore, a strong signal on T2-weighted images. Thus, they can be easily
identified.

Usually, in conventional spin-echo sequence a short Ty a short Ty will give a T1-weighted
image, a long Ty and short T, (first echo) will give a proton density image, and a long Ty and
long T, (second echo) will give a T2-weighted image [10].

3.2. Fast spin—echo sequence

The fast spin-echo sequence is a spin-echo sequence, but with the time of the exam dramatically
shorter than the conventional spin-echo. To understand how rapid the fast spin-echo sequence
is, we should review how data is obtained in the conventional spin-echo. A 90° excitation pulse
is followed by a 180° rephasing pulse. Only one encoding phase step is applied by Ty in each
section and just one K-space line is completed by Ty [10,12,13].

Generally, the contrast observed in fast spin-echo images is similar to that of the conventional
spin-echo images. Therefore, these sequences are useful in many clinical applications. In the
central nervous system, pelvis, and musculoskeletal regions, the fast spin-echo sequence has
practically substituted the conventional spin-echo. In the chest and abdomen, however, the
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respiratory artifacts are sometimes problematic in cases where the respiratory compensation
techniques are not compatible with the programs fast spin-echo, which is counterbalanced to
some extent by the fact that shorter examination times in fast spin-echo sequence enable the
production of images with fewer respiratory artifacts in [9,10,11,13,14,15].

There are two differences in contrast between the pulse sequence of the conventional spin-
echo and fast spin-echo, both of which are due to the 180° pulse repeated at short intervals
following the sequence of echoes. First, the adipose tissue remains clear on T2-weighted images
due to multiple RF pulses that reduce the effects of spin-spin interactions in this tissue.
However, the fat saturation techniques may be used to compensate for this. Second, the 180°
repeated pulses may increase the magnetization transfer, so that the muscles appear darker
on the fast spin-echo images than on the conventional spin-echo images. Additionally, multiple
180° pulses reduce the effects of magnetic susceptibility, which may be detrimental when
looking for small haemorrhages [10].

The advantages of fast spin sequence are that metal implant artifacts are significantly reduced
in rapid sequences.

In fast spin-echo T1-weighted images, effective TE and TR are short; on T2-weighted effective
TE and TR are long TR; on proton density weighting/T2-weighted images, effective TE is short
and effective TR is long [10,11,13,15].

The advantages are: Greatly reduced examination times, better image quality, and more
information on T2-weighted images. We can use high-resolution matrices and multiple
numbers of excitations (NEX). However, some effects of increased flow and movement are
incompatible with some options of image acquisition, such as fat tissue bright on T2-weighted
images, blurred images can occur because data were collected at different TE time, decreased
magnetic susceptibility effect, because multiple 180° pulses produce excellent returning phase,
so that one must not use it in case of suspected bleeding [4, 9,10,13,14,15].

The “inversion-recovery” sequence is used to promote suppression or fat saturation, high-
lighting areas of injury. The process was the reverse of the “spin-echo” sequence. There was
an inversion followed by a recovery by applying 180° inversion pulses, which inverted the
spins of the fatty tissue region examined by 180?, followed by 90° recovery pulse. Subsequently,
a 180° repolarizing pulse was applied to produce a spin-echo. In this sequence, the repetition
time (Ty) is the time between each 180° pulse. The inversion time (T)) is the length of time the
fat (spins) took to recover from this complete inversion (Figure 5).

This process allowed the fat to become dark or hypointense, differing itself from the lesions.
This happened because the inversion of its spins caused a total loss of energy/magnetization.
Consequently, there is no sign for it [10].

The field of view (FOV) determines the size of the anatomy covered during the selection of the
tissue section to be analyzed either in a coronal or axial plane.The forming unit of a digital
image is the pixel. The brightness of each pixel represents the power of the MR signal produced
by a volumetric imaging of the patient or volumetric pixel or Volumetric Picture Element
(voxel). The voxel is a volume element representing the tissue inside the patient. It is deter-
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Figure 5. lllustration of the resonance image inversion-recovery pulse sequence. A 180° pulse inversion is applied fol-
lowed by a 90° recovery pulse, as well as a 180° repolarization pulse. Tg, Te and T, are also shown [16].

mined by the pixel area and the thickness of the section. Thus, the size of the matrix is
determined by the number of pixels of the anatomy covered during the selection of the tissue
section to be analyzed. This size is indicated by two values. The first one corresponds to the
number of frequencies sampled and the second to the number of phase codings performed
[7,10,13].

Frequency codification is the reading of a signal along the longest axis of the anatomy. The
phase codification is the reading of a signal along the short axis of the anatomy. Thus, a matrix
size of 256 x 192 indicates that 256 encoding frequencies and 192 encoding phases are per-
formed during a sequence [9,10].

The number of acquisitions (NAQ) represents the number of times that data are acquired
within/into the same pulse sequence [10,11].

The number, thickness and intervals of the sections are defined according to the type of lesion.
Other functions are used to improve image quality. Its use allows viewing only the sections
selected [10,11].

4. Tissue parameters

The images primarily reflect the distribution of free hydrogen nucleus and the way it responds
to an external magnetic field. Thus, this response determines different relaxation times known
as T1 and T2. The pathological processes cause relaxation time to change in relation to the
tissues of the nervous and musculoskeletal system, and the signal intensity is reflected [7,9,16].
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4.1. Tissue relaxation time T1

Required for recovery of about 63% of the magnetization along the longitudinal direction after
a 90° pulse are generally more anatomical, since the fat planes are hyperintense, perfectly
delimiting muscle planes and vascular structures. When paramagnetic agents (contrast) are
associated, they demonstrate the skin changes with much more specificity. Itis used to evaluate
the anatomic structures of the injured limb in MRI and SE sequences before and after contrast.
The mechanism is based on the application of a 90° RF pulse that diverted the longitudinal
magnetization towards the transverse plane. Subsequently, there is a recovery of this energy
diverted to the initial longitudinal axis. In a more simplified way, T, is the time required for
the initial 63% recovery of the magnetization along the longitudinal axis after the application
of 90-degree RF pulse (Figures 6 &7) [7,9,10].

Thus, the signal intensity (brightness) emitted by the tissues depends solely on its ability to
recover the magnetization faster or slower after the application of a 90-degree RF pulse.

Figure 6. Schematic representation of T, relaxation time.

Note that the relaxation time T1 begins in (A) before the 90° pulse when the magnetization
M, is in the axis. Just after the 90° pulse, the magnetization is zero and the transverse is
maximum (B). A short time later, there is the recovery of the resulting longitudinal magneti-
zation (C) representing the start of recovery T1 (D, E), and in (F) occurs the 63% recovery of
the initial magnetization [16].
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Figure 7. Relaxation time T1: recovery 63% of the magnetization along the longitudinal direction after a 90° pulse [3].

4.2. Tissue relaxation time T2

Tissue relaxation time T, is used throughout the SE sequence to detect lesions. At T, time, there
is a magnetization shift or loss. The tissues' capacity to lose magnetization faster or slower is
what determines the signal strength. T, time is the time required for the transverse magneti-
zation to drop up to 37% of its initial value after the application of a 90-degree pulse (Figure
8 & Figure 9) [7,9,10].

Figure 8. Schematic representation of T, relaxation time.

39
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In (A) are representative protons of a tissue section. Soon after a 90-degree pulse, the protons
are on the same transverse plane and in phase with each other. Their magnetic vectors all point
in the same direction. (B) After a very short period of time, these protons are out of phase, and
their magnetic vectors are pointing to different directions. This decreases the power of the
transverse magnetization vector Mxy. (C) T2 is shown as the time interval required for the
transverse magnetization drops to 37% of its original value [16].

37%

-

Py

Tempo T2 Tempo

Figure 9. T2 shown as the time interval required for the transverse magnetization drops to 37% of its original
value [3].

5. Contrast

The contrast agent used is a paramagnetic metal called gadolinium (GDL). It is associated with
a water-soluble component diethylenetriaminepentaacetic acid (DTPA) that acts on the
damaged tissues facilitating their identification [17, 18].

Itis administered intravenously at a dose of 0.2 mL/kg on T1-weighted images through section
planes determined according to the location and type of injury [17,18].

Patients who receive contrast are asked to abstain from all food and liquid for two hours in
order to avoid adverse effects [17,18].

Local lesions are studied for the presence or absence, type, and thickness of the damaged
tissues. The determination of the type of lesion is accomplished through changing the signal
presented by damaged tissues in relation to normal tissue. The classification of injured tissues
into hypointense or hyperintense, depends on the signal intensity (darker or lighter) visualized
on the images during the screenings and on an expert testimony (Figure 10) [17,18].
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Figure 10. Normal tissue in MRI in axial sections in the "spin echo" sequence taken from the lower limbs (calf) in T, pre
(A) and (B) post-contrast injection, T, relaxation times (C) and inversion-recovery” sequence (D) used to promote sup-
pression or fat saturation [16].

In these images, the tissues present themselves with their normal callibre vascular structures
and anatomic topography, as well as their musculature with preserved sign and normal
morphological aspect. The images also present the bone structure of their cortical portions and
characteristic medullar signal, and preserved anatomical aspect [16].

For images of the central nervous system, "Figure 11" illustrates the characteristics in normal
tissue relaxation time T1 before and after contrasts, which are used to differentiate normal
tissue from the pathological ones [19,20].

Figure 11. Image of a normal central nervous system (sagittal plane) on pre-contrast (A) and post-contrast (B) sequen-
ces spin-echo T1-weighted images.

41



42

Imaging and Radioanalytical Techniques in Interdisciplinary Research - Fundamentals and Cutting Edge Applications

Note all structures with normal anatomic aspects with enhancement in sequence with contrast,
indicated by arrows [21].

6. MRI machine

A magnetic resonance imaging (MRI) machine consists of a main magnet that provides a closed
or open scanning system. It is a permanent superconductor. Its power field ranges from 0.23,
0.5, 1.0, 1.5 up to 3.0 Tesla total power field. Internally, the main magnet is composed of
homogenizing coils, gradient coils, and radiofrequency (RF) transmitter and receiver coils.
These may be located internal or external to the main magnet. The function of these compo-
nents is to capture the signal or echo generated by the tissues (tissue parameters) when in
contact with the magnetic field and technical parameters used [9,10,12]. The machine also
comprises computers and image processors, which make it possible to acquire and visualize
the image on the operator’s console monitor (Figure 12 & Figure 13).

The technical parameters are those dependent on the device and set up by the operator based
on examination protocols.

Initially, the patients are placed on the examining bed. The region (lesion) being examined is
highlighted by a source of light directed and positioned in the center of the magnet. After-
wards, the device is set up with a specific test protocol according to the limb damaged.
Following, we made a first localization sequence in the desired section plane. Thus, we could
design other section planes from the image formed [10,12].

Figure 12. Closed field magnetic resonance imaging machine [16].
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Figure 13. Open field magnetic resonance imaging machine [9].

The physical principles of the open field MRI are the same as that of the closed field MRI, which
uses a strong magnetic field created by the movement of electrical currents within a series of
spiral coils located inside the machine [7,9].

The open field MRI is a breakthrough technology to obtain images of the human body without
constraints for patients with claustrophobia (fear of closed spaces), obesity, as well as children
and elderly people [7,9,12].

The advantages of the open-field MRI are associated to a machine having large side openings
that allows the patient to be examined with more tranquillity, comfort, and convenience. It
also helps to obtain a better quality of the images [7].

In practical terms, we can consider the MRI machine as a large and powerful magnet. The
acquisition of spin-echo images can be understood as follows: The patient is placed into the
MRI machine. Once inside the machine all hydrogen ions in the different body tissues will
align parallel with the magnetic field of the machine. Then, a coil emits RF pulses that cause
the axis of these ions to change 90°. When the coil turns off, the ions tend to realign with the
magnetic field, but with different intensities and speeds according to the type of tissue in which
they are found. This difference in intensity and time is captured and quantified by the device
that locates and defines shades of grey for each point detected. The information is processed
by a computer workstation that accomplishes the construction of images in the frontal, sagittal,
and axial planes [10,12].

The technical parameters are those dependent on the device and set up by the operator based
on examination protocols.

Initially, the patients are placed on the examining bed. The region (lesion) being examinedis
highlighted by a source of light directed and positioned in the center of the magnet. After-
wards, the device was set up with a specific test protocol according to the limb damaged.
Following, we made a first localization sequence in the desired section plane. Thus, we could
design other section planes from the image formed [16,19].
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The obtained images are recorded and photographed on film (Figure 14). The final appearance
will depend not only on intrinsic properties of tissues but also on technical aspects such as
pulse sequences or time factors that are chosen and machine quality.

Figure 14. MRI obtained in SE sequence in the axial plane of the skull [19].

For each type of exam of any region of the human body, there is a specific protocol to obtain
MR images, most are used for detecting soft-tissue lesions of the structures that make up the

central nervous system and skeletal muscle.
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7. Examples of MRI protocols and applications by SE sequence

This method has been widely used in the diagnosis of diseases located in the structures of the
nervous and musculoskeletal systems. Thus, MRIis an imaging method that provides excellent
contrast between soft tissues, due to its high spatial resolution. Therefore, from the anatomical
point of view, MRl is the best choice for evaluation of the structures that make up the muscu-
loskeletal system. The protocols on Table 1 and Table 2 were used to acquire the images of the
following images which represents examples of very interesting applications of MRI.

AX Cor
Section planes Cor loc AXT1 AXT2 T1 T1
GDL GDL
SE30 SE 35
FOV SE42 SE30 SE 30
IR 25 IR 35
SE850 SE SE 750
TRin ms SE30 SE 850
IR2000 2000 IR2000
SE25 SE 25
TEin ms SE25 SE 40 SE 25
IR90 IR90
TE(2°) in ms - - SE80 - -
Tlin ms IR 25 IR 25
SE10 SE10
Interval SE15 SE10 SE 10
IR12 IR10
SET1 SE12
Number of sections SE6 SE12 SE 11
IR12 IR12
Thickness in SES SES
SE10 SES SES
Mm IR5 IR5
SE 4 SE4
NAQ SE 1 SE 2 SE4
IR1 IR1
Matrix SE 256192
192x256
IR 192x192 224x256 256x192 256x192
556192 256%256
IR X
SE10 SE SE SE8
(F1) -
IR 11 10 10 IR 11

Table 1. Exam protocol and values of technical parameters and tissue for evaluation of lesions in the lower limb (0.5
Tesla MRI). Body and head coils.
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AXT1
Section planes AX LOC CORT1 AXT2 AXT1
GDL
FOV 25 15 25 22 22
SE SE SE SE SE
TRin ms
320 750 2000 750 750
TEinms 25 30 40 25 25
TE(2°) in ms - - 80 - -
Interval 7 5 5 8 8
Number of sections 4 12 13 12 12
Thickness in mm 5 5 5 5 5
NAQ 1 2 2 4 4
Matrix 192x192 192x192 256x192 192x160 192x160
(F1) - - 10-8 - -

Table 2. Exam protocol and values of technical parameters and tissue for evaluation of upper limb injuries (0.5 Tesla
MRI). Elbow in shoulder coil.

7.1. Application to musculoskeletal tissue lesions

The MR images on the axial plane (AX) show the skeletal muscle and central nervous
system. In the sequence, lesions diagnosed as edema and blood in subcutaneous, perimus-
cular, and muscular tissues and central nervous system structures in pre- and post-
contrast T1 and T2 times (Figures 15, 16 &17). Edema presents as a hypointense signal on
pre-contrast T1 time and enhanced on pre-contrast T1 time and hyperintense on T2 time.
Lesions identified as haemorrhagic lesions present a hypersignal on pre- and post-con-
trast T1 and T2 times [21,22,23].

The edema corresponds to an increase of water content into the extracellular space and/or
into the intracellular compartment. T2-weighted sequences are the main time interval that
detects this increase in the form of an intense area of hypersignal in [21,22,23].

In haemorrhagic lesions or in the presence of degradation components of blood in any tissue
often give the hyperintense signal on T1 and T2. They are a consequence of a local vascular
injury [22,23].
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Figure 15. MRI of the right foot showing edema in subcutaneous tissue characterized by (A) hyposignal on T1 (B) hy-
perintense on T2, and (C) enhanced on post-contrast T1. Musculature and perimuscular areas preserved [16].

Tissue lesion and inflammatory processes related to the musculoskeletal system cause changes
in the relaxation times T1 and T2 and reflects the signal intensity. The inflammatory processes
increase the signal intensity on T2-weighted images and the swelling causes an increase of
water in the tissues that determines the signal changes observed [22].

Figure 16. MRI showing the left calf. The injury is consistent with subcutaneous tissue and perimusculare region mild
haemorrhage characterized by (A) isointese to hyperintense signal on T1, (B) hyperintense signal on T2, and (C) en-
hanced on post-contrast T1. The presence of blood in the perimuscular region is well visualized on relaxation time T2.

Bleeding observed in subcutaneous and muscle tissues is generally different from that
resulting from the degradation process known in the pathologies of the central nervous system.
In these pathologies, the bleeding is presented in various stages of degradation and is known
as oxyhemoglobin and/or deoxyhemoglobin, (intracellular or free) methemoglobin, and
hemosiderin. Thus, these various stages interfere with the lesion signal intensity and stage
interpretation [24,25].

As to the skeletal muscle, it may present in the form from an iso to hyperintense signal at all
relaxation times before and after contrast injection [16].

It is noted that in these images the edema in association with haemorrhage usually presents

themselves with signal hyperintensity on the T2-weighted images.

47
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Figure 17. MRI of the right forearm indicating extravasation of blood into muscle tissue characterized by (A) isoin-
tense to hyperintense signal on T1-weighted image (B) hyperintense signal on T2-weighted image (C) enhanced on
post-contrast T1-weighted image [23].

7.2. Tumor injuries detected in the central nervous system

The vast majority of intracranial tumors present a high-protein density, a long T1 and T2, so
generally there is a hypo signal on T1-weighted (short TE-TR) and a hyperintense signal on
T2-weighted sequences (long TE-TR). Thus, the signal variations are not very specific (Figure
18 & 19). The application presented in Figure 18 an Figure 19 concerns the examination of rectal
adenocarcinoma and meningioma of left ventricle fibrous trigonum respectively.

Figure 18. A and B are frontal section images on T1-weighted imaging. C After contrast injection. The hyperin-
tense tumor (A, B, C) gives the perfect location of both the metastasis and the hypointense perilesional edema-
tous reactions [21].

Whatever the sequence used after contrast injection, the parenchymatous reaction edema is
visualized with hypointense signal on T1 pre- and post-contrast (A, B) and with hyperintense
signal on T2 (C, D). Note the displacement to the right of the median structures of the septum
pellucidum.
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Figure 19. T1-weighted imaging sequences in sagittal plane (A) and T2-weighted imaging sequence in axial plane (C,
D) after contrast injection on T1-weighted sequence in frontal plane (B) [21].

Cerebral edema can be of three types: vasogenic corresponding to a disruption of the blood-
brain barrier to the passage of a protein-rich filtrate in the brain extracellular spaces, nonspe-
cific outcome of multiple pathological processes (primary tumors, metastases, haemorrhage,
trauma, inflammatory processes and infection). It manifests as a hyperintense signal area of
white matter, respecting the gray matter. The accomplishment of a sequence with strong T2-
weighted can evidence that it is due to the edema’s persistent hyperintense signal in contrast
to the tumour’s decreasing signal. However, the sequences on T1 post-contrast are the ones
bounding the lesion; the earliest manifestation form of infarction is the cytotoxic edema. The
ischemia leads to an early failure of the membrane pump, which allows water and sodium to
enter the cells. It presents itself as a hyperintense signal involving the white and gray matter
[21,24,25,26].

Interstitial edema is found in hydrocephalus with passage of transependymal water into the
brain tissue from the ventricular cavities, essentially around the lateral ventricles [21].

The water being highly bound to the neighboring proteins displays a significant decrease of
T1. The interstitial edema can be viewed paradoxically under the form of a hyperintense signal
on T1l-weighted sequences, while still naturally with hyperintense signal on T2-weighted
sequences [21,27,28].

Thus, the contrast injection increases the specificity in the detection of lesions. The paramag-
netic agents such as the gadolinium (GDL) associated with a chelating agent - diethylenetria-
mine pentaacetic acid (DTPA) - is a safety water soluble. After its application, around 80% is
excreted by the kidneys in three hours, and the remaining is recovered in stools and eliminated
within a week [18].
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The MRI scan is the method of choice for the evaluation of tumors. The sequence systematic
practice, mainly of spin echo sequences in different space planes (particularly in axial and
sagittal planes), and the intravenous injection of GDL allows a perfect assessment of the
tumours [21,27,30].

8. MRI and artifacts

The quality of MR images depends on multiple factors that can significantly alter the outcome
of the tests and therefore, the diagnosis of lesions. The so-called artifacts can determine
impairment in the image formation and may be inherent to the method (apparatus, pulse
sequence) and those related to the patient (involuntary physiologic recurrent movements and
involuntary non recurrent movements). The physiological recurrent movements are related to
breathing and heartbeat, while involuntary non periodic can be determined by swallowing or
spontaneous movements of patients. The artifacts generally can alter the quality of the image
during its acquisition. Therefore, in some cases, they interfere with the interpretation of the
diagnosis [21,31].

9. MRI scanning: Risks and contraindications

Up to 2.5 Tesla, the magnetic field does not trigger any biological or genetic risk.

The risks and contraindications for MRI are very rare, but they should be known to avoid an
accident or scheduling of an unnecessary exam.

Risk factors are associated to a magnetic field that can produce heat, suffocation in case of
discharge of a supra-conductor magnet with brutal gasification of the fluids that cools the
magnet, patients’ local burns caused exceptionally by the twisting of the antenna surface wire
or its deterioration by the "coil" effect [21,32,33].

The exam is contraindicated for patients with cardiac pacemakers that can be affected tempo-
rarily or permanently with risk of heart failure or rhythm disturbances; these risks exist
regardless of the intensity of the magnetic field, metal and ferromagnetic bodies, and pregnant
women [32,33].

10. Conclusions

Studies in MRI to diagnose soft-tissue injuries, mainly of the skeletal muscle and central
nervous system, indicated that the most-used pulse sequence is the spin echo. Through this
sequence it is possible to obtain images in axial, frontal, and sagittal planes. According to these
studies, the images obtained in the axial plane are those that show the lesions in detail.
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The sequences with contrast images obtained on T1-weighted images are the most important
to determine areas of injury with greater specificity. T2-weighted images allow accurately
diagnosed injuries. Paramagnetic agents are of primary importance and its use in MRI provides
information about the behavior of the lesions.

MRI scans can be conducted in all regions of the body such as brain, spine, joints (shoulder,
knee), extremities, chest, abdomen, and others. It is an excellent method for detecting tumours
and other soft-tissue lesions based on the criteria of patient safety in relation to the magnetic
field, pathology and site to investigate, as well as technical parameters and tissue, which are
critical in image acquisition.

Nomenclature (list of symbol)

The nomenclature represents the protocols used to acquire the images of tissues in MR spin
echo sequence of skeletal muscle and central nervous system.

AX LOC. Axial section plane locate

COR LOC. Coronal section plane locate

COR T1. Coronal section plane tissue relaxation time T1

AX T2. Axial section plane tissue relaxation time T2

AX T1. Axial section plane tissue relaxation time TI pre-contrast

AX T1 GDL. Axial section plane tissue relaxation time T1 pos-contrast
GDL. Contrast agent paramagnetic metal (gadolinium)

SE. Spin Echo sequence

IR. Inversion-recovery sequence

FOV. Field of view determine the size of the anatomy covered during the selection of the tissue
section

TR. Repetition time

TE. Echo time

TE(2°). Two sequences in echo time

T1. Inversion time

Interval. Interval between slices to image quality
Number of sections. Number of slices to image quality

Thickness. Thikness of slices image quality

51



52

Imaging and Radioanalytical Techniques in Interdisciplinary Research - Fundamentals and Cutting Edge Applications

NAQ. number of acquisitions represents the number of times that data are acquired within/
into the same pulse sequence

Matrix. Codification frequency and phase codification along the longest and short axis of the
anatomy

F1. Increment to image quality
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