
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 16

Discovering the Genetics of Autism

Abdullah K. Alqallaf, Fuad M. Alkoot and
Mash’el S. Aldabbous

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/ 53797

1. Introduction

Autism is a complex neurodevelopmental disorder. It is characterized by social isolation,
language deficits and repetitive or stereotyped behaviors. Autism spectrum disorder (ASD)
has received a great deal of attention in the recent years not only due to the increasing rate
of affected children but also because of the social and economical impact of the disorder on
their families. Various studies and researches have been proposed to deal with and tackle
the ASD. They can be divided into three categories as follows.

1. The basis and causes of the disorder. Different hypotheses have been proposed in an at‐
tempt to determine and discover the originality of autism. Genetic risk factors repre‐
sented by abnormal chromosomal variations and rearrangements, and non-genetic
factors represented by environmental agents that have been claimed to contribute to
ASD, such as exposure of children to vaccines, infection, certain foods or heavy metals.

2. The methodologies and techniques for characterizing and diagnosing the disorder. Sev‐
eral instrumental diagnostic protocols are commonly used in autism research such as
the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observa‐
tion Schedule (ADOS). The advances in neuro-imaging techniques such as the function‐
al-Magnetic Resonance Imaging (f-MRI) have allowed scientists to model the structural
and functional differences in the human brain tissues of the individuals with ASD. The
clinical genetics evaluation provide reliable alternative to the interview-based protocols
and screening approaches. It allows geneticists to link an estimate of approximately
40% of the cases to genetic contributors.

3. The treatments and therapies of autistic patients. The available approaches for treat‐
ments include applied behavior analysis (ABA), developmental models, structured
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teaching, speech and language therapy and social skills therapy. When behavioral treat‐
ment fails, many medications are used to treat ASD symptoms.

Figure 1 demonstrates the interaction of the autism spectrum disorders researches and studies.

Figure 1. A puzzle-like representation of the interaction process of the researches and studies for autism spectrum
disorders.

The advancements of the technologies in the field of genetics provide the opportunities for
researchers and scientists to explore in depth the biological information and to convert it in‐
to meaningful biological knowledge through computational-based models.

In this chapter, we will investigate the genetics origins of autism and demonstrate the latest
techniques and technologies available for diagnosing the complex disorder. We will also
propose a robust approach for detecting and identifying the targeted disorder based upon the
advantages and strengths of the publically available and commercial approaches while avoid‐
ing their weaknesses. The proposed approach is divided into two steps. The preprocessing
step is a feature-extraction method used to clearly map and detect the genetic variations and
structural rearrangements followed by a statistical-based model as feature-selection to evalu‐
ate and measure the statistical and biological significance of the predicted variations. The
classification step is to discover the relationship among the tested samples into groups and/or
subgroups, and to provide insight into the complex pattern of the genome.

The results suggest that autism is associated with an increased amount of alterations in un‐
stable segments of the genome. The experimental results also show that using high-resolu‐
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tion custom-tiled samples improve the accuracy of our proposed approach in determining
previously reported and new genetic contributors that warrant investigation.

This chapter aims at utilizing research to bring benefits to individuals and families affected
by autism spectrum disorders and to improve the quality of their life. And this can be done
by clear mapping and identifying the biomarkers associated with ASD at the early child‐
hood stages which are essential to provide better treatments and therapies. Finally, the pro‐
posed approach presented in this chapter is broadly applicable to case-control studies of
genetic diseases beyond the ASD.

The chapter is organized as follows. In section 2, we demonstrate the genetic data generat‐
ing techniques, data modeling and chromosomal variations that are associated with the tar‐
geted disorder, ASD. Section 3 is devoted for the methods used to analyze the genetic data
trying to discover the variant regions along the genome and to identify the tested samples.
In section 4, we apply molecular test to evaluate the predictive power of the proposed ap‐
proach. Finally, discussion and conclusion based on the results are presented in section 5.

2. Genetic data

2.1. Genomic structural variations and ASD susceptibility

Genetic alterations in the form of chromosomal rearrangements are genomic structural var‐
iations that lead to changes in the DNA copy number such as duplications and deletions of
the DNA copies. However, copy number changes do not include other genomic structural
variations such as inversions, insertions and reciprocal translocations. Figure 2 demonstrates
different types of chromosomal rearrangements.

Figure 2. a schematic representation of types of chromosomal rearrangements [67].
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Chromosome region Gene Phenotype
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es 6q23.3 AHI1 Joubert syndrome

7q35-q36.1 CNTNAP2 Recessive EPI syndrome, ASD, ADHD, TS, OCD
9q34.13 TSC1 Tuberous Sclerosis type I
10q23.31 PTEN Cowden disease*

11q13.4 DHCR7 Smith-Lemli-Opitz syndrome
12p13.33 CACNA1C Timothy syndrome
15q11.2 UBE3A Angelman syndrome
16p13.3 TSC2 Tuberous Sclerosis type II
17q11.2 NF1 Neurofibromatosis
Xp21.2 DMD Duchenne muscular dystrophy
Xp21.3 ARX LIS, XLID, EPI, ASD
Xp22.13 CDKL5 X-linked infantile spasm syndrome
Xq27.3 FMR1 Fragile X syndrome
Xq28 MECP2 Rett syndrome

Ra
re

 V
ar

ia
nt

s

1q21.1 NBPF9 ASD, ID, SCZ, ADHD, EPI
2p16.3 NRXN1 ASD, ID, language delay, SCZ.
3p13 FOXP1 ID, ASD, SLI
6q16.3 GRIK2 Recessive ID
7q11.23 FKBP6/CLIP2 ASD, ID, language delay
7q31.1 FOXP2 SLI
11q13.3-q13.4 SHANK2 ASD, ID
15q11-q13 MAGEL2/ NDN ASD, EPI, ID
16p11.2 VPS35/ORC6 ASD, ADHD, ID, EPI, SCZ
16p13.3 A2BP1 ID, ASD, EPI, SCZ, ADHD
17q11.2 SLC6A4 ASD, OCD
17q12 ACCN1/PNMT ASD, SCZ, EPI
22q11.21 DiGeorge syndrome, SCZ, ASD, ID.BPAD
22q13.33 SHANK3 ASD, Phelan McDermid syndrome**

Xq13.1 NLGN3 ASD
Xp22.11 PTCHD1 ASD, ID
Xp22.32-p22.31 NLGN4X ASD, ID, TS, ADHD

Co
m

m
on

 A
lle

le
s

1q42.2 DISC1 SCZ,BPAD
2q31.1 SLC25A12 ASD
3p25.3 OXTR ASD
7q31.2 MET ASD, Diabetes II
7q22.1 RELN ASD
7q36.3 EN2 ASD
12q14.2 AVPR1A ASD
17q21.32 ITGB3 ASD

Table 1. Chromosomal regions and genes that are implicated in risk for ASD, and associated genetic disorders and
syndroms [68& 69].Abbreviations: LTD, long-term depression; LTP, long-term potentiation; PPI, prepulse inhibition; E/I,
excitatory/inhibitory; PSD, postsynaptic density; ASD, autism spectrum disorders; SCZ, schizophrenia; ADHD, attention
deficit hyperactivity disorder; ID, intellectual disability; XLID, X-linked intellectual disability; LIS, lissencephaly; EPI,
epilepsy; OCD, obsessive compulsive disorder; TS, Tourette syndrome; SLI, speech and language impairment; USV,
ultrasonic vocalization; TF, transcription factor; ECM, extracellular matrix; GPCR, G-protein-coupled receptor;BPAD,
Bipolar affective disorder. *A rare autosomal dominant inherited disorder characterized by multiple tumor-like
growths, increased risk of certain forms of cancer, and diverse clinical features including neurologic features such as
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autism and Lhermitte Duclos disease [39& 40].** A genetic syndrome caused by disruption of the SHANK3 gene which
codes for the shank3 protein. The protein most important role is in the brain. It is involved in processes crucial for
learning and memory. It also has an important role in brain development. It is also known as 22q13.3 deletion
syndrome and is highly associated with autism.Human (Homo sapiens) Genome Browser Gateway, http://
genome.ucsc.edu/cgi-bin/hgGateway.

A set of chromosomal regions and genes that are implicated with ASD are listed in Table
1. Some of the regions are associated with known Mendelian syndromes. In some individ‐
uals  affected  with  these  syndromes,  ASD occurs  as  a  secondary  diagnosis.  In  other  re‐
gions and genes, genetic variations causing ASD include a wide range of possibilities each
with very low frequency among the cases (rare variants). In some cases the rare variants
are found only once in the population.  In contrast  to rare variants we see that  in other
chromosomal  regions  and  genes  only  few  common  genetic  variations  (common  alleles)
account for ASD susceptibility.

2.2. Data Generating

Figure 3 illustrates the process of generating DNA copy number data using Microarray-
based comparative genomic hybridization (array CGH) technology.

Figure 3. Principles of the aCGH technology. (a) DNA from the sample to be tested and reference DNA are labeled
with a green fluorescence dye (Cy3) and red (Cy5), respectively, and competitively co-hybridized to an array containing
genomic DNA targets that have been spotted on a glass slide. The resulting ratio of the fluorescence intensities is pro‐
portional to the ratio of the copy numbers of DNA sequences in the test and reference genomes measured in a loga‐
rithmic scale. (b) The slides are scanned using a specific microarray scanner shown in (c). (d) The output of the
scanning process is the ratio of the fluorescence intensities for each spot represented as a point in the relative copy
number profile [66].
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2.3. Data Modeling

As illustrated in Figure 3, aCGH technology is an experimental approach for genome-wide
scanning of differences in DCN samples. It provides a high-resolution method to map and
measure relative changes in DCN simultaneously at thousands of genomic loci. In a biologi‐
cal experiment, unknown (test) and reference (normal) DNA samples are labeled with fluo‐
rescent dyes Cy3 and Cy5, respectively. Then, they are combined and competitively co-
hybridized to an array containing genomic DNA targets that have been spotted on a glass
slide. The resulting ratio of the fluorescence intensities is proportional to the ratio of the
copy numbers of DNA sequences in the test and reference genomes measured in a logarith‐
mic scale for a certain genomic location. These intensity ratios are informative about DNA
copy number changes. We expect to see duplication (gain) for positive ratio, deletion (loss)
for negative ratio and normal state for neutral ratio. Due to the logarithmic scale and the
probes performance, the data can be approximated as a piecewise function of short and long
intervals with different intensity levels that are not equally-spaced along the genome. More‐
over, microarray experiments suffer from many sources of error due to human factors, array
printer performance, labeling, and hybridization efficiency.

Figure 4. Graphical representation of the generated data using aCGH technology. The red stars represent the raw da‐
ta as described in (1). The grey solid line represents the true value of 4 variant segments that need to be estimated
with intensity levels Ai measured in log2(ratio) and bounded by the breakpoints n i-1 and n i, respectively.

According to the data description and properties generated by microarray technology, the
DCN cell line can be approximated as a one-dimensional piecewise constant (PWC) discrete-
time signal contaminated with some error. A good model of the genetic data generated by
the aCGH technology can be model as follows.

[ ] [ ] ,            1,  2,  ...,  .ny n x n n Ne= + = (1)
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where y[n] is the contaminated genetic signal and x[n] is the true value of the genetic varia‐
tion to be estimated at genomic location n of the length N. ε n is assumed to be modeled as
additive wihte Gaussian noise with zero mean and some variance σ2.

As described in (1), Figure 4 illustrates the genetic data in the form of DNA copy number
generated by aCGH technology where 4 variant segements are presented with different in‐
tensity levels.

3. Methods

3.1. Data Filtering

Although the recent advantecment in microarray technologies and sequencing now make it
easy to measure the genetic variations with high-resolution through scanning large number
of samples, small changes, particularly at the low copy repeat (LCRs) regions, remain diffi‐
cult to detect due to different noise conditions. Thus, the challenging problem is to differen‐
tiate between the true biological signaling and the noise measurements.

Various methods have been proposed as preprocessing techniques to tackle this problem.
These methods have been motivated by either well-known signal processing techniques or
statistical-based models.

METHOD COMPUTATIONAL

SMOOTHING TECHNIQUES COMPLEXITY

SIGMA FILTERING (Alqallaf et al., 2007) O(N)

SMOOTHING AND EDGE DETECTION (Huang et al., 2004) O(N)

WAVELETS (Hsu et al., 2005) O(N log N)

STATISTICAL-BASED MODELS

CIRCULAR BINARY SEGMENTATION (Olshen et al., 2004) O(N2)

HIDDEN MARKOV MODELS (Fridlyand et al., 2004) O(C2N)

SPARSE BAYESIAN LEARNING (Pique-Regi et al., 2008) O(N log N)

Table 2. Comparison based on the computational complexity of the proposed denoising techniques.

In Table 2, we present a comparison study based on the computational cost of the most re‐
cent and successful approaches. As can be noticed that the smoothing techniques are well
suited to process very large amount of data such as the genetic signals compared to the stat‐
istical-based models. However, these techniques include important features such as the var‐
iant regions boundaries in the smoothing process.

Here we present our previously proposed method (Alqallaf et al., 2007), Sigma filter (SF). It
is a nonlinear method used as a feature extraction to detect the variant segments edges and
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to smooth the rest of the genetic data. The filter is conceptually simple but effective noise
smoothing algorithm. Based on the assumption of the aCGH data modeling, the SF algo‐
rithm is well suited to denoise the tested samples before further analysis. SF algorithm is
motivated by the sigma probability of the Gaussian distribution, and it smooths the noise by
averaging only those neighborhood variant segments which have the intensities within a
fixed sigma range of the center data point. Consequently, variant segmets edges are pre‐
served, and subtle details are retained.

3.2. Statistical significance

Few studies in the literature have addressed the power of class discovery of the recurrent
copy number variations (CNVs) across multiple samples of the genetic data [52& 53]. How‐
ever, they did not consider denoising the data prior to applying the statistical analysis.

To reduce the dimensionality of the detected variant regions, we apply a simple statistical-
based approach to measure the significance of the candidate gemonic regions. The approach
is based on the frequency difference between the case and control samples at each gemonic
location. It is used as a feature selection algorithm to select a small subset of variant seg‐
ments as features for classification. Figure 5 is an illustration of three RCVNs with different
sizes of filtered DCN data for multiple samples of normal control (C i) and autistic (A i) indi‐
viduals, respectively. After selecting the informative segments of the genome, we then ap‐
plied comparative classification algorithms on the reduced data.

Figure 5. Schematic representation of 3 recurrent copy number variant segments (RCNVs) with different lengths. The
x-axis represents the genomic position and the y-axis represents the indices of the samples, Ci is for normal-control
samples and A i is for autistic samples, respectively. The vertical dashed lines represent the RCNVs boundaries. The dark
red and dark blue bars represent duplication and deletion for the corresponding chromosomal regions.

3.3. Data classification

Based on the collected and processed genetic data, we apply a system of classifiers that are
used to identify autistic individuals based on their genetic information. This system will
help improve detection, identification and diagnosis of autism, which will benefit both the
patients and the society in general and will lead to early diagnosis and treatment.

Generally classifiers are used by researchers faced with the task of classification based on a
given data. Classifiers are mathematical models that are able to perform the task of classifi‐
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cation or decision making, based on a previously provided data. Classifier’s ability to spot
trends and relationships in large data sets makes it well suited for many applications. In the
field of medicine classifiers can be used to classify accurately diseases, genes, tumors, and
other medical phenomena [54; 55; 56; 57; 58; 59& 60]. Although some attempts were made to
use classifiers in genetics [61]. Our attempt is to use three comparative classifiers, namely, k-
Nearest Neighbor, Neural Network, and Support Vector Machine, to help in diagnosing pa‐
tients with ASD.

The leave-one-out cross-validation (LOOCV) is applied to evaluate the proposed classifiers
by measuring the classification performance to accurately identify the association between
the tested samples and the targeted disorder, ASD. The LOOCV involves using a single var‐
iant segment from the original sample as the validation data, and the remaining segments as
the training data. This is repeated such that each variant segment in the sample is used once
as the validation data.

3.3.1. k-Nearest Neighbor Classifier

The k-Nearest Neighbor (k-NN) classifier [64] is a well known nonparametric classifier. To
classify a new input x, the k nearest neighbors are retrieved from the training data. The in‐
put x is then labeled with the majority class label corresponding to the k nearest neighbors.
For the k-NN classifier, we used the Euclidean distance as the distance metric, and the best k
between 1 and 10 was found by performing LOOCV on the training data.

3.3.2. Neural Network

Neural networks are another type of classifier or mathematical models used for classifica‐
tion, regression or decision making. Their structure is inspired by the human neural system
and brain. It consists of many neurons, interconnected at different stages. The direction of
flow of information is usually from the input stage to the output stage. Each neuron has an
input and an output, where an activation function converts a neurons input to its output.
The output of each neuron is connected to the next stage through a weighted connection. A
learning function determines the value of the weights of all the connections. The weights are
updated based on a mathematical function that relates the network together. Therefore, a
neural network is considered as an adaptive network that changes its structure during the
learning or training phase, based on mathematical functions that relate input data to the cor‐
responding class labels. The sum of all neurons at the different layers and the weighted in‐
terconnections make up a complex network that is commonly referred to as a black box.

Before its use to classify a test sample, the neural network is trained on a given data set with
known classes or labels. During the training phase the weights are updated to minimize the
output error. The selected value of the minimum acceptable error determines when the
training stops. For a difficult data where it is impossible to reach the set minimum error, the
maximum number of epochs is used as criteria for stopping the training process.
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3.3.3. Support Vector Machine

The Support Vector Machine (SVM) belongs to a new generation of learning system based
on recent advances in statistical learning theory [65]. A linear SVM, which is used in our sys‐
tem, aims to find the separating hyper-plane with the largest margin, defined as the sum of
the distances from a hyper-plane (implied by a linear classifier) to the closest positive and
negative exemplars. The expectation is that the larger the margin, the better the generaliza‐
tion of the classifier. In a non-separable case, a linear SVM seeks a trade-off between maxi‐
mizing the margin and minimizing the number of errors.

Figure 6. Comparison study of the performance of the three tested classifiers. The x-axis represents the number of
segments and the y-axis represents the percentage average LOOCV accuracy.

Figure 6 illustrates the LOOCV classification accuracies using the tested classifiers, k-NN,
NN, and SVM. The x-axis is associated with the number of selected top-ranked variant seg‐
ments and the y-axis shows the average LOOCV accuracy.

4. Validation of the predicted variant segments

To evaluate our predictive power of our method in detecting and identifying patients with
ASD, we use molecular test, quantitative Polymerase Chain Reaction (qPCR). It is a very
sensitive  and precise  tool  used for  the  quantification of  nucleic  acids.  It  can detect  and
quantify very small amounts of specific nucleic acid sequence. It is based on the method of
PCR, developed by Kary Mullis in the 1980s. It allows the amplification of specific nucleic
acid sequence (DNA) more than a billion-fold. Using qPCR allows scientists to quantify the
starting amount of a specific DNA sequence in the sample before the amplification by PCR
method [62].
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Quantitative PCR is an indispensable tool for researchers in various fields including funda‐
mental biology, molecular diagnostics, biotechnology, and forensic sciences. Critical points
and limitations of qPCR-based assays must be considered to increase the reliability of the
obtained data. For the detection of qPCR four technologies are commonly used all of which
are based on the measurement of fluorescence during the PCR. One principle is based on
intercalation of double-stranded DNA-binding dyes (simplest and cheapest). The other
three principles are based on the introduction of an additional fluorescence-labeled oligonu‐
cleotide (probe). Detectable fluorescence are only released either after cleavage of the probe
(hydrolysis probes) or during hybridization of one (molecular beacon) or two (hybridization
probes) oligonucleotides to the amplicon. The introduction of an additional probe increases
the specificity of the quantified PCR product and allows the development of multiplex reac‐
tions. Other technologies have been described for the detection of qPCR [63].

The qPCR method quickly became the first choice when it comes to quantitative analysis of
nucleic acid because of many reasons. It is highly sensitive and it allows the detection of less
than five copies (one copy in some cases) of a target sequence. It has good reproducibility. In
addition, it has broad dynamic quantification range, at least 5 log units. It is also easy to use
and has reasonable good value for money (low consumable and instrumentation costs).

For the purpose of this chapter, we are focusing on one of the many applications of qPCR,
which is indispensable for research and diagnostics, the genetic variations.

Array CBS SF

1 14 20

2 10 20

3 20 21

4 13 21

Table 3. Representation of the number of events (CNVs) detected by the circular binary segmentation (CBS) and
sigma filtering methods, respectively, for 22 qPCR confirmed CNVs.

Table 3 shows that the number of qPCR-confirmed CNVs detected by the sigma filtering
(SF) method is considerably higher than those detected using the circular binary segmenta‐
tion (CBS), ranging from 4.5% to 36% more for 4 different array experiments. The results
show that applying the averaging window of 2Kb allow the algorithms to be well suited for
detecting variations in high-density microarray data, especially at the LCR-rich regions.

5. Conclusion

The etiology of Autism spectrum disorders involves genetic and environmental risk factors.
In this chapter, we have discussed the genetics basis of the complex disorder, autism. With
the recent advances in the new screening technologies to investigate the entire genome such
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as array comparative genomic hybridization (aCGH) and whole genome sequencing, pro‐
vide the opportunities insight into the pattern of the genetic variations and reveal their roles
in the genetic diseases. In this study, we have demonstrated an overview for the analysis of
genetic variations in the form of DNA copy number changes and their association with au‐
tism susceptibility.

Through mathematical-based models and computational-based approaches, we analyze the
genetic data trying to discover and identify the relationship between the structural chromoso‐
mal rearrangements along the genome and the targeted disorder, ASD. In conclusion, the results
show strong evidence that the genetic variations contribute in the complex disorder, autism.
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