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1. Introduction

The field of  genetics  has made considerable scientific  progress in the past  several  years
and continues to evolve at a rapid pace. This progress parallels developments in genom‐
ic  technology,  where  instrumentation  and  methodology  are  becoming  increasingly  so‐
phisticated  and  cost-effective.  Here,  we  review  recent  developments  in  understanding
autism spectrum disorder  (ASD)  from a  genomics  perspective.  A large  catalog  of  com‐
mon and rare variants has now been associated with ASD, and we are beginning to see
some of these discoveries translate into pharmacogenomic intervention. This review pro‐
vides an overview of genome-wide association studies (GWAS) and common genetic var‐
iants, followed by an overview of the status of rare variant research, which have risen to
prominence with the proliferation of next-generation sequencing and techniques for iden‐
tifying  copy  number  variants.  While  these  approaches  need  not  be  mutually  exclusive,
they provide a useful structure for organizing relevant genetic factors. Although there is
much work to be done before these discoveries will enter the clinic, the past decade has
seen us make major inroads in elucidating the causes of ASD and making tentative steps
towards developing treatments.

1.1. Defining the autism phenotype

Autism is known to be highly heterogeneous, and this phenomenon has made definitions of
the phenotype somewhat problematic. The American Psychiatric Association recently pro‐
posed revisions to its Diagnostic and Statistical Manual of Mental Disorders V (DSM-5) cri‐
teria for ASD (see Wing et al., 2011) [1], acknowledging the long-observed overlap between
social and communication dimensions (previously separate). Thus, ASD will be defined by
1) persistent deficits in social communication and social interaction across contexts, and 2)
restricted, repetitive patterns of behavior, interests, or activities. These should impair every‐
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day functioning, not be accounted for by general developmental delays, and be present from
early childhood.

For large-scale genome analyses, DSM criteria have been considered insufficiently precise,
and cases are often selected using scores from the Autism Diagnostic Interview (ADI-R) [2],
Autism Diagnostic Observation Schedule (ADOS) [3], and/or Social Responsiveness Scale
(SRS) [4]. These instruments offer a more robust psychometric platform, and cases defined
as “autism” are required to meet strict threshold criteria (e.g. all sub-dimensions of the ADI-
R and ADOS). Individuals not quite meeting these criteria may be subsumed under the
“broader” autism phenotype, which also typically includes Asperger syndrome, childhood
disintegrative disorder and pervasive developmental disorder not otherwise specified. A di‐
agnosis of Rett syndrome—which has a reportedly distinct pathophysiology, clinical course,
and diagnostic strategy (Levy, Mandell & Schultz, 2009) [5] and will likely be removed in
the impending publication of DSM-V—is typically exclusionary. Intellectual impairment,
which is often co-morbid with ASD (Dawson et al., 2007; Bölte et al., 2009) [6,7] is not an ex‐
clusionary criterion, but is co-varied in statistical analyses. Given the broad range of IQ tests
and their associated psychometric properties, this requires considerable finesse.

Standardization of diagnostic criteria has facilitated the accumulation of large ASD sample-
sets, where institutions can share (de-identified) data. In this vein, initiatives such as the Au‐
tism Genome Project include data from several thousand ASD individuals, greatly
increasing statistical power of relevant analyses.

1.2. Heritability of ASD

Although Skuse (2007) [8] cautions that heritability estimates of ASD may have been skewed
by the co-inheritance of (low) intelligence or other variables, there is little doubt that genetic
factors play a key role in autism. In the most widely-cited twin study, Bailey et al. (1995) [9]
report that monozygotic twins are 92% concordant on a broad spectrum of cognitive or so‐
cial abnormalities, compared with only 10% for dizygotic twins. Parents and siblings of indi‐
viduals with ASD often exhibit subsyndromal levels of impairment (Piven et al., 1997) [10],
and having an affected sibling is the single biggest risk factor for developing an ASD. In an
analysis of 943,664 Danish children (Lauritsen et al., 2005) [11], the strongest predictors of
autism were siblings with ASD, who conferred a 22-fold increased risk, while Fombonne
(2005) [12] suggested that this risk may be even greater.

1.3. Early genetic studies – insights from Rett syndrome and Fragile X

Early efforts to identify the genetic causes of ASD utilized linkage and association ap‐
proaches. Linkage studies, more prominent in the 1980s and 1990s, typically focus on fami‐
lies or larger pedigrees and are well powered to identify rarer genetic variants. The most
common linkage approach is the affected sib-pair design (see O’Roak & State, 2008) [13],
which examines the transmission of genomic segments through generations. Linkage stud‐
ies helped define the locus containing FMR1, which is mutated in fragile X syndrome (e.g.
Richards et al., 1991) [14], Approximately 30% of children with fragile X syndrome meet cri‐
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teria for autism (Rogers et al., 2001; Harris et al., 2008) [15,16]. Similarly, linkage studies have
been important to identifying MECP2 as the major cause of Rett syndrome (e.g. Curtis et al.,
1993) [17].

Association studies take a different approach. Rather than track transmission of specific ge‐
nomic regions through generations, association studies scan the breadth of the genome.
Here, the goal is to determine post-hoc whether identified variants are more or less common
in affected individuals. Early association studies (i.e. pre HapMap) were complementary
with the linkage approach, and in many designs, linkage primed target loci for this more
fine-grained analysis.

These early insights have played an important role in shaping our current understanding of
ASD. Functional studies of FMR1 and MECP2 have highlighted the importance of synaptic
dysfunction (Ramocki & Zoghbi, 2008) [18] as a unifying factor that could extend into the
more common forms of autism and, as discussed below, remain highly relevant to our un‐
derstanding of the broader ASD phenotype.

2. Genome wide association and common variants

Aside from notable successes with fragile X and Rett syndrome, early linkage and associa‐
tion studies have been inconsistent in resolving more complex genetic correlates of ASD,
and candidate genes have often not being replicated between studies. These challenges may
in part be accounted-for by their relatively low resolution/coverage, making it difficult to
detect candidate loci other than those of major effect. A shift in technology was required to
get beyond such challenges, which was engendered by the introduction of high-resolution
single nucleotide polymorphism (SNP) arrays. SNP arrays provided coverage of many thou‐
sand (now several million) common SNPs, which could be examined at a relatively low cost
across large sample sets.

Genome-wide association studies (GWAS) examine the frequency of SNPs in case versus
control populations, and can adopt either a case-control or family-based design. The former
allows researchers to avoid the often complex process of acquiring diagnostic/phenotype da‐
ta from a patient’s family, and can incorporate very large numbers of control datasets that
may be more readily available. The latter controls for the often confounding phenomenon of
population stratification, where variants more common to specific racial groups may either
be erroneously identified as causal, or obscure actual causal variants. A major caveat with
family-based designs is the often unfounded assumption that unaffected family members do
not share causal variants.

GWAS test for common variants (>1% population frequency), with the assumption that ASD
are at least in part caused by the coinheritance of multiple risk variants, each of small indi‐
vidual effect (odds ratios typically between ~1:1 and ~1:5). This assumption is known as the
common disease-common variant (CDCV) model (Risch & Merikangas, 1996) [20].
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2.1. The 5p14.1 locus

A 2009 paper from our laboratory (Wang et al., 2009 [21]) was the first to identify common
variants for ASD on a genome-wide scale. Our group examined 780 families (3,101 individu‐
als) with affected children, a second, independent group of 1,204 affected individuals, and
6,491 controls. All were of European ancestry. We identified six genetic markers on chromo‐
some 5 in the 5p14.1 region that confirmed susceptibility to ASD. This locus has been repli‐
cated in two additional independent cohort studies (Ma et al., 2009; St Pourcain et al., 2010)
[22, 23], lending further support for 5p14 as associated with ASD risk.

As shown in Figure 1, the region straddles two genes, CDH9 and CDH10. Both genes encode
type II classical cadherins, transmembrane proteins that promote cell adhesion. Cadherins
represent a large family of transmembrane proteins that mediate calcium-dependent cell–
cell adhesion, and have been shown to generate synaptic complexity in the developing brain
(Redies, Hertel & Hübner, 2012) [24]. The association of cadherins is consistent with the cort‐
ical-disconnectivity model of autism (e.g. Gepner & Féron, 2009) [25], which postulates that
ASD may result from an increase or decrease in functional connectivity and neuronal syn‐
chronization in relevant neural pathways. While this hypothesis may yet be confirmed, a re‐
cent study by Kerin et al. (2012) [26] suggests a more complex mechanism to explain
association between ASD and the 5p14.1 locus.

Basing their analyses on the genomic region surrounding the rs4307059 locus, the authors
used a bioinformatics approach (i.e. Genome Browser) to examine relevant expressed se‐
quence tags (ESTs) and RNA (by Tiling Array within the 100-kb linkage disequilibrium at
the GWAS peak). Only one functional element—a single noncoding RNA—was located. The
3.9-kb RNA corresponded to moesin pseudogene 1 (MSNP1), and has 94% sequence identity
to the mature mRNA of the protein-coding gene MSN. Located on the X chromosome
(Xq11.2), MSN spans 74 kb and contains 13 exons. It produces a 4-kb mRNA, and encodes
the 577–amino acid moesin protein. The noncoding RNA at 5p14.1 was encoded by the op‐
posite (antisense) strand of MSNP1, and was therefore named moesin pseudogene 1, anti‐
sense – MSNP1AS.

Follow-up analyses by the group largely confirm that MSNP1AS is expressed in the brain,
providing important functional validation. Using custom TaqMan Gene Expression assays
to target the region, they showed that while MSN was widely expressed in all tissues tested,
MSNP1AS was expressed variably. Sites of greatest expression were the adult temporal cere‐
bral cortex, adult peripheral blood, and fetal heart, as well as three immortalized cell lines.
Moreover, postmortem analyses (qPCR on total RNA) of fresh-frozen, superior temporal
gyri of ASD-control pairs (n=10) found a 12.7-fold increase of MSNP1AS expression in the
temporal cortex of individuals with ASD. Individuals with ASD also showed a 2.4-fold in‐
crease in MSN expression in the same region. Interestingly, there was no evidence of in‐
creased expression for either CDH9 or CDH10.

The group next used genotype—determined from three associated SNPs from the original
Wang et al. paper—as the independent variable in expression analyses. All three SNPs,
rs7704909, rs12518194, and rs4307059, have a high degree of linkage disequilibrium (LD)
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(r2>0.98). Using resequencing to compare relevant genotypes, they identified highly signifi‐
cant differences in MSNP1AS expression. Thus, the T/T genotype at rs7704909 corresponded
to a 23.3 fold increase in MSNP1AS RNA compared to the C/C genotype. For the rs4307059,
the T/T versus C/C genotype corresponded to a 22.0-fold increase in MSNP1A expression.
For rs12518194, the A/A versus G/G genotype corresponded to a 10.8 fold increase in
MSNP1A expression. Again, there was no evidence of increased/decreased expression dif‐
ferences for CDH9 or CDH10 in relation to genotype or case/control status.

Figure 1. Genome-wide association results at the 5p14.1 region. a, A Manhattan plot shows the log10(p values) of
SNPs from their combined association analysis. b, The 5p14.1 region in the UCSC Genome Browser, with conserved
genomic elements in the PhastCons track. c, Genotyped (diamonds) and imputed (grey circles) SNPs are plotted with
their combined p values. Genotyped SNPs are colored on the basis of their correlation with rs4307059 (red: r2 ≥ 0.5;
yellow: 0.2 ≤ r2 < 0.5; white: r2 < 0.2). Estimated recombination rates from HapMap are plotted to reflect local linkage
disequilibrium. Adapted from Wang et al., 2009 [21]. Reprinted with permission from Nature Publishing Group.

Although Western blot analyses did not identify significant differences in moesin protein
levels between cases and controls, overexpressing MSNP1AS in human cell lines was shown
to significantly reduce levels of the moesin protein. The authors speculated that relevant al‐
terations in moesin may occur only during specific development landmarks, which may im‐
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pact neurodevelopment. This would explain why moesin levels are not elevated in the ASD
samples per se, in spite of the marked differences in MSNP1AS expression. Further work is
needed to confirm this hypothesis, and quantification of moesin protein levels at key devel‐
opmental stages would certainly contribute in this respect.

Taken as a whole, these results provide compelling support for 5p14.1 as a risk locus for
ASD. Although sample sizes for some analyses were small (10 ASD-control pairs for post‐
mortem studies), this quite rigorous series of experiments draws a clear path from GWAS
result through functional validation. As such, these results help allay criticism of the GWAS
approach as a means of candidate discovery. Thus, a 2010 review by McClellan and King
(2010) [27] singled out the 5p14.1 locus as an example of the “perils of cryptic population
stratification”. These comments seemed somewhat misguided in the light of rigorous meth‐
odologies developed by the GWAS community for controlling stratification (e.g. EigenStrat)
[28], replication [22, 23], and now functional validation by the Kerin et al. group [26].

Similarly, replication/validation of the 5p14.1 locus provides an important demonstration of
the legitimacy of associations in intergenic regions. Again, McClellan and King had disput‐
ed the utility of such results, questioning how “genome-wide association studies come to be
populated by risk variants with no known function?” It is important to emphasize that the
GWAS approach typically does not tag the disease variant, but rather its approximate loca‐
tion—through linkage disequilibrium, this is typically 100kb or less. Moreover, as in the
Kerin et al. paper, the significant SNP may be tagging an intergenic regulatory element,
which has functional consequences far beyond the associated region, in this case the MSN
locus on the X-chromosome.

Finally, these expression analyses provide a reminder about the capabilities of different ge‐
nomic technologies. In the past twelve months, a number of high-profile next-generation se‐
quencing (NGS) studies have been able to examine genomic correlates of ASD with
unprecedented resolution. These types of studies—reviewed in greater depth below—have
been interpreted as the future of ASD genetics and, to a large extent, this may be true. How‐
ever, we note that DNA sequencing in the 5p14.1 region would not have identified the non-
coding RNA at this locus. Thus, although NGS platforms used for RNA-sequencing are
becoming increasingly sophisticated (Ozsolak & Milos, 2011) [29], microarray studies retain
a place in guiding genomic discovery.

2.2. Other replicated common variants from candidate gene studies

A number of other common variants from candidate gene studies have been proposed as
ASD risk factors. These include Contactin Associated Protein 2 (CNTNAP2), located on chro‐
mosome 7q35, which has been identified as a candidate for the age at first word endopheno‐
type (Alarcón et al., 2002) [30]. A follow-up by the same group (Alarcón et al., 2008) [31]
using linkage, association, and gene-expression analyses, found CNTNAP2 to be the only
autism-susceptibility gene to reach significance across all approaches. An independent link‐
age analysis by Arking et al. (2008) [32] also highlighted CNTNAP2 as a significant ASD can‐
didate gene. CNTNAP2 is part of the neurexin family, which have repeatedly been
associated with autism (see below). Interestingly, Vernes et al. (2008) [33] showed that
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CNTNAP2 binds to FOXP2, which is a well-established correlate of language and speech
disorders (Lai et al., 2001) [34], and are commonly observed in ASD.

Another locus indentified by the candidate gene approach is Engrailed 2 (EN2), a homeo‐
box gene that is  critical  to the development of  the midbrain and cerebellum. Like other
homeobox genes, it  regulates morphogenesis.  EN2  is  a human homolog of the engrailed
gene,  which  is  found in  Drosophila.  En2  mouse  mutants  have  anatomic  phenotypes  in
the  cerebellum  that  resemble  cerebellar  abnormalities  reported  in  autistic  individuals
(Cheng  et  al.,  2010)  [35].  In  three  separate  datasets,  Benayed  et  al.  (2005,  2009)  [36,  37]
have reported and replicated a significant association between EN2  and both broad and
narrow ASD phenotypes. Wang et al.  (2008) [38] also found an association between EN2
and ASD in a Chinese Han sample,  although Zhong et  al.  (2003) [39]  failed to find evi‐
dence of an underlying association.

The oncogene MET is also strongly linked to ASD etiology, having been supported by a
number of studies in the past decade (e.g. IMGSAC, 2001; Campbell et al., 2006, 2008; Sousa
et al., 2009) [40-43]. Recently, Eagleson et al. (2011) [44] reported a role for Met signaling in
cortical interneuron development in vitro in a mouse model.

2.3. Unexplained variance

For the most significant discovery SNP identified in the Wang et al. study above (rs4307059),
the risk allele frequency was 0.65 in cases with an odds ratio of 1.19. This is comparable with
common variant discoveries in other psychiatric disorders including schizophrenia (Gless‐
ner et al., 2009) [45], bipolar disorder (Ferreira, 2008) [46], and attention-deficit/hyperactivity
disorder (Arcos-Burgos et al. 2010) [47]. While it is important not to undermine the signifi‐
cance of these findings, it should be noted that the predictive value of such ratios is relative‐
ly low (Dickson et al. 2010) [48], often explaining less than 5% of the total risk (review at
http://www.genome.gov/gwastudies). However, it is also possible that these common SNPs
may be tagging a rarer causative variant (i.e. synthetic association), where the effect sizes
may be markedly underestimated by the GWAS variant as we recently reported (Dickson et
al. 2010) [48]. In one example, Wang et al. (2010) [49] examined the NOD2 locus as a cause of
Crohn’s disease. Using resequencing data, they found that three causal variants explain >
5% of the genetic risk, where GWAS had estimated the risk at ~1%. This finding has two po‐
tentially important implications. First of all, it highlights the need for careful phenotyping of
cohorts, which is important to ensure that the phenotypes produced by rare-variants are not
being “filtered-out” and missed as a consequence. A long range haplotype analysis of the
GWAS data at respective loci is recommended in an attempt to enrich for individuals with
rare-causative variants, who can be selected from the cohort and sequenced for confirmation
(Wang et al., 2010) [49].

Second, the results of our Crohn’s disease study suggest that in certain circumstances, there
may be an explicit relationship between tagged variants and underlying rare variants. Thus,
the distinction between loci harboring common versus rare variants is not necessarily con‐
crete. Indeed, the same locus may harbor both common and rare variants (Anderson et al.,
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2011). In recent years, we have seen an increased emphasis on the former, which is reflected
in an upsurge in the number of copy number variation (CNV) and NGS studies.

3. Rare variants – CNVs and next-generation sequencing

3.1. Copy number variation in ASD

CNVs are insertions, deletions, or translocations in the human genome that are universal in
the general population (e.g. Pinto et al., 2010) [50]. CNVs can be detected by the same SNP
arrays used in GWAS, and vary in length from many megabases to 1 kilobase or smaller.
They are often not associated with any observable phenotype.

One of the most widely-known CNVs is Down syndrome, which is characterized by an ex‐
tra chromosome 21. Rett syndrome is also caused by a CNV, which includes a deletion in
MECP2. CNVs can be inherited or occur de novo, the cause of which is thus far unknown.
Common disease-causing CNVs are infrequent but rare CNVs, with a frequency of less than
1%, have been identified for a range of disorders including ADHD (e.g. Williams et al., 2010)
[51], schizophrenia (e.g. Glessner et al., 2010; Levinson et al., 2011) [52, 53], bipolar disorder
(e.g. Chen et al., 2010) [54] and many others.

Sebat et al. (2007) [55] provided some early insights into the genomic features of CNVs in
ASD. Firstly, they noted that de novo CNVs were individually rare – from 118 ASD cases,
none of the identified variants were observed more than twice, with the majority seen just
once. This confirmed the widely-held assumption that many different loci can contribute to
the same ASD phenotype. The sheer volume of loci identified by this approach (multiple lo‐
ci on 20 chromosomes) affirms the extraordinarily complexity of ASD.

A number of subsequent studies have greatly expanded the number of candidate loci using
the CNV approach. Our laboratory (Bucan et al., 2009) [56] reported 150+ CNVs in 912 ASD
families that were not found in 1,488 controls. Critically, 27 of these loci were replicated in
an independent cohort of 859 ASD cases and 1,051 controls. Some of the rare variants we
identified had previously been associated with autism, including NRXN1 and UBE3A, (Guil‐
matre et al., 2009) [57]. Samaco et al. (2005) [58] previously identified significant deficits in
ube3a expression in mecp2-deficient mice, suggesting a shared pathological pathway with
Rett syndrome (as well as Angelman syndrome, and autism). Similarly, Kim et al. (2008) [59]
associated NRXN1 with a balanced chromosomal abnormality at chromosome 2p16.3 in two
unrelated ASD individuals. Rare variants in the coding region included two missense
changes.

Glessner et al. (2009) [52] identified and reported CNVs in two major gene networks, includ‐
ing neuronal cell adhesion molecules (such as NRXN1) and the ubiquitin gene family (such
as UBE3A). Interestingly, four of the most prominent genes enriched by CNVs in ASD cases
(UBE3A, PARK2, RFWD2 and FBXO40) – all of which were uncovered independently - are
part of the ubiquitin gene family. Ubiquitination can alter protein function after translation,
and degrade target proteins in conjunction with proteasomes. The ubiquitin–proteasome
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system operates at pre- and post-synapses, whose functions includes regulating neurotrans‐
mitter release, recycling synaptic vesicles in pre-synaptic terminals, and modulating changes
in dendritic spines and post-synaptic density (Yi & Ehlers, 2005) [60]. As well as implicating
an ASD-ubiquitination network, we also identified a second pathway involving NRXN1,
CNTN4, NLGN1, and ASTN2. Genes in this group mediate neuronal cell-adhesion, and con‐
tribute to neurodevelopment by facilitating axon guidance, synapse formation and plastici‐
ty, and neuron–glial interactions. We also note that ubiquitins are involved in recycling cell-
adhesion molecules, which is a possible mechanism by which these two networks are cross
linked.

In a similar approach, Pinto et al. (2010) [50] further confirmed the importance of rare CNVs
as causal factors for ASD. The group did not observe a significant difference between cases
and controls in terms of raw number of CNVs or estimated CNV size. However, the number
of CNVs in genic regions was significantly greater in ASD cases. Again, loci enriched for
CNVs include a number of genes known to be important for neurodevelopment and synap‐
tic plasticity, such as SHANK2, SYNGAP1, and DLGAP2. Between 5.5% and 5.7% of ASD
cases have at least one de novo CNV, further confirming the significance of de novo genetic
events as risk factors for autism. Similar to the Glessner study, the Pinto group mapped
CNVs to a series of networks involved in the development and regulation of the central
nervous system functions. Implicated networks include neuronal cell adhesion, GTPase reg‐
ulation (important for signal transduction and biosynthesis), and GTPase/Ras signaling, also
involved in ubiquitination.

Finally, Gai et al. (2011) [61] took a slightly different approach, focusing exclusively on inher‐
ited CNVs. While underlying loci were not necessarily common to those identified by the
Glessner and Pinto groups, enrichment in pathways involving central nervous system de‐
velopment, synaptic functions and neuronal signaling processes was again confirmed. The
Gai et al. study also emphasized the role of glutamate-mediated neuronal signals in ASD.

Collectively, these CNV studies suggest that certain hotspots on the genome are particularly
vulnerable to ASD, which include loci on chromosomes 1q21, 3p26, 15q11-q13, 16p11, and
22q11. These hotspots are part of large gene networks that are important to neural signaling
and neurodevelopment and have additionally been associated with other neuropsychiatric
disorders. In particular, a number of CNV studies in schizophrenia have highlighted struc‐
tural mutations incorporating chromosomes 1q21, 15q13, and 22q11 (e.g. Glessner et al.,
2010) [62], which are significantly enriched in cases versus controls, with NRXN1 being a
standout in this regard. From a phenotype perspective, autism and schizophrenia seem very
different, both in behavioral manifestation and age of onset, and it may seem counter-intui‐
tive that associated loci should overlap. Some authors have addressed this peculiarity by
proposing that schizophrenia and autism may in fact be different poles of the same spec‐
trum. Thus, Crespi and Braddock (2008) [63] suggest that social cognition is underdeveloped
in ASD and over-developed in the psychotic spectrum, with a similar polarization of lan‐
guage and behavioral phenotypes. Although speculative, this hypothesis has gained some
traction. In the next several years, genomic, imaging, and model-systems approaches will
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likely shed further light on the relationship between autism, schizophrenia and other neuro‐
psychiatric disorders.

3.2. Sequencing familial forms of ASD

To this point, we have focused primarily on the complex interactions of polygenic networks
as the major cause of ASD. However, this is not exclusively the case. Paralleling the recent
spate of CNV studies is a renewed focus on rare disorders. These include familial forms of
complex diseases that are potentially monogenic or with less complex inheritance pattern.
At the outset of this chapter, we emphasized the overlap with fragile X syndrome, where
one third of cases are co-morbid for ASD. As mentioned, fragile X is caused by a failure to
express the protein coded by FMR1. However, mutations in FMR1 do not always result in
fragile X and can result in a phenotype more representative of ASD. Thus, Muhle et al. (2004)
[64] found that 7-8% of idiopathic ASD cases may have mutations at the FMR1 locus. Like‐
wise, although mutations in MECP2 are the common cause of Rett syndrome, certain muta‐
tions at the same locus have been associated with idiopathic autism (Carney et al. (2003).

X-linked genes encoding neurologins NLGN3, NLGN4 and SHANK3 (a neuroligin binding
partner) are other prominent examples of distinct rare genetic causes. A parallel can be
drawn between these studies and studies of mental retardation and epilepsy, which include
many rare syndromes that collectively account for a substantial proportion of the two disor‐
ders (Morrow et al., 2008). Indeed it is perhaps more than coincidence that autism is heavily
co-morbid with these two conditions, with ~40% of ASD cases meeting diagnostic criteria for
mental retardation and epilepsy respectively (Bölte et al., 2009; Danielsson et al., 2005) [7,65].
It is also noteworthy that many of these monogenic-related genes are also major players in
neurodevelopment and synapse activity. Other prominent examples include TSC1, TSC2
(Osborne et al., 1991; Franz, 1998) [66, 67], NF1, and UBE3A (see Morrow et al., 2008) [68].

The identification of  monogenic  or  possibly  oligogenic  autisms is  likely  to  accelerate  in
the next several years as NGS becomes more widely available. In our group, we recently
encountered a  family  of  two parents,  six  healthy siblings,  and two siblings  with severe
autism suggestive  of  autosomal  recessive  inheritance.  Unsuccessful  attempts  using  link‐
age and CNV approaches failed to identify a causal locus,  but whole-exome sequencing
at 20x coverage identified four genes, including one with a non-synonymous SNP in the
protocadherin alpha 4 isoform1 precursor (PCDHA4)  gene, which presents a strong can‐
didate  gene,  currently  under  validation.  Protocadherins  are  part  of  the  cadherin  family
that facilitates neuronal cell adhesion and this discovery is consistent with the functional
properties of the PCDH family.

Known syndromes with ASD features include fragile X, neurofibromatosis type 1, down
syndrome, tuberous sclerosis, neurofibromatosis (which confers a 100-fold increased risk for
ASD Li et al. (2005) [69], Angelman, Prader-Willi and related 15q syndromes, and at least
several dozen others (see Zafeiriou et al., 2007, for a comprehensive review) [70]. Table 1
from Volkmar et al. (2005) [71] lists the most commonly associated syndromes with median
rate and range. It is likely that many more unidentified rare syndromes with Mendelian
causes have ASD phenotypes. As of September 2012, the Online Mendelian Inheritance in
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Man (OMIM) database listed over 7,000 known or suspected Mendelian diseases (MD), with
~3,500 (~50%) of these having an identified molecular basis (http://omim.org/statistics/
entry). Since OMIM derives its data from published data, these figures likely under-repre‐
sent rare disorders, which may go unreported. As such, there may be several times more
Mendelian disorders that have no defined genetic etiology to date. Given the large-represen‐
tation of autism phenotypes in known syndromes, we can assume a similar trend in unre‐
ported ASD syndromes.

The proportion of ASD accounted for by rare variants remains to be determined. Irrespec‐
tive, as with many other aspects of scientific inquiry, the study of these events will continue
to play an important role in explicating the pathogenesis of ASD. El-Fishawy and State
(2010) [72] point to hypercholesterolemia and hypertension (Brown, 1974; Lifton et al., 2001)
[73,74] as examples where rare mutations have been successful in driving a molecular un‐
derstanding of the disease as opposed to identifying risk factors in the general population.
Rare mutations, particularly when they are Mendelian, carry large effects and are typically
located in genic regions. These characteristics make the resolution of underlying networks
distinctly less complex and, moreover, are amenable to modeling in other systems.

Recent groundbreaking studies by Marchetto et al. (2010) [75] and Muotri et al. (2010) [76],
who created a cell culture model of Rett syndrome, are potentially exciting developments in
this regard. Here, the researchers used skin biopsies from four Rett syndrome patients, each
carrying a different MECP2 mutation, to culture induced pluripotent stem cells (iPS). Once
the iPS cells developed into neurons, they showed a decreased number of neurons and den‐
dritic spines, consistent with neurodevelopmental disruptions. Intervention with insulin-
like growth factor 1 (IGF1), which is known to regulate neurodevelopment, was
subsequently shown to reverse Rett-like symptoms in a mouse model of the disease. This
innovative approach is an exciting model of how rare gene approaches can stimulate our
understanding of the pathophysiology and potential reversibility of ASD.

Syndrome Number of Studies Median Rate Range %

Tuberous sclerosis 11 1.1 0–3.8

Fragile X 9 0.0 0–8.1

Down syndrome 12 0.7 0–16.7

Neurofibromatosis 1 6 0 0–1.4

Table 1. Associated disorders and their rate in autism (from Volkmar et al., 2005 in Zafeiriou et al. 2007) [70,71]

3.3. Large-scale next-generation sequencing

In April 2012, Nature simultaneously published three papers that used exome sequencing to
probe genomic correlates of ASD. This represented something of a landmark for both ASD
and NGS research, as it demonstrated the viability of NGS on a large scale – the three stud‐
ies combined examined 600 trios (parents and offspring), plus a 935 further ASD cases. Col‐
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lectively, these papers suggest that several hundred or more genes may be considered
autism candidates, and again highlight the staggering complexity of the phenotype.

O’Roak et al. (2012) [77] sequenced 677 individual exomes from 209 families – primarily
from the Simons Simplex Collection [78]. In 189 new probands, they validated 120 severely
disruptive de novo mutations, 39% of which occur in a highly interconnected b-catenin/chro‐
matin remodeling protein network. The group observed a strong paternal bias (41:10) in the
rate of de novo mutations, which supports the hypothesis that the germline mutation rate in
coding regions is markedly more prominent among males. These de novo events were more
common in older fathers, marking paternal age as a significant risk factor for ASD.

Among the identified de novo loci, 62 were identified as top candidate mutations based on
severity and/or supporting evidence from the literature. Interestingly, probands with these
mutations were broadly distributed in terms of IQ score, with only a modest (non-signifi‐
cant) association with intellectual impairment. Recurrent protein-disruptive mutations were
identified in two genes: netrin G1 (NTNG1) and chromodomain helicase DNA binding pro‐
tein 8 (CHD8). NTNG1 is known to play a role in axon guidance and dendritic organization
(Nishimura-Akiyoshi et al., 2007) [79]. CHD8 regulates β-catenin and p53 signaling, and has
not previously been associated with ASD. This gene was emphasized as particularly note‐
worthy, after follow-up protein-protein interaction (PPI) analyses, showed that β-catenin
and p53 signaling may be features of an ASD-relevant network. In total 49 of proteins in the
PPI network were highly interconnected, with a number of underlying genes also previous‐
ly associated with neurodevelopment.

Neale et al. (2012) [80] exome-sequenced 175 trios and also focused on de novo mutations. As
per the O’Roak study, there was a correlation between paternal age and de novo events for
offspring (P<0.0001), and also for maternal age (P=0.000365). Across the sample set, the
group observed 161 point mutations, of which 101 were missense, 50 silent, and 10 non‐
sense. Two conserved splice site rare single nucleotide variants and six frameshift inser‐
tions/deletions (indels) were also observed. Three genes were found to harbor two de novo
mutations: BRCA2 (two missense), FAT1 (two missense) and KCNMA1 (one missense, one
silent).

The group next performed PPI analyses to determine whether interactions between genes
associated with de novo mutations, as well as existing ASD candidates, was of etiological im‐
portance. This pathway approach, which additionally incorporated data from Sanders et al.
study (below) [81], found that the distribution of functional de novo mutations is not ran‐
dom. The average distance for non-synonymous variants was significantly larger for con‐
trols versus cases (3.78 vs. 3.66; P=.033). This suggests that a proportion of these de novo
events contribute to autism. A model whereby de novo variants in up to 20% of cases, confer
a 10- to 20-fold increased risk was supported.

In the third of these Nature papers, Sanders et al. (2012) [81] performed exome sequencing
on 238 families, including 200 quartets (parents, 1 affected and 1 unaffected sibling) from the
Simons Simplex Collection [78]. Comparing de novo non-synonymous single nucleotide var‐
iants (SNVs) between affected and unaffected siblings, the group observed a significantly
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(P=.01) higher proportion among the probands (125 total) versus their unaffected sibling (87
total). From simulations, the authors concluded that two or more de novo nonsense/splice-
site mutations should be considered significant. The gene sodium channel, voltage-gated,
type II, α subunit gene (SCN2A) was the only such gene – with two ASD individuals found
to harbor relevant nonsense mutations. Mutations in SCN2A have been associated with epi‐
lepsy (Kamiya et al., 2004; Ogiwara et al., 2009) [82, 83] and idiopathic ASD in multiplex fam‐
ilies (Weiss et al., 2003) [84]. Neither of the probands has a history of seizures.

Combining the exomes from their study with those from O’Roak et al. (n for probands =
414), the groups identified two additional genes that each contained two loss-of-function
mutations: the katanin p60 subunit A-like 2 (KATNAL2) and chromodomain helicase DNA
binding protein 8 (CHD8). O’Roak et al. also evaluated these three novel candidates using
exome sequencing on 935 cases and 870 controls. Three additional loss-of-function muta‐
tions each were observed in KATNAL2 and CHD8 in individuals with ASD, while none were
identified in controls.

It is important to note, however, that for de novo events in general, there was no evidence to
support the hypothesis that multiple events in any individual conferred an increased risk of
ASD. As such, the ‘two de novo hit’ hypothesis is not supported.

In a fourth independent exome sequencing study involving 343 families from the Simons
Simplex Collection Iossifov et al. (2012) [85] also reported a relatively equal distribution of de
novo mutations in cases and controls. Again however, loss-of-function mutations—nonsense,
splice site, and frame shifts—were more common in individuals with ASD (59 versus 28). Of
the 59 “likely gene disruptions (LGD)” in ASD cases, none occurred more than once, al‐
though two—NRXN1 and PHF2—had been identified in a previous CNV study by the same
group (Gilman et al, 2011) [86]. Intriguingly, the 59-strong LGD shared considerable overlap
with a set of 842 proteins that interact with the fragile X protein, FMRP. In total, 14 of the 59
appeared on the FMRP list (P=.006). Furthermore, 13 of 72 CNV candidates from the group’s
previous CNV paper were also on the list (P=.0004), meaning 26 of the combined 129 total
were FMRP-related (P<1x10-13).

The authors subsequently screened for de novo mutations in upstream targets of FMR1. One
was identified – a deletion in GRM5 that removes a single amino acid and causes an addi‐
tional substitution at the same site. GRM5 encodes the glutamate receptor mGluR5 (Bear et
al, 2004) [87] and, as noted below, mGluR5 antagonists are currently in clinical trial (Jacque‐
mont et al., 2011) [88] having indicated success in mouse models (Dölen et al., 2007) [89]. Fur‐
ther elucidating the relationship between FMR1/FRMRP and these ASD candidates is clearly
an important next step in maximizing the impact of these findings. These are discussed fur‐
ther in the section below.

Collectively, all four of these exome sequencing studies converge upon the conclusion that
ASD is highly heterogeneous, with several hundred or more loci potential risk variants. Sim‐
ulations by the Neale et al. group confirm the statistical implausibility that hundreds of var‐
iants with high penetrance are possible, and a model where de novo variants in up to 20% of
cases, confer ~10- to 20-fold increased risk is supported. The studies also converge on the
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conclusion that paternal age (and possibly maternal age) is a significant ASD risk factor, but
the frequency and size of de novo mutations per se is not. Evidence for three candidate genes
—CHD8, KATNAL2, and SCN2A—would seem quite strong, though further functional stud‐
ies are needed to help define pathogenesis. Perhaps most exciting is the association between
GRM5 and existing/novel candidates. As we have learned from GWAS, larger sample sets
are clearly needed to fully harness the power of NGS in relation to such a complex pheno‐
type. While these studies have been important in proposing novel candidates and confirm‐
ing existing hypotheses of ASD, we await with anticipation results from the sequencing of
all 2,648 families from the Simon Simplex Collection.

4. Toward a treatment?

Ultimately, the primary goal of genome research should be to propose targets for interven‐
tion. As mentioned above, a number of translational studies have begun to probe the metab‐
otropic glutamate receptor, mGluR5, as a potential target for fragile X syndrome treatment.
These studies have a theoretical basis in the hypothesis that protein-synthesis-dependent
functions of metabotropic receptors are exaggerated in fragile X syndrome (Bear, Huber &
Warren, 2004) [87]. Thus, the fragile X protein, FMRP, is thought to work in functional oppo‐
sition to mGluR5 (and mGluR1). Where FMRP is absent, mGluR-dependent protein synthe‐
sis becomes over-activated, resulting in neurological and behavioral abnormalities.

Dölen et al. (2007) [89] crossed Fmr1 mutant with Grm5 mutant to produce Fmr1 knockouts
who also had a selective reduction in mGluR5 expression. They found that a 50% reduction
in mGluR5 gene dosage rescued a range of deficits in Fmr1 mutants. Relevant measures in‐
cluded protein synthesis in hippocampus, density of dendritic spines (layer 3 pyramidal
neurons), visual responsiveness, and cognitive performance (inhibitory avoidance – a hippo‐
campus-dependent memory). This provides confirmation that mGluR5 and FMRP are func‐
tionally oppositional. Moreover, it suggests possible pharmacological avenues by which this
genetic disease may be treated.

A range of translational studies have begun to target this pathway. These include efforts to
inhibit the activity of individual mGluR5 (Jacquemont et al., 2011; Berry-Kravis et al., 2009)
[88,90], and FMRP-regulated proteins (Paribello et al., 2010) [91], NMDA (Wei et al., 2012)
[92], and GSK3β (lithium, Berry-Kravis et al., 2008) [93], which have shown promise in open
label and (in some instances) clinical trials (see Berry-Kravis et al., 2011 for review) [94].
Moreover, these compounds may have clinical application to the broader ASD phenotype.
Silverman et al. (2012) [95] recently reported that the mGluR5 antagonist, GRN-529, de‐
creased ASD-related symptoms of autism in two different mouse models of the disease (re‐
petitive grooming/repetitive jumping). In addition to the Iossifov et al. (2012) [85]
sequencing study discussed above, Kelleher et al. (2012) [96] recently showed that idiopathic
autism cases may have higher burden of mGluR5 variants. The group found that in 209 idio‐
pathic cases, there was significant enrichment for rare functional variants in the mGluR5
pathway—namely the genes TSC1, TSC2 and SHANK3, and HOMER1—relative to controls
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(n=300). It is likely that drugs targeting the mGluR5 pathway, if/when approved for fragile X
syndrome, will lead to human clinical trials for ASD. This translational approach – which
delineates a direct route from gene discovery, through functional validation to treatment, is
clearly the blueprint by which genome research can have tangible clinical impact.

5. Conclusions

ASD are clearly highly heritable disorders and advances in gene-finding technology in the
past decade have rapidly accelerated gene discovery. As is typically the case, successive de‐
velopments have made the problem more complex such that there are huge numbers of can‐
didate genes, most of which remain to be replicated. In spite of this complexity, we can
observe a number of patterns beginning to unfold 1) the relative scarcity of causal common
variants, 2) the growing list of causal rare variants, and 3) the emergence of monogenic dis‐
orders with primary and secondary ASD phenotypes.

The monogenic autisms are particularly interesting from a treatment perspective, as they
provide a mechanism for studying ASD phenotypes in model systems and are an obvious
target for drug intervention. They are also amenable to clinical testing and the decreasing
cost of research technologies means that this capacity is more widely available to clinicians.
In fact, as the resolution of clinical instruments becomes more sophisticated, it is likely that
the clinic will become a primary workplace for syndromic discovery.

A key requirement in driving gene discovery is the necessity of high-quality phenotype da‐
ta. ASDs are notoriously heterogeneous, and are fractionated in terms of symptoms and tra‐
jectory. Mandy & Skuse (2008) [97] reviewed seven factor analysis studies of ASD
symptoms, and found that all but one dissociated social and non-social factors. In a non-
clinical sample of 3,000 twin pairs, Happé et al. (2006) [98] examined autistic-like traits and
found consistently low correlations (r = 0.1-0.4) between each of the core deficits on the au‐
tism spectrum. Endophenotypes, sub-components or sub-processes of the broader pheno‐
type, may provide a productive avenue to disentangling some of this complexity. By
filtering out all but a few discrete measures, we can theoretically increase the signal-to-noise
ratio in genotype-phenotype associations. A number of endophenotypes for ASD have been
associated with disease genes, including head circumference (associated with the HOXA1
A218G polymorphism, Conciatori et al., 2004) [99]; age at first word (associated with a quan‐
titative trait locus on 7q35, Alarcón et al. 2005) [100]; delayed magnetoencephalography
evoked responses to auditory stimuli (Roberts et al., 2010) [101]; and enhanced perception
(Mottron et al., 2006) [102]. The endophenotype approach is arguably more consistent with
rare-/mono-genic discovery, where a mutated network may not yield a diagnosis of autism
per se, but nevertheless cause associated abnormalities. Note, this approach does not dimin‐
ish the pleiotropic effects of genes involved in neurodevelopment, and only serves to make
the point that the relevant genotype may associate with some but not all ASD features.

The converse, of course, is also true, as a large number of candidate genes contribute to the
majority of known ASD. With ~80% of genes expressed in the brain it is likely that this num‐
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ber will continue to grow, and here again careful phenotyping is critical to identifying func‐
tional consequences. Ultimately, the primary goal is not to determine the frequency of
variation/mutation in cases versus controls, but to determine the pathway(s) and gene net‐
works that lead to pathology. We will also need to identify other major biological players
such as epigenetic factors, RNA regulatory elements, and environmental exposures, which
are critical components of the ASD equation. While daunting, the elucidation of these ele‐
ments will doubtlessly take us closer to developing effective treatments for ASD. Given the
current rate of progress, we have cause for cautious optimism in this regard.
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