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1. Introduction

The immune synapse is the interface between an antigen-presenting cell and a lymphocyte
[1-4] as well as the interface between different lymphocytes, Natural Killer cells, and target
cells [5]. This intercellular connection serves as a focal point for exocytosis and endocytosis [6].
Numerous investigations have elucidated the structure of the immunological synapse. The
synapse is composed of a central region: a central supramolecular activation complex SMAC
[cSMAC], a T cell receptor (TCR) cluster and associated signaling proteins, and peripheral
SMAC (pSMAC) of a ring of tight adhesion between the reacting cells [7]. The separated space
of SMAC is the place of exocytic and endocytic events in this site but the precise site of signaling
is not known [8]. The early signaling process occurs in peripheral microclusters in the pSMAC
and the cSMAC in T and B cell synapses [9-12]. CD4 T cells form long-lived synapses with
APCs - the synapses live few hours. CD8 T cells form transient synapses, lasting only minutes,
because the target cells are killed [13,14]. In this cytotoxic synapse, activated Src kinases were
detected in the cSMAC [13]. The cSMACs play an important role not only in signaling but also
in receptor recycling because endosomal compartments polarize to the point immediately
beneath the cSMAC of the immunological synapse [15]. The endosome comes to lie underneath
the cSMAC as polarization of the microtubule skeletons occurs during synapse formation. This
polarization is antigen-dependent. The receptor activation leads to accumulation of actin
across the synapse and formation of an outer ring around the synapse [16,17]. The cytotoxic
reaction of lymphocytes CDS8 is connected with release of specialized lysosomes containing
the lytic pore-forming protein perforin, which enables gransymes to lead to rapid apoptosis
of the target cell [17]; the centrosome in the lymphocytes is polarized right up to the plasma
membrane containing the synapse cSMAC [18]. The lytic granules are delivered to a specialized
secretory domain within the synapse by moving along the microtubules toward the centro-
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some. Granule contents are then released into a small cleft between the two cells [17]. Since
the overall levels of surface and endocytosed proteins remain the same regardless of ICAM-1,
this suggests that ICAM-1-LFA-1 engagement in the pSMAC acts to restrict and focus
endocytic and exocytic events to the center of the synapse. Griffiths suggests that the centro-
some may play a role in identifying a specialized area of membrane for focal endocytosis and
exocytosis [6]. An important role in formation of the immunological synapse is played by the
localization of mitochondria — the mitochondria can activate and terminate the activity of
immune synapses [19]. The in vivo image of T cell activation is slightly more complex. In an
experimental system that uses subcutaneous injection of labeled LPS-activated dendritic cells
followed by intravenous injection of naive transgenic CD8+ T cells, behavior of these cells and
a three-phase model for T cell activation were observed: [20]. Phase 1 includes initial transient
T cell-DC interactions characterized by continued rapid T cell migration that can last from 30
min to 8 h depending on the pMHC density. Signals in phase 1 are integrated through kinapses.
Phase 2 is a period of stable T cell-DC interactions lasting ~12 h, during which cytokines such
as IL-2 are produced. Signals in phase 2 are integrated through the immune synapse. Phase 3
is areturn to transient T cell-DC interaction and rapid T cell migration during which the T cell
divides multiple times and then exits the lymphoid tissue. The correct interpretation of these
stop and go signals is critical for generation of effector and memory T cells [21,22].

The aim of the study is presentation of the ultrastructure of immune synapses between T- cells
and plasma cells and target cells in vivo in autoimmune thyroid diseases.

2. Material and methods

2.1. Patients

A group of children and adolescents was chosen for the study to exclude the impact of aging
processes and other diseases connected with age: circulatory disorders, arterial sclerosis, and
drug use.

The study involved 90 children: 30 children affected with Graves” disease, 30 children with
Hashimoto’s thyroiditis and 30 children as a control group. The children were treated in the
Department of Pediatric Endocrinology and Neurology in Lublin and in the Pediatric Depart-
ment in Rzeszow in the years 1994 — 2007 and operated on in the Surgery Department of the
Regional Hospital in Lublin and in the Regional Hospital in Rzeszow.

The investigation was accepted by the local Ethical Committee at the Medical University in
Lublin.

2.1.1. Control group

The control group consisted of 30 children aged 6-19 who had died in accidents and of other
non-autoimmune diseases; the thyroid specimens were taken during autopsy (n=25). Some
specimens were taken during a surgical operation of thyroglossal cysts and during surgery of
parathyroid glands (n=5). These were fragments of routinely sampled tissue specimens for
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standard pathologic investigations. All the children were in euthyreosis [Tab.1]. All children’s
parents signed an informed consent before autopsy or surgical operation.

2.1.2. Patient qualification procedure

All patients” parents signed an informed consent before these investigations.

All the patients received physical examination to assess the goiter and clinical signs and
symptoms of thyroid disorders. The TSH (Thyroid-stimulating hormone), fT4 (free thyroxin)
and TT3 (total triiodothyronine) hormones were assayed by MEIA (Abbott Kit, Langford,
Ireland). The levels of TSH receptor antibodies were measured by RIA (TRAK assay BRAHMS
Diagnostica GmbH, Berlin, Germany). The thyroperoxidase (TPO) and thyroglobulin (TG)
antibodies were assayed by LIA (Lumitest BRAHMS Diagnostica GmbH, Berlin, Germany).

In the patients with Graves’ disease, symptoms of thyrotoxicosis: goiter, tachycardia, sleep-
lessness, anxiety, high diastolic/systolic blood pressure amplitude, an increase in fT4 (mean
3.8+ 0.7 ng/dl) and TT3 (mean 363+175.3 ng/dl), and a decrease in TSH (mean 0.004+0.003 mU/
1) were observed. The levels of antibodies against the TSH receptor (TRAB) (7-462U/ml) and
the levels of TPO antibodies (21-6663U/ml) and TG antibodies (25-13351U/ml) were usually
increased. The patients were treated with methimazole in initial doses 0.9-0.5 mg/kg b.w./day
during 4-6 weeks and after that time, when in euthyreosis, they got maintenance doses c.a.0.1
mg/kg b.w./ day (mainly 5mg/day) in combination with a low dose of I-thyroxin (25ug/day)
during 18-24 months. Children with Graves’ disease, whose early relapses of hyperthyreosis
necessitated surgery treatment — thyroidectomy after 18-36 months, were qualified for the
investigation [Tab. 1].

Hashimoto’s thyroiditis was recognized in patients with parenchymal or nodular large size
goiter accompanied by pressure to other neck structures in the phase of euthyreosis or
hypothyreosis, rarely in hyperthyreosis (Hashitoxicosis). In ultrasonography, a non-homoge-
nous structure of the thyroid was observed. The levels of TPO Ab and TG Ab were increased,
but the levels of the TRAb were in normal ranges. In histopathological examination, mono-
nuclear lymphatic infiltrations in the thyroid parenchyma were detected, and Hashimoto’s
thyroiditis was diagnosed. Before surgery, the patients were usually treated with 1-thyroxin
25-100 pg/day. [Tab. 1].

Patients Age TSH fT4 TPO Ab TG Ab TSI
number [years] miU/L ng/dl IU/L IU/L IU/L
Graves' disease 30 5-19 0,001-0,005 3,3-5,1 21-6663 25-13351 7-462
Hashimoto's 30 8-19 0,600-98,800 0,1—2,3 132-9856 128-14567 0-0,99
thyroiditis
Control group 30 6-19 0,270-4,200 X X X X
Normal ranges 0,270-4,200 0,8-2,3 <34 <115 <1

Table 1. Characteristics of the patients examined before treatment
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3. Ultrastructural investigations

Specimens for ultrastructural investigations were obtained during thyroidectomy. Small
segments of thyroid were cut into 0,5mm?3 pieces and fixed in 4% glutaraldehyde in 0,1 M
cacodylate buffer, pH 7.4 for 24 h in 4°C, post fixed in 2% OsO4 in the same buffer for 1h in
room temperature, dehydrated in a graded series (up to 100%) of ethanol and embedded in
812 Epon. They were then polymerized at 60°C. Five specimens were taken from every thyroid
from each patient with Graves’ disease, Hashimoto’s thyroiditis, and from the control group.
Epon blocks were cut with an RMC MT-7 ultramicrotome, USA. From every specimen were
analyzed serial 10 slides. Ultrathin sections were contrasted with uranyl acetate and lead citrate
and examined under the EM 900 Zeiss Germany Electron Microscope.

4. Results

In the control group of children without a thyroid disease, lymphocytes in the interstitium of
the thyroid gland were observed sporadically. The lymphatic cells did not cross the basal
membrane of thyroid follicles, were not in contact with thyrocytes and did not form groups.
In Graves’ disease, T cells that crossed the basal membrane of the vesicles were observed to
be in contact with thyrocytes. The lymphocytes migrated to thyroid follicles from capillary
vessels or from lymphatic follicles. The migrating T-cells had numerous projections — lamel-
lipodia on their surface. Polarization of cell organelles was already visible in narrow capillaries.
The lamellipodia, mitochondria, and the Golgi system were located in the same part of the
lymphocyte [Fig.1]. T cells, which penetrated across the basal membrane between thyrocytes,
looked similar [Fig. 2]. The T- cells formed numerous junctions with thyrocytes. The structure
of these connections was similar to zonula occludens with an area of cell membrane fusion and
area of free spaces between cells, in which protein substances were secreted [Fig.2]. The T-cells
were not polarized in those connections with thyrocytes. The thyrocytes were not damaged,
but were active and had numerous mitochondria, secretory vesicles and a big amount of
euchromatin in the nuclei [Fig. 2].

In Hashimoto’s thyroiditis, the sites of contact between T-cells and lymphocytes had the
character of an immune synapse, too. The synapse, however, looked different. The T-cells were
polarized — the centrioles, mitochondria, Golgi system, and secretory vesicles were present in
the part connected with the thyrocytes. The synapse was composed of a distal part — an
adhesion zone, and a central part — a space in which electron dense substances were secreted
[Fig.3]. The thyrocytes staying in contact with T-cells exhibited the features of apoptosis: dark,
concentrated heterochromatin in the nucleus, swollen mitochondria, and enlarged cisterns of
endoplasmic reticulum.

In AITD, synapses between plasma cells and thyrocytes were observed. In Graves’ disease,
synapses were formed in the distal part — zonula adherens - without fusion of thyrocyte and
plasmocyte cell membranes and in the central part - the space between membrane of plasma
cells and thyrocytes. Electron dense substances from the rough endoplasmic reticulum of the
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Figure 1. The lymphocyte migrating in the capillary vessel. Polarization of the lymphatic cell is visible: lamellipodia,
mitochondria, and Golgi complex are present on the same side. N- nucleus, M- mitochondria, G-Golgi system, RBC- red
blood cell. TEM magn. 15 000x

Figure 2. The lymphocyte between thyrocytes in the thyroid follicle in Graves’ disease. The lymphocyte formed numer-
ous immune synapses with the thyrocyte. The immune synapses are limited by zonula occludens (pSMAC with fusion
of cell membranes). The space (¢SMACQ) is visible in the center of the immune synapse. The thyrocytes are active with-
out signs of damage. RER — rough endoplasmic reticulum, M-mitochondria, V-secretory vesicle, MB- basal membrane,
IS- immune synapse. TEM magn. 15 000x.

plasma cells — most probably immunoglobulins - were secreted to this space [Fig.4]. Immu-
noglobulins encrusted the basal membrane of thyrocytes.The thyroid cells staying in contact
with plasma cells were active: with a big amount of euchromatin in the nucleus, numerous

secretory vesicles, and abundant microvilli [Fig.4].
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Figure 3. The lymphocyte between thyroid follicles in Hashimoto's thyroiditis. The lymphocyte is connected with the
thyrocyte by an immune synapse limited by zonula adherens without cell membrane fusion (pSMAC). The space
(cSMAQ) is visible in the center of the immune synapse. The lymphocyte organelles are polarized under the synapse:
centriole, mitochondria, granules, and Golgi complex. Signs of damage are present in the thyrocyte: enlarged cisterns
of rough endoplasmic reticulum. C-centriole, M-mitochondria, G-Golgi system, L-lysosome, RER- rough endoplasmic
reticulum, N-nucleus. TEM magm.25 000x

Figure 4. The plasma cells in contact with thyrocytes in Graves' disease. a) The space of the immune synapse in which
electron dense substances, probably antibodies, are secreted. Enlarged cisterns of endoplasmic reticulum were ob-
served in the thyrocyte. RER-rough endoplasmic reticulum, CM cell membrane, * immunoglobulins. TEM magn. 25
000x. b)The advanced phase of the immune reaction: the deposits of immunoglobulins in the space between the thy-
rocyte and plasmocyte. The space of the immune synapse is limited by zonula adherens. CM — cell membrane, RER —
rough endoplasmic reticulum, * immunoglobulins deposit. TEM magn. 25 000x
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In Hashimoto’s thyroiditis, polarization of plasma cells was observed; the centrioles and Golgi
system, mitochondria and well-developed rough endoplasmic reticulum were observed in the
part connected with thyrocytes. In some areas of the contact places, secretion of substances
with medium electron density from plasma cells to thyrocytes was observed [Fig.5]. The
plasma cells adhered in a large area to thyrocytes, and the thyrocytes exhibited features of
damage and destruction: fragmentation of the endoplasmic reticulum, edema of mitochondria,
and condensation of the chromatin in the nucleus. In advanced stages, destruction and
fragmentation of thyrocytes were observed.

Figure 5. The plasma cell in contact with thyrocyte in Hashimoto's thyroiditis. The immune synapse is composed of a
surrounding adhesion zone (pSMAC) in the central part of the site of exocytosis of electron dense substances and vesi-
cles from plasma cell. Polarization of the organelle is visible in the plasma cell: centrioles, lysosomes, and mitochondria
in the region of immune synapse. The thyrocyte is damaged with edema of mitochondria and destruction of endo-
plasmic reticulum. C-centriole, M-mitochondrium, RER- rough endoplasmic reticulum, N-nucleus. TEM magm.25 000x

5. Discussion

The immune synapses occurring in the thyroids of patients with Graves’ disease were similar
to the synapse described by Dustin [23]. Dynamic studies with planar bilayers further showed
that the immune synapse was formed through a nascent intermediate in which activating TCR
clusters are formed first in the pPSMAC and then move to the cSMAC region in an F-actin-
dependent process in a few minutes to form the pattern [7].

In the connection between thyrocytes and T-cells, the zonula occludens in Graves’ disease and
zonula adherens in Hashimoto’s thyroiditis seem to be the peripheral pPSMAC and the space
in the center can correspond to the central supramolecular activation complex cSMAC.
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An interesting observation is the difference in polarization of lymphocytes in immune
synapses. The lymphocyte stimulating thyrocytes in Graves’ disease were not polarized,
but the cytotoxic lymphocytes in Hashimoto’s thyroiditis had polarized organelles in the
cytoplasm.

The polarization of the T-cell, i.e. formation of a center with a centriole, mitochondria, and
Golgi complex suggested special organization of the cellular tubules and filaments. Actin
tilaments (F-actin) play a critical role throughout the various stages of T cell activation. In the
steady state, actin polymerization at the leading edge and cytoskeletal contraction at the
lamelliopodium mediate rapid migration [24].The microtubule organizing center (MTOC) and
microtubule network of the cell provide a molecular way for vesicle movement and structural
support for polarized cell functions. Within seconds after TCR stimulation, the MTOC
mobilizes and polarizes to the immune synapse in T cells. Polarization is important for efficient
trafficking and directed secretion of cytolytic granules and cytokines for secretion at the
synapse [25-27]

Previous studies [28-30] report that mitochondria accumulate at the immunological synapse
following T-cell stimulation. The fusion factor DRP1 (dynamin-related protein 1) regulates
mitochondria positioning close to the peripheral supramolecular activation cluster (pPSMAC),
which together with the central SMAC forms the immune synapse in T cells [19]. The immune
synapse controls calcium signals and calcium-dependent T-cell functions [31]. Our observa-
tions in vivo are similar to pictures from the electron microscope from investigations in cell
culture published by Tsun [32].

Probably, the polarization of organelles in the cytotoxic lymphocytes observed is connected
with transport of cytotoxic substances from these cells to thyrocytes.

Stinchcombe [33] observed NK cells conjugated with B-cells with glycolipid-pulsed CD1-
bearing targets. High-resolution electron micrographs of the immunological synapse formed
between NK and iNKT cytolytic cells with their targets revealed that, in both NK and iNKT
cells, the centrioles could be found associated (or 'docked') with the plasma membrane within
the immunological synapse. Secretory clefts were visible within the synapses formed by both
NK and iNKT cells, and secretory lysosomes were polarized along microtubules leading
towards the docked centrosome. The Golgi apparatus and recycling endosomes were also
polarized towards the centrosome at the plasma membrane within the synapse [33]. It seems
that the polarization process is connected with the cytotoxic interactions between T-cells and
thyrocytes in Hashimoto’s thyroiditis.

The immune synapse between plasma cells and APCs has been seldom described. Batista
described the immunological synapse between plasma cells and antigen presenting cells [34].
We observed two types of immune synapses between plasma cells and thyrocytes in AITD. In
Graves’ disease, they are the stimulating synapses: immunoglobulins encrusting the basal
membrane of the thyrocyte were secreted in the central space of the synapse and were probably
connected with TSH- receptors. In the last phase of this process, deposits of immunoglobulins
were visible. The similar change were observed in kidney [35,36]. In glomerulonephritis,
subendothelial complement deposits [36,37] and sun epithelial (similar to situation in thyroid)
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immunoglobulins deposits [35, 36] were observed. In Hashimoto’s thyroiditis, the plasma cells
were polarized and formed the microtubule organizing center (MTOC) consisting of centrioles,
mitochondria and Golgi apparatus and probably microtubules and microfilaments. The
peripheral zonula adherens surrounded the place of immunoglobulin secretion, but the
immunoglobulins penetrated to thyrocytes and probably led to damage to these cells [38].

6. Conclusions

* Immune synapses between T-cells and plasma cells with thyroid’s epithelial cells were
found in AITD.

* In the ultrastructure of the synapse, peripheral zonula occludens or zonula adherens and a
central space were observed in all types of the immune synapses.

* The lymphocytes forming the cytotoxic synapse were characterized by presence of a
microtubule-organizing center.
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