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1. Introduction

DNA based transposon vectors offer a mechanism for non-viral gene delivery into mamma‐
lian and human cells. These vectors work via a cut-and-paste mechanim whereby transpo‐
son DNA containing a transgene(s) of interest is integrated into chromosomal DNA by a
transposase enzyme. The first DNA based transposon system which worked efficienty in
human cells was sleeping beauty. This was followed a few years later by the use of the piggy‐
Bac transposon system in mammalian and human cells. The advantages of transposon vec‐
tors include lower cost, less innate immunogenicity, and the ability to easily co-deliver
multiple genes when compared to viral vectors. However, when compared to viral vectors,
non-viral transposon systems are limited by delivery to cells, they are possibly still immuno‐
genic, and they can be less efficient depending on the cell type of interest. Nonetheless,
transposons have shown promise in genetic modification of clinical grade cell types such as
human T lymphocytes, induced pluripotent stem cells, and stem cells. Recently generated
hyperactive transposon elements have improved gene delivery to levels similar to that ob‐
tained with viral vectors. In addition, current research is focused on manipulating transpo‐
son systems to achieve user-selected and site-directed genomic integration of transposon
DNA cargo to improve safety and efficacy of transgene delivery. DNA based transposon
systems represent a powerful tool for gene therapy and genome engineering applications.

2. Transposons as gene delivery systems

Transposons or mobile genetic elements were first described by Barbara McClintock as
“jumping genes” responsible for mosaicism in maize [1]. Transposons are found in the ge‐
nome of all eukaryotes and in humans at least 45% of the genome is derived from such ele‐
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ments [2]. Transposons active in eukaryotes can work either by a “copy and paste” (Class I)
or “cut and paste” (Class II) mechanism (Figure 1).

In the “copy and paste” mechanism, the transposon first makes a copy of itself via an RNA in‐
termediate (hence also known as retrotransposons).Class II DNA-transposons work by a “cut
and paste” mechanism in which the transposon is excised by the transposase upon expression
and then relocates to a new locus by creating double strand breaks in situ. Most transposon sys‐
tems used for gene delivery use a modified “cut and paste” system consisting of a transposon
carrying the transgene of interest and a helper plasmid expressing the transposase (Figure 2).
The “cut and paste” transposition mechanism involves recognition of the inverted terminal re‐
peat sequences (IRs) by the transposase and excision of the transposon from the donor loci,
usually a supplied plasmid. The two most commonly used transposon system for genetic mod‐
ification of mammalian and human cells are sleeping beauty and piggyBac.

Figure 1. Class I and II transposons and mechanisms of integration.

The sleeping beauty (SB) transposon was reconstructed from the genome of salmonid fish us‐
ing molecular phylogenetic data [3] and belongs to the Tc1/mariner superfamily of transpo‐
sons. The sleeping beauty transposon is flanked by 230bp IRs which conatin within them
non identical direct repeats (DRs).

The piggyBac transposon was isolated from cabbage looper moth Trichoplusia ni[4].One de‐
sirable feature of the piggyBac system is the precise excision of the transposon from the do‐
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nor site without leaving behind any footprints [5], making it an attractive feature for cellular
reprogramming. Excision of the transposon from the donor site, creates complimentary
TTAA overhangs which undergo simple ligation to regenerate the donor site bypassing
DNA synthesis during transposition [6].

In “cis” delivery the transposase is carried by the same plasmid backbone as the transposn.
In “trans” delivery it is delivered by a separate circular plasmid. For gene therapy purposes
transposase and transposon are delivered either in “cis” or in “trans” (Figure 2). In “cis” de‐
livery the transposase is carried on the same vector backbone as the transposon carrying the
gene of interest (GOI). In the “trans” configuration, the transposase is delivered by a sepa‐
rate non integrating plasmid. The “cis” configuration has been shown to improve transposi‐
tion efficiency [7], but there is a question of whether the linearized backbone carrying the
transposase may also get integrated and lead to residual transposase expression. A compari‐
son of the properties of sleeping beauty and piggyBac is described in Table 1.

Figure 2. “Cis” and “Trans” transposon mediated gene delivery. GOI, gene of interest; 5’TR, 5’ terminal repeat; 3’TR, 3’
terminal repeat; the yellow and beige arrows indicate promoters to drive gene expression.

3. Advantages of transposon as gene delivery system

3.1. Lower cost compared to viral vectors

In spite of viral vectors having been successfully used in gene therapy clinical trials (e.g.
generation of clinical grade T cells for immunotherapy [8], their use in extensive gene thera‐
py regimens is constrained. Clinical grade viral vectors are very expensive to manufacture
given the stringent regulatory oversight and limited number of GMP certified production fa‐
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cilities. A batch of clinical grade retroviral supernatant for treating patients costs between
$400,000 to $500,000 (personal communciation, GMP facility director, Baylor College of
Medicine). The production of clinical GMP (cGMP) grade viral supernatant is extremely
time intensive as, in addition to optimization of culture conditions, the supernatant needs
extensive testing for microbial contamination, presence of replication competent viral parti‐
cles as well as validation of sequence and functionality. The entire production run and asso‐
ciated testing may require up to six months. These viral stocks also have limited shelf life.
Upon release the desired cell type is transduced, selected and expanded which is then fol‐
lowed by quality assurance checks. This also requires extensive training of the personnel in‐
volved in production and testing and scaling up production as would be required for future
gene therapy regimens will not be economical. In contrast, cGMP grade transposon plas‐
mids can be manufactured more quickly. The production can be scaled up quickly and exist‐
ing facilities can be upgraded and certified in a shorter time frame. The cost of
manufacturing and release of cGMP grade plasmid DNA is between $20,000 and $ 40,000
[9]. The use of transposons drastically reduces both the time and cost of production of the
gene delivery system. In the first clinical trial approved by the FDA for infusion of autolo‐
gous ex vivo sleeping beauty modified T cells [10], the most time intensive step was the test for
fungal and bacterial contamination (14 days).

sleeping beauty piggyBac

Cargo Capacity ~10 kb >100 kb

Foot Print Insertion site mutated upon

excision

No “foot print” mutation

Needs titration for optimal activity Yes Yes

Hyper Active Versions SB100X (most active SB

version)

hyPBase

Effect of ‘N’ and ‘C’ terminal modifications 50% or more reduction in

efficacy

No apparent reduction in

efficiency

Integration site preference More random Slight increased preference

for genes and TSS

Can be engineerd to bias integration sites Yes Yes

Table 1. Comparison of sleeping beauty and piggyBacproperties. TSS, transcriptional start sites.

3.2. Delivery of large and multiple transgenes

Although retroviral and lentiviral vectors have been successfully used for delivering multi‐
ple transgenes, they are limited by their cargo capacity[11,12]. Both these vector systems can
carry a limited cargo of up to 8kb which is limited by the packaging capacity of their capsid
envelop [13]. Early reports demontrated the sleeping beauty system to have reduced efficien‐
cy beyond transposon size of 10kb [14]. In contrast the piggyBac system has been successful‐
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ly utilized to modify primary human lymphocytes with 15 kb transposon with an initial
transfection efficiency of 20% which increased up to 90% upon selection and expansion [15].
The piggyBac system has been successfully used for mobilizing transposons as large as 100
kb in mouse embryonic stem (ES) cells [16]. An increased cargo capacity also imparts the
ability to deliver multiple transgenes to the same cell. For example, using the piggyBac sys‐
tem, human cells were efficiently modified to express a three subunit functional sodium
channel which retained its electro-physiological properties even after 35 passages [17].

3.3. Less immunogenicity

One of the major concerns for viral gene delivery system is the associated immunogenicity
as evidenced by the death of a patient receiving liver targeted adenoviral gene therapy for
partial ornithine transcarbamylase deficiency in 1999 [13].The systemic delivery of the viral
particles initiated a cytokine storm leading to multiple organ failure within four days of ad‐
ministration of the vector [18]. Attempts have been made to reduce the immunogenicity of
viral vectors by stripping them of all endogenous viral genes (‘gutted’ or ‘helper-dependent’
vectors) [19], but even the use of modified viral delivery systems are potentially immuno‐
genic as evidenced by long term inflammation of rat brains injected with replication defi‐
cient adenoviral vectors [20].

Transposons are circular plasmid DNA molecules and do not contain a viral shell or viral anti‐
gens. The host response to non-viral vectors has not been well characterized. Toll-like receptor
(TLR)-9 is known to recognize DNA with unmethylated CpG dinucleotides in the endosome‐
which can lead to signalling via MyD88 and production of inflammatory mediators such as
TNF and IFN-α [21]. Other mechanisms of innate immune sensing of naked DNA include
DNA-dependent activator of interferon (IFN)-regulatory factors (DAI) (also called Z-DNA-
binding protein 1, ZBP1), RNA polymerase III (Pol III), absent in melanoma 2 (AIM2), leucine-
rich repeat (in Flightless I) interacting protein-1 (Lrrfip1), DExD/H box helicases (DHX9 and
DHX36), and most recently, the IFN-inducible protein IFI16 [22]. These molecules use inde‐
pendent and sometimes overlapping signalling pathways to elicit immune response to deliv‐
ered DNA. Nonetheless, much remains to be discovered about host immune response to
delivered DNA and how to overcome such an obstacle for effective gene therapy.

3.4. Less propensity for oncogenic mutations

Human immunodeficiency virus (HIV) has been shown to prefer genes for integration in
SupT1 and Jurkat cells [23]. Murine leukemia virus (MLV) derived vectors have been used
for stable gene transfer for therapy but they have been shown to prefer transcriptional start
sites (TSS) for integration [24]. Integrations near the promoter of the LMO2 proto-oncogene
has been associated with leukemia in the French X-SCID gene therapy trial [25]. The genome
wide mapping of sleeping beauty transposons in mammals have revealed a modest bias to‐
wards transcriptional units and upstream regulatory sequences which varies between cell
types [26]. The integration site profiling of both piggyBac in primary human cells and cell
lines have revealed no preferred chromosomal hotspots [7,27]. It also has no preference for
genomic repeat elements and known proto-oncogenes. PiggyBac has a preference for inte‐
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grating into RefSeq genes and near TSS and CpG enriched motifs although this may be in‐
fluenced by the state of the cell or type of the cell. Both sleeping beauty and piggyBac are being
engineered for site-directed gene delivery to improve the safety of gene transfer. True geno‐
toxic risk for viral vectors was not discovered until they were used in humans. Transposons
have not yet been used in humans, though one clinical trial has be approved.

4. Challenges of transposon as gene delivery system

Given the promise of transposons as gene delivery vehicle, it suffers from certain challenges
e.g. reduced delivery, random integration profile and silencing of the integrated transgene.

4.1. Low delivery efficiency

Transposon systems are carried by naked DNA plasmids and there efficiency is limited to the
efficiency of getting the plasmid into to the cell by chemical or physical means. Certain pri‐
mary cells and cell lines are easy to transfect (e.g. HEK293, HeLa, Hepatocytes) and transpo‐
sons have high transposition efficiency in these cells. But other clinically relevant cells (e.g.
primary lymphocytes) are difficult to transfect. Often the method used for transfection (e.g.
nucleofection and electroporation) is toxic to the cells and leads to excessive cell death thus re‐
ducing the efficiency of stable transfection. Efforts are on to circumvent these difficulties by de‐
veloping novel delivery methods e.g. cell-penetrating peptides (CPP) –piggyBac fusions [28] or
using polyethylenimine [29]. Some investigators have encapsulated transposon systems with‐
in viruses to use the virus to deliver the DNA from which transposition occurs [30-34] This may
improve efficiency, however, the issues with immunogenicity of viruses remain.

4.2. Random integration profile

Transposons as described above have uncontrolled or relatively random integration prefer‐
ence with regards to genomic elements. This leaves the transposed transgene open to influ‐
ence of the neighboring genomic region. Additional, uncontrolled or not site-directed
integration increases the risk for possible genotoxicity.

4.3. Silencing of the integrated transgene

Gene silencing has been observed when using sleeping beauty in cultured cells [35]. Transgene
silencing and epigenetic transgene modification has not been well studied with piggyBac.

5. Applications

Both sleeping beauty and piggyBac have demonstrated correct of disease phenotypes in ani‐
mal models or in human cells (Table 2).
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Disease Transposon system Reference

Hemophilia B SB [34,36]

Hemophilia A SB [37,38]

Tyrosinemia Type I SB [39]

JunctionalEpidermolysisBullosa SB [40]

Diabetes SB [41]

Huntington’s disease SB [42]

Mucopolysaccharidosis I & VII SB [43,44]

α1-antitrypsin deficiency PB [45]

Table 2. List of diseases corrected with Sleeping Beauty (SB) and piggyBac (PB)

5.1. Genetic modification of human T lymphocytes

Peripheral blood and umbilical cord T cells have been extensively modified with both viral
and non-viral gene delivery systems for immunotherapeutic purposes [10]. This therapeutic
avenue has been successfully used for the treatment of viral infections and Epstein Barr vi‐
rus (EBV) associated lymphoma post autologous bone marrow transplantation [46,47]. They
also hold promise for treatment of other cancers [48-50]. But the use of of viral vectors for
the generation of clinical grade T cells is expensive, time intensive and not free of risks. Non-
viral gene delivery systems, including DNA transposons, are being increasingly explored as
an alternative strategy.

Figure 3. Schematic of transposon modificaiton of primary human T cells.

A schematic of how primary human T lymphocytes can be gene modified with transposons
is shown in Figure 3. The sleeping beauty system was used to successfully modify peripheral
blood mononuclear cells with a CD19-specific chimeric antigen receptor (CAR)[9]. These
modified PBMCs were then used to generate CAR+ T cells which preserved their CD4+,
CD8+, central memory and effector-effector cell phenotypes. The piggyBac system has also
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been optimized to achieve stable transgene expression in human T lymphocytes [51]. Fur‐
ther, primary lymphocytes have been modified with multiple transgenes to redirect their
specificity for CD19 and make them resistant to off target effects of chemotherapeutic drugs
like rapamycin [15]. Cytotoxic T lymphocytes specific for Epstein Barr Virus (EBV) have also
been successfully modified with human epidermal growth factor receptor-2 specific CAR
(HER2-CAR)[52]. The first clinical trial involving transposon modified autologous T cells
with a second generation CD19-specific CAR has been approved by the Food and Drug Ad‐
ministration[10]. This trial will involve the infusion of ex vivo expanded autologous T cells in
patients undergoing autologous hematopoietic stem cell (HSC) transplantation with high
risk of relapsed B-cell malignancies.

5.2. Generation of induced pluripotent stem cells

Induced pluripotent stem cells (iPSCs) generated from a patient’s own differentiated somat‐
ic cells holds promise for regenerative medicine. Early successful attempts involved delivery
of defined reprogramming factors using retroviral vectors [11,53]. Unfortunately 20% of the
chimeric offspring obtained from germline transmission of retrovirally reprogrammed
clones developed tumors due to reactivation of the c-myc oncogene [54]. In addition, ectopic
expression of the reprogramming factor(s) has been linked to tumors and skin dysplasia
[55-56]. One way to circumvent the use of viral delivery systems is to deliver the program‐
ming factors as recombinant proteins [57] or by repeated plasmid transfections [58], both of
which have proven to be extremely slow and inefficient. The higher gene delivery efficiency
of transposons together with their ability of being excised from the cells post reprogram‐
ming and differentiation make them an attractive choice for generating iPSCs.

Somatic cells have been transfected with piggyBac transposons carrying reprogramming fac‐
tors and transposase. Reprogrammed iPSCs are selected and propagated to obtain individu‐
al iPSC clones. To generate transgene-free iPSCs, the transposase is re-expressed to remove
the reprogramming factors followed by negative selection to identify transgene-free iPSCs
(Figure 4).

Figure 4. Generation of transgene-free iPSCs using the piggyBac system.
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The piggyBac system seems to be ideally suited for this as it can undergo precise excision
and does not leave behind “foot print” mutations [5]. In contrast, the sleeping beauty system
has been shown to excise imprecisely leaving behind altered insertion sites [3]. The piggyBac
system has been successfully used to generate transgene free iPSCs from both mouse and
human embryonic fibroblasts with efficiency comparable to retroviral vectors [59-60]. Piggy‐
Bac has also been used to successfully reprogram murine tail tip fibroblasts into fully differ‐
entiated melanocytes which are more compatible with cell therapy regimens [61]. The use of
a piggyBac based inducible reprogramming system also proved to be more stable and quick‐
er than an inducible lentiviral system [62].

5.3. Genetic modification of stem cells

Transposons have been used for genetic modification of human embryonic stem cells [63].
More recently, transposons have been used to insert bacterial artificial chromosomes (BACs)
in human ES cells [64]. Both sleeping beauty and piggyBac have been used to genetically modi‐
fy hematopoietic stem cells [65]. Transposons provide an effective mechanism for perma‐
nent (or reversible in the case of piggyBac) genetic modification of a variety of stem cell types
for eventual use in therapy.

6. Current hot topics and future directions

6.1. Generation of hyperactive transposon elements

SB100X and native piggyBac both have similar activity levels in human cells which is 100 fold
more than the native sleeping beauty. The hyperactive piggyBac transposase (hyPBase) has
been shown to have 2 to 3 fold more activity than SB100X or native PB [66] (Figure 5).

Figure 5. Comparison of transposase activity in human cells
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Efficiency of transposition is perceived as a bottleneck to efficient gene delivery. Attempts to
engineer hyperactive versions of transposase have resulted in versions with increasing
transposition activity. Strategies employed include import of amino acids from related
transposases [67], alanine scanning [68] and site directed mutagenesis [69]. The construction
of the SB100X transposase with ~100 folds higher activity than the original sleeping beauty
transposase employed a high throughput screen of mutant transposases obtained from
DNA shuffling [70]. A hyperactive version of the piggyBac transposase (hyPBase) has also
been engineered with 17-fold increase in excision and 9-fold increase in integration [71]. The
hyPBase has 7 amino acid substitution identified from a screen of PBase mutants but none of
the 7 substitutions are in the catalytic domain of the transposase. The hyPBase also has foot‐
print mutation frequency (<5%) comparable to the wild type transposase and no apparent
effect on genomic integrity. Unlike SB100X which showed a 50% reduction, the addition of a
24 kDa ZFN tag did not significantly alter transposition efficiency [66]. In vivo, a mouse co‐
don optimized version of hyPBase showed 10-fold greater long term gene expression than
both native piggyBac and SB100X.

6.2. Engineering transposon systems for site-directed integration

Random integration of transgene during delivery have resulted in adverse events including
leukemia [25,72]. Integration of transgenes at other genetic loci may also affect expression of
critical genes. Engineering transposon systems for site-directed integration would allow
transgene delivery to sites in the genome resulting in improved gene expression, reduced
positional effects at the site of integration, and improved safety. Most studies have utilized
fusion of DNA-binding domains to the transposase to achieve site directed integration, be‐
ginning with the engineering of the sleeping beauty system. Sleeping beauty has been engi‐
neered to bias integration into plasmids containing target sites [73-74] and near selected
elements and repeat elements in the genome [75-76]. The piggyBac system seems to be more
suited for transposase modifications as the addition of additional domains to the transpo‐
sase does not alter the systems efficiency [7,77-79]. A Gal4-piggyBac fusion transposase has
been shown to bias integration near Gal4 sites in episomal plasmids [80] and the genome
[81]. A chimeric transposase containing an engineered zinc finger protein (ZFP) fused to the
native piggyBac transposase has also been successfully used to bias integration at the genom‐
ic level [79]. Researchers have also used transcription factor DNA binding domains fused to
the piggyBac transposase to label nearby transcription factor binding sites in the genomes of
cells [82]. Current approaches are hampered by the ability of the transposase to integrate on
its own without the targeting machinery which can lead to off-target integration. Futher en‐
gineering modifications to both the transposase and transposon may overcome this limita‐
tion.

7. Conclusion

Transposon systems are well suited for ex vivo gene therapy and in vivo delivery to target
organs may also become a reality in the future. The advantages of lower cost and more
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widespread applicability than viral vectors, in combination with the potential for site-direct‐
ed gene delivery, make transposons a promising non-viral gene delivery system as an alter‐
native to viral vectors.
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