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1. Introduction

The setting up of sustainable development strategies, able to balance the opposite demands
of economic growth and environmental protection, is one of the fundamental challenges for
the international community. Our developing world is experiencing growing pressures on
its land, water, and food production systems and the role of the human society in determin‐
ing change within the Earth environment is becoming ever more central [1]. In this context,
preserving the land productivity is a prior goal, especially in those areas, such as drylands,
which are particularly fragile from an ecological point of view.

One of the most serious problem threatening these areas is land degradation, which is de‐
fined as the (persistent) reduction of biological and economic productivity [2] or, equivalent‐
ly, as the reduction in the capacity of the land to provide ecosystem goods and services and
to assure its functions [3,4]. Land degradation is due to a mix of predisposing factors (thin
soil horizons, low soil organic matter, sparse vegetation cover, etc.) frequently accentuated
by human mismanagement and periodic drought.

As a crucial component of terrestrial ecosystems, soil plays a prominent role in triggering or
exacerbating land degradation. The combined action of climatic factors (aridity, extreme
events, rainfall erosivity) and human pressure (overgrazing, deforestation, intensification of
agriculture, tourism development, see e.g., [5]) can result in a general soil degradation and
in some cases in a irretrievable loss of lands suitable for agricultural/grazing/forest use [6].

In particular, as far as the anthropic pressure is concerned, the demographic boom and the
economic growth have caused a rapid and unplanned change of land use patterns [7-9] as a
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consequence of the conversion of natural and semi-natural areas in areas often managed
through intensive farming techniques. These mainly consist in the use of a considerable
amount of external inputs (frequent use of fertilizers, pesticides and genetically modified or‐
ganisms, see [10-12]) and in a set of unsuitable management practices (too deep ploughing,
large irrigation schemes, monoculture, etc., [13]). It is evident that the progressive intensifi‐
cation of agricultural practices can accelerate soil degradation phenomena especially in
those areas marked by poor soil qualities [14]. In fact, cropping and grazing cause land deg‐
radation more than non-agricultural uses of soil [15].

According to the European Commission, six soil degradation processes (water, wind and
tillage erosion, loss of soil organic carbon, compaction, salinization and alkalinization, con‐
tamination, and decline in biodiversity) were identified as induced or worsened by bad agri‐
cultural practices [13].

Also livestock husbandry can represent a potential degradation driver when a high number
of head of cattle is strongly concentrated in limited areas, as it often occurs in Southern Eu‐
rope (overgrazed land, e.g., [16]).

Furthermore, degradation phenomena affect land surface processes and particularly vegeta‐
tion covers which play a decisive role in the surface energy exchanges and water balance
[17,18]. Therefore vegetation assessment is crucial for evaluating land degradation vulnera‐
bility, particularly in areas that are still productive. Stressed vegetation, characterized by a
decrease of photosynthetic activity and/or patch fragmentation processes, can have negative
repercussions on the other biophysical components (soil and climate, [19]). This is particu‐
larly true for Mediterranean landscapes, often marked by a gradual reduction of biological
productivity (e.g., [20, 21]), low resilience of vegetation [7,9] and abrupt modifications due
to wildfires [22,23] and land use/land cover changes [24,25].

On the whole, today, a quarter of world population is threatened by the effects of degrada‐
tion phenomena [26], which affect nearly 84% of agricultural lands [26]. Then it is clear the
reason why land degradation is listed among the most important socio-environmental is‐
sues having direct and indirect effects on food security, climate change at local scale, eco-
refugees and wars linked to the exploitation of natural resources [28-30].

The need to halt and prevent soil/land degradation has urged the international scientific
community to improve the knowledge on causes and consequences of the interest phenom‐
ena and identify efficient monitoring tools. These have to help policy makers in developing
effective conservation/rehabilitation measures adapted to each involved area. In particular,
scientists must provide efficient tools for the early detection of sensitive areas by classifying
them in different levels of land degradation vulnerability [8]. At this aim many different
methodologies have been used to study land degradation (field measurements, visual inter‐
pretation, social enquiries, mathematical models, remote sensing, environmental indicators,
etc.), including the use of simple models based on indicators that synthesize information on
the state and tendency of complex processes [31].

In particular, in the context of the Mediterranean basin the most used methodology is the
indicator-based Environmentally Sensitive Areas (ESA) model developed within the MEDA‐
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LUS project [32]. This combines information concerning the biophysical component (climate,
soil and vegetation) and the anthropic one to detect areas prone to degradation and defines,
at the same time, relative values of vulnerability. The standard scheme of the ESA model is
not free from faults consisting in too little detailed guidance on the choice and the distribu‐
tion in vulnerability classes of anthropic indicators, lack of dynamical information on the
vegetation component and lack of an objective weighting system based on statistical analy‐
sis for the used indicators [33,34]. Nevertheless, the ESA model is the most frequently ap‐
plied in the Mediterranean basin enabling comparability with other similar studies. This is
due to the immediacy of the adopted approach in dealing with land degradation and the
consequent easy and rapid interpretation of the produced cartography. Moreover, the flexi‐
bility of the model, allowing inclusion/exclusion of variables, is particularly suitable to
match local biophysical and socio-economic peculiarities of each examined area [35].

In this chapter we approach the assessment of the vulnerability to land degradation of a typ‐
ical Mediterranean environment using a modified version of the ESA model. This approach
combines analyses of the socio-economic component with analyses of the vegetation trends.

According to the standard ESA strategy, different indicators representing the impact of agri‐
cultural and grazing activities are used. The main feature of these indicators is that they are
census-based and consequently suitable only for the analysis at municipal scale. Therefore
we have also elaborated a mechanization index (proxy for soil compaction induced by agri‐
cultural machineries) that uses land cover and morphological data [36], enabling high spa‐
tial resolution and faster rate of update.

The indicators related to the anthropic impact are integrated into an overall Land Manage‐
ment Index (LMI) and in each area it is possible to enhance the main contributing factors to
highlight the prevailing forces that drive human-induced degradation processes.

In order to include vegetation in the vulnerability map we analyze satellite vegetation index
NDVI (Normalized Difference Vegetation Index) which is recognized as ideal tool for moni‐
toring long term trends of degradation phenomena and assessing different values of severi‐
ty of the concerned processes [37,38].

The final result of our analyses is an integrated vulnerability map of the investigated region,
accounting for management and vegetation factors, which allows us to identify priority sites
where restoration/rehabilitation interventions are urgent.

The adopted procedure can be easily applied to geographic contexts characterized by high
complexity in terms of land cover type and economic vocation (intensive agriculture, graz‐
ing, industrial activities) thus enabling an early detection of the areas most vulnerable to
land degradation.

2. Study area

The Basilicata region covers an area of about 10000 km2 in the core of Southern Italy (Fig. 1).
This is recognized as a region at potential risk of land degradation by several studies [39-41].
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In this area, as in all the Southern Italy, vulnerability to land degradation results from the
co-occurrence of some specific bioclimatic features (uneven reliefs with steep slopes, highly
erodible soils, wide climate variability, recurrent drought) and from an improper land use
(urbanization intensive farming, industrial pollution). For example, inappropriate agricul‐
tural practices may significantly contribute to land degradation, determining a strongly im‐
pact on the economic value of the lands [42].

Figure 1. Location of the study area within Southern Italy and its main placenames

From a geographic point of view, Basilicata is a mountain region, including only a small per‐
centage of lowland (less than 10% of the total surface) in the Ionian coastal area.

In the study area, soils often show a high susceptibility to degradation due to different caus‐
es. In the Ionian coastal area (Metaponto plain) we find soils affected by salinization phe‐
nomena caused both by coastline regression and by an incorrect agro-forestry management
[43,44]; in the Central-Eastern hills, soils show singular geo-mineralogical composition, ir‐
regular morphology and are exposed to strong climatic fluctuations shaping the badlands
(see e.g., [45,46]).

Vegetation is highly heterogeneous according to the different orography: dense and wide‐
spread vegetation in the central area, occupied by the Apennine chain, where broad-leaved
forests, maquis and pastures are dominant; sparse vegetation and bare soils in the Eastern
part of the region. On the Ionian coast several irrigation schemes enable a diversified agri‐
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culture including different cultivation types: orchards, permanent crops and arable lands.
These last are also prevalent in the Northern zone, near to the Apulia region.

The Basilicata region is not univocally classified in a single climatic zone. Along the coasts
climate is typically Mediterranean (rainy and mild autumns-winters, hot and dry summers)
while the mountain areas are characterized by cold winters and by abundant precipitations;
finally, inland areas, (Melfi industrial area, Basento valley and Agri valley), are character‐
ized by very warm summers and mild winters with annual rainfall lower than 600 mm. In
these areas, the period 1994-2003 has shown a significant decrease of the average annual and
winter precipitation compared with the precipitation observed from 1916 to 1980s [47] thus
evidencing an increase of dryness also in the wettest periods of the year.

The specific geomorphological characteristics of this region and a limited infrastructure net‐
work determine the concentration of industrial districts in small dedicated areas (Melfi area,
Basento valley and Agri valley area). At now the tertiary is the prevalent economic sector. In
the agriculture sector, though farms and cultivated lands decreased in the last decade
(-31.9% and -4.7 respectively, [48]), the number of employees is still very high (about one
fifth of the total employees, [49]).

Intensive and often inadequate farming practices have worsened degradation phenomena
under way especially where climatic conditions are particularly unfavorable (e.g. badlands,
[50]); mountainous areas have experienced a remarkable dynamism in the zootechnical sec‐
tor, with a net increase in the number of head of cattle and in the size of farms.

3. Data

3.1. Satellite data

In order to evaluate the state of vegetation cover and its variations we used a vegetation in‐
dex time series (2000-2010) acquired by the MODIS (Moderate Resolution Imaging Spectror‐
adiometer) sensor. We analyzed NDVI (Normalized Difference Vegetation Index) values
available at full spatial resolution (250m) as 16-day composite from the MODIS dataset by
NASA LP DAAC (Land Processes Distributed Active Archive Center). Among different veg‐
etation indices available in literature, NDVI is one of the best-known and best-working indi‐
ces, and is recognized as a suitable proxy for vegetation activity. It is defined as the ratio
[51,52]:

NIR REDNDVI
NIR RED

-
=

+
(1)

where RED is the reflectance in the red band of the sensor and NIR is the reflectance in the
near infrared band. NDVI takes values between -1 and 1; negative values indicate water and
thick clouds, very low positive values correspond to barren areas (mainly rock, sand) or
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snow cover, whereas high positive values correspond to vigorous and healthy vegetation
cover (Fig. 2).

The choice of MODIS sensor has been determined by its peculiar characteristics. High tem‐
poral resolution (2 images per day), moderate spatial resolution (250m), and the availability
of a time series since 2000 make it suitable for monitoring vegetation variability at the na‐
tional/regional scale. Furthermore, MODIS data are widely used to analyze vegetation con‐
ditions in the context of land degradation studies [53-56].

Figure 2. Spectral reflectance of natural surfaces (see http://bluemarble.ch/wordpress/2003/01/07/)

3.2. Census data

In order to estimate anthropic pressure indicators we extracted information from census da‐
tabase. The main source has been the Agricultural Census carried out by ISTAT (Italian Na‐
tional Institute of Statistics) for the years 1990 and 2000 (latest available census). Data are
provided by municipality (i.e., the minimum administrative level) for the Basilicata region.

In particular, we gathered data on:

• Utilized Agricultural Area (UAA, years 1990 and 2000);
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• Permanent grass and Pasture areas (PP, year 2000);

• Number of heads of cattle (bovines, buffalos, sheep, goats and equines, year 2000).

3.3. Ancillary data

For the elaboration of the Mechanization Level Index (MLI), we used the following ancillary
data:

• level-3 Corine Land Cover (CLC) 2000 map (Fig. 3), downloaded from the High Institute
for Environment Protection and Research (ISPRA - former APAT, see http://
www.eea.europa.eu/data-and-maps/data/corine-land-cover-2000-clc2000-seamless-vec‐
tor-database-4);

• number of machinery passes per cultivation type (source ENAMA – Italian National
Agency of Agricultural Mechanization);

• 20m resolution DEM (Digital Elevation Model, Fig. 4) of the Basilicata provided by the Ba‐
sin Authority of the Region.

Figure 3. CLC map for Basilicata region
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Figure 4. Digital Elevation Model for Basilicata region

4. Methodological procedure

4.1. Estimation of the vulnerability due to anthropic factors

In the last years, despite scientists have paid much attention to anthropogenic factors as po‐
tential land degradation drivers [57,34], the socio-economic component still remains difficult
to explore. The main problems are related to the qualitative character, the strong spatial ag‐
gregation, and the infrequent update of the information [58]. Our approach takes into ac‐
count the so called “agricultural impact” hypothesis [59] as potential explanation for the
most part of the land degradation processes, by focusing on crop intensification/land aban‐
donment and overgrazing in Southern Italy. Among the indicators already adopted in simi‐
lar studies [60-62], we selected the following ones: variation of cultivated surfaces,
percentage of permanent grass and pasture on the total agricultural area, grazing intensity
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and mechanization level. The first three indicators are based on census data, the last is calcu‐
lated combining information on land cover and the other ancillary data.

According to the ESA model, in order to make the used indicators comparable, we classified
them in a common range of vulnerability levels starting from 1 (the lowest vulnerability to
land degradation) up to 2 (the highest vulnerability to land degradation).

4.1.1. Census based indicators

The first indicator calculates the percentage variation of the cultivated surfaces (UAA_VAR)
referred to a time horizon of ten years, as follows:

2 1

1

_ 100t t

t

UAA UAA
UAA VAR

UAA
-

= × (2)

where UAA
t1
 and UAA

t2
 are the Utilized Agricultural Area (arable land, permanent grass‐

land, permanent crops and other agricultural land such as kitchen gardens, see http://
epp.eurostat.ec.europa.eu/statistics_explained/index.php/Category:Agriculture_glossary) at
the start and at the end of the investigated period (t1=1990 and t2=2000 in this study). The
absolute value makes this indicator a good proxy both for agricultural intensification and
land abandonment (Table 1).

Vulnerability class
UAA_VAR Values

Decreases Increases

(2) high < - 50 > 50

medium - high -50 : -20 20 : 50

medium -20 : -10 10 : 20

medium - low -10 : -5 5 : 10

(1) low -5 : 5 -5 : 5

Table 1. Distribution of vulnerability classes for the index of agricultural area variations (UAA_VAR)

In fact, both these processes are considered potential land degradation drivers: the increase
in cultivated surfaces means a reduction in natural lands and requires additional inputs
(water resources, fertilizers, tilling, etc.) that strongly impact on the environment; on the
other hand, the decrease in cultivated areas is associated to the abandonment of marginal
lands (lack of maintenance of drainage network, terracing, etc.) causing acceleration of deg‐
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radation [63,64], or urbanization/industrialization phenomena with consequent soil sealing
and pollution.

The second indicator  estimates  the  percentage  of  Permanent  grass  and Pasture  surfaces
(Sur_PP) with respect to the total Utilized Agricultural Area (UAA) according to this formula:

_
_ 100

Sur PP
PP UAA

UAA
= × (3)

The rationale behind this indicator is the basic assumption that grass and pasture can be
considered low-impact covers because they do not require considerable amount of external
input (fertilizers, herbicides, mechanization and irrigation scheme), accomplishing an im‐
portant protection function against erosional processes [61]. Therefore, the higher the indica‐
tor value, the lower the vulnerability level (Table 2).

Vulnerability class PP_UAA Values

(2) high < 5

medium - high 5 : 10

medium 10 : 30

medium - low 30 : 50

(1) low 50 : 100

Table 2. Distribution of vulnerability classes for the percentage of permanent grass and pasture on the Utilized
Agricultural Area (PP_UAA)

The third indicator is used to estimate the Grazing Intensity (GI), by evaluating the amount
of Adult Bovine Unit (ABU) on the total area of permanent grass and pasture (expressed in
hectares), as follows:

_
ABUGI

Sur PP
= (4)

where ABU is computed accounting for the unit number of various livestock types (referred
to the 2000 year), homogenizing them to the size of adult bovine [60]:

n. sheepn. goatsABU  n.bovines  n. buffalos  n. equines  
10 10

= + + + + (5)
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Overgrazing remains a typical driver of degradation in many areas of Southern Italy, result‐
ing from the inappropriate practice of grazing too many livestock for too long periods ex‐
ceeding the productive capacity of the considered areas. Livestock hooves remove
vegetation cover, exposing soil to be washed away and reducing its capacity of water stor‐
age, previously facilitated by vegetation [65]. As additional effects, soil compaction arises
and runoff increases. On this basis, the highest vulnerability scores are associated to the
highest values of the indicator (Table 3).

Vulnerability class GI Values

(2) high > 100

medium - high 30 : 100

medium 10 : 30

medium - low 3 : 10

(1) low 0 : 3

Table 3. Distribution of vulnerability classes for grazing intensity (GI)

4.1.2. Land cover based indicator

The  index  of  mechanization  level  is  a  proxy  for  soil  compaction  due  to  heavy  equip‐
ments used in agriculture.  Multiple passes of machinery on the same lanes facilitate the
formation of a compacted layer of soil  (ploughsole) with a severe deterioration of many
soil properties, such as porosity, hydraulic conductivity and root penetration [66-68]. The
plant roots often spread out horizontally exhibiting stunted growth because of the insuf‐
ficient access to soil water and nutrients [69]. Altogether, mechanization can increase risk
of runoff [70], flood events and loss of nutrients by leaching [71].

The mechanization level index adopted in this work follows a new formulation based on
land cover and morphological data [36], so as to obtain information more flexible for res‐
olution,  update  frequency,  and  quality  compared  to  census  data,  which  are  normally
used  to  calculate  this  indicator  [72,73].  Our  indicator  estimates  soil  compaction  due  to
heavy vehicle traffic by taking into account the variable number of passes for each culti‐
vation type (extracted from the land cover map and ancillary information) and the differ‐
ent impact on soil produced by using tyres or tracks (evaluated thanks to morphological
data).

As  a  first  step,  starting  from  level-3  CLC  we  separated  cultivable  from  natural  or  an‐
thropized classes.  Then we associated  an  average  number  of  passes,  obtained from the
aggregation of ENAMA data (Table 4), for each agricultural CLC class.

Integrated Indicators for the Estimation of Vulnerability to Land Degradation
http://dx.doi.org/10.5772/52870

149



Cultivation type and corresponding CLC2000 level3 code
Number of average

passes

Arable land (cereals, legumes, crops, vegetables, etc.) - 2.1.1/2.1.2 7,5

Permanent crops (vineyards, fruit trees, olive groves) - 2.2.1/2.2.2/2.2.3 7

Pastures - 2.3.1 3

Annual crops associated with permanent crops - 2.4.1 5

Complex cultivation patterns - 2.4.2 4

Land principally occupied by agriculture, with natural areas - 2.4.3 3

Agroforestry areas - 2.4.4 1

Other classes 0

Table 4. Number of average passes for CLC2000 class, obtained aggregating ENAMA data for cultivation type.

In order to take into account the different equipments of the agricultural machinery, consist‐
ing in tyres or tracks, we applied a threshold (20%) on the slope map derived from the 20m
resolution DEM since land on steep slope can be managed only by tracked vehicles, whereas
tyres are adopted in all the other cases. Soil compaction induced by tracks is limited to the
topsoil, that can be rather easily restored, whereas tyres mostly damage subsoil layers that
are more difficult to restore [74,75]. Neglecting such a variable means to estimate equal vul‐
nerability levels in very different conditions of soil tillage. According to this evaluation, we
introduced a correction factor (f) associating a lower vulnerability to areas where tracked ve‐
hicles are used (f =1) with respect to those managed with tyred vehicles (f =1.5). The final
formulation of the index (MLI) is the following:

pMLI N f= × (6)

where Np is the number of average passes for each CLC class, and f represents the correc‐
tion factor accounting for track or tyre use. The indicator was classified within the ESA
range (1-2) to provide values comparable with the values of other land management indica‐
tors (Table 5).

Vulnerability class MLI Values

(2) high >9

medium - high 7 : 9

medium 5 : 7

medium - low 3 : 5

(1) low <3

Table 5. Distribution of vulnerability classes for mechanization level indicator at pixel scale (MLI)
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4.1.3. Land management index

The overall land management index (LMI) is calculated for each pixel as the geometric mean
of the scores of the four indicators previously described:

1/4( _ _ )LMI MLI UAA VAR PP UAA GI= ´ ´ ´ (7)

4.2. Estimation of the vulnerability due to vegetation component

The ESA model is devised to assess only the structural (potential) vulnerability to land deg‐
radation, which is connected, in the specific case of vegetation, to the different sensitivity of
the different land cover classes. Nevertheless, it is frequent to detect areas showing similar
vulnerability levels from a structural point of view and exhibiting, on the contrary, very dif‐
ferent actual signs of degradation. In addition, vegetation conditions change in time and this
temporal evolution can be very interesting for singling out degradation processes. Thus,
moving from the assumption that land degradation should not be regarded as something
static but as a dynamic process [76], multitemporal investigations using satellite time series
can be profitably used for estimating not only the current state of vegetation but also the
changes occurred over time. At this aim, in this chapter, we used NDVI_PV, already adopt‐
ed by APAT [77], as a reliable indicator to carry out a multitemporal analysis of the vegeta‐
tion activity [78].

4.2.1. NDVI_PV indicator

NDVI_PV provides the spatial variability of the changes in the study area at the satellite res‐
olution and is based on the estimation of NDVI interannual variations compared with the
starting conditions. It is calculated as follows:

Y Y Y

1 1 1
2Y Y

1 1

2

p,i i p,i i
i= i= i=

iii= i=

p,in

Y MVC y MVC y

Y y y
NDVI PV = Y

MVC

é ù
ê ú× -ê ú
ê ú
ê úæ ö

-ê úç ÷ç ÷ê úè øë û-

å å å

å å
(8)

where Y = the number of years (11 in this work); yi = given year; MVCp,i = Maximum Value
Composite for the given pixel and year i; MVCp,in = Maximum Value Composite for the giv‐
en pixel at the first year of the investigated time series.

The normalization to the initial value reported in the formula takes into consideration that
the vulnerability of an area is strongly linked to the starting value and to the type of veg‐
etation cover corresponding to different typical values of NDVI. This aspect is particularly
important,  because  the  same  change  (trend  magnitudo  and  direction)  has  a  different
weight if the examined cover is a densely or sparsely vegetated. Therefore, the percentage
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variation rather than the absolute values allows for better estimating degradation levels.
This  indicator is  able to enhance increase/decrease of  vegetation activity and to identify
slow variations,  long-term processes  (e.g.,  decline  of  forest  areas),  and  sudden  changes
(e.g., fire events).

Finally, the NDVI_PV indicator has been classified within the ESA range 1-2 (Table 6).

Vulnerability class NDVI_PV values

high < -20

medium- high -10 : -20

medium -5 : -10

medium -low 0 : -5

low >0

Table 6. Distribution of vulnerability classes for NDVI_PV indicator.

4.3. Integration of the anthropic and vegetation components

In order to take into account the information provided by the evaluation of the anthropo‐
genic and vegetation components (LMI and NDVI_PV), we integrated them through the
geometric mean. We defined a modified index based on the ESA final index [32]:

1/2
mod ( _ )ESA NDVI PV LMI= ´ (9)

4.4. Main contributing factor

Once defined the different vulnerability levels of a composite index, it is possible to identify
spatial patterns of the main contributing factor (MCF) so as to point out the prevalent driv‐
ing forces acting at pixel scale on the ongoing degradation processes. This is strategic to ad‐
dress ad hoc measures of conservation/mitigation/rehabilitation towards the specific
involved factors. In GIS environment such an analysis is carried out by means of a simple
maximizing algorithm applied on the comparable layers (rasters) representing each land
management indicator:

( 1, 2 , 3,.... )OUTPUT MAX RASTER RASTER RASTER RASTER N= (10)

The  output  raster  shows  the  spatial  dominance  of  one  factor  with  respect  to  the  other
ones.
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5. Results

5.1. Analysis of the land management indicators

Among the anthropic indicators, the highest vulnerability values were found for the
UAA_VAR indicator (Fig. 5). Most of the vulnerable municipalities seem to be equally dis‐
tributed in the study area, confirming that the abandonment of marginal lands (especially in
inland areas), and the agriculture intensification (in lowlands and along the Ionian coast)
represent important human-induced causes of degradation for Basilicata region [79-81].

UAA_VAR Vulture 
Melfese
Basin

Agri
Valley

Matera
Potenza

Figure 5. Classification of UAA_VAR in vulnerability classes. In the upper right corner it is shown the geographical ref‐
erence map
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As far as PP_UAA is concerned (Fig. 6), this is an important vulnerability factor only for a
limited number of municipalities. In these areas, UAA is prevalently devoted to intensive
farming activities (permanent crops, arable lands and heterogeneous agricultural areas)
rather than to less-impacting practices that are normally carried out in grass, pasture and
agroforestry areas; conversely, the Apennine and sub-Apennine zones show medium-low or
low values of vulnerability, because the municipal UAA encompasses a fairly considerable
proportion of grass and pasture (see http://censagr.istat.it/basilicata.pdf).

PP_UAA

Vulture 
Melfese
Basin

Agri
Valley

Matera
Potenza

Figure 6. Classification of PP_UAA in vulnerability classes. In the upper right corner it is shown the geographical refer‐
ence map
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The vulnerability map of Grazing Intensity (GI - Fig. 7) reveals at a glance that the least im‐
pacting degradation factor in Basilicata region is overgrazing, because we found high vul‐
nerability values only in a very few municipalities, whereas the rest of the examined areas
shows prevalently low vulnerability values.

GI Vulture 
Melfese
Basin

Agri
Valley

Matera
Potenza

Figure 7. Classification of GI in vulnerability classes. In the upper right corner it is shown the geographical reference
map
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This agrees with the indications inferred from the previous indicators: even though live‐
stock husbandry is a well-established economic platform comprising a large number of
small to medium size enterprises in Basilicata (also in mountainous areas), the fairly even
abundance of pastures and grasses allows to graze without exceeding the regeneration ca‐
pacity of vegetation. As illustrated in Fig. 8, the mechanization level indicator (MLI), which
is displayed with the spatial resolution of the pixel (20m as the original DEM), allows a
quick discrimination of different vulnerability values also inside the municipal areas.

MLI

Vulture 
Melfese
Basin

Agri
Valley

Matera
Potenza

Figure 8. Classification of MLI in vulnerability classes. In the upper right corner it is shown the geographical reference
map

This is a first improvement with respect to previous analyses made at the municipal level,
enabling a better identification of the local critical aspects in terms of induced environmental
impacts. In particular, the arrangement of the vulnerable areas reflects the agricultural pro‐
ductivity patterns of Basilicata, providing a picture of the actual conditions of the investigat‐
ed region which is more realistic of that provided by census-based indicators [82].

We found high and medium-high vulnerability for areas located in lowlands (wide stripe in
the Northeastern part of the region) and along the coast as well as in a large part of the hilly
landscape (e.g., medium and low hills surrounding the city of Matera), which is particularly
devoted to (intensive) farming practices; low vulnerability levels are found instead in moun‐
tain areas, less suitable to be exploited for agricultural purposes.
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Finally, the Land Management Index (LMI), exhibiting the same resolution of the MLI indi‐
cator, is shown in Fig. 9. It is evident that the most severe management problems related to
agriculture/grazing activities are concentrated in the cluster in the Northeastern part of the
region and in some of the coastal areas along the Ionian sea. The rest of the seaboards are
characterized by medium/medium-high levels of vulnerability as well as hilly areas in the
Matera province and some areas surrounding the city of Potenza. The management state for
the Western side of the region, dominated by natural areas, is quite satisfactory, even if
there are patches having medium vulnerability values (Vulture-Melfese and Agri valley).

2

1.3

1.7

1.5

1

LMI Vulture 
Melfese
Basin

Agri
Valley

Matera
Potenza

Figure 9. Classification of LMI in vulnerability classes. In the upper right corner it is shown the geographical reference
map

5.2. Spatial pattern of Main Contributing Factors (MCF) related to anthropic pressure

We performed a preliminary analysis consisting in area-weighted average calculations of
the adopted indicators (see radar chart, Fig. 10). According to our results, UAA_VAR shows
the highest average value (1,57). Also MLI and PP_UAA are not negligible (respectively 1,45
and 1,42) whereas the role of GI seems to be nonessential (1,05).
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Figure 10. Radar chart showing the comparison among the area-weighted average values of land management indi‐
cators for the whole investigated region

In order to investigate the role of each indicator we applied the MCF algorithm (see section
4.4) at the pixel scale. It should be remarked that (see Fig. 11) 70% of the regional surface
shows a unique MFC, while the remaining part of the investigated areas is characterized by
two (about 24% of the total surface), three indicators (about 4% of the total surface), or no
prevailing indicator (about 2% of the total surface). In the last case all the four indicators
reach the maximum vulnerability value.

Figure 11. Frequency distribution of the number of prevalent indicators on the investigated area
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The analysis of the areas in which just one indicator is dominant (Fig. 12) brings out the im‐
portance of the UAA_VAR as the most significant driver of degradation (about 58% of the
considered area). In these areas the degradation mainly comes from the decrease in cultivat‐
ed surfaces.

Apart from the appreciable contribution of the mechanization indicator (MLI, about 29% of
the examined area), neither the scarce presence of grass and pasture (PP_UAA, about 13% of
the examined area) nor the overgrazing (GI, no area involved) contribute meaningfully to
degradation.

Figure 12. Frequency distribution of the prevalent indicators (areas having just one indicator prevalent)

The analysis of the pixels having two dominant indicators (Fig. 13) shows a large prevalence
of the synergy between MLI and PP_SAU (about 75%). On the contrary, the variation of cul‐
tivated lands (UAA_VAR) jointly with PP_UAA or MLI (respectively about 17% and 9% of
analyzed areas) seems not to be particularly diffused as a degradation driver. Owing to the
negligible role of grazing, areas exhibiting simultaneously three dominant indicators are al‐
ways characterized by the values of MLI, PP_UAA, and UAA_VAR.

On the whole, the analysis aimed at identifying the MCF for the anthropic component indi‐
cates that UAA_VAR plays the main role in inducing degradation followed by excessive
mechanization (MLI), whereas PP_UAA and particularly GI seem not to play an important
role in promoting environmental degradation. This last result is due to the positive effects
generated by the widespread presence of grass and pasture, also in non mountainous areas.
These covers represent a mainstay of the local agricultural structure enabling a sustainable
management because, on the one hand, they counterbalance the man-induced impact
caused by intensive agricultural practices (resulting in lower values of the PP_UAA indica‐
tor), on the other, they allow a suitable form of grazing (resulting in very low values of the
GI indicator).
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The spatial patterns of the MCF (Fig. 14) show two opposite paths in the Basilicata region:
marginalization of inland rural areas and further intensification of low-sustainable agricul‐
ture in lowland areas.

The first phenomenon, arising from complex socio-economic dynamics, involves the inland
districts located in the core of the region (prevalently near Potenza town) that were mainly
devoted to poor agricultural practices in the recent past. Today, these areas experience de‐
population (for further details see http://www.istat.it/it/basilicata) as a consequence of the
present economic crisis generating low profitability of agricultural products. This reduction
in profit margin, in turn, can be accelerated by natural factors such as growing aridity and
natural disasters (flood, landslide, fire, etc.) which induce an increase in agricultural man‐
agement costs (e.g., irrigation, agrochemicals products, land rehabilitation, etc.) exacerbating
land abandonment and culminating in a downward spiral of land degradation [83]. This
fact, supported by provisional data of the Sixth National Agricultural Census (indicating a
reduction of farm and cultivated areas, see section 2), stresses one of the most critical aspect
of the local economic-productive system having serious repercussions on environmental
quality and promoting social imbalances between marginal and more populated areas [84].
However, in this case, regional/national policies should be undertaken to strengthen infra‐
structural facilities and promote the redevelopment of marginal lands.

Figure 13. Frequency distribution of the prevalent indicators (areas having two indicators prevalent)
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The second phenomenon focuses on the long-term sustainability of intensive farming. Espe‐
cially in areas where the natural conditions are optimal (e.g., slope) and technologies and infra‐
structure are easily available, we notice a tendency to increase agricultural production. This
occurs at the expense of future land fertility, because enlarging cultivated areas, increasing the
use of mechanization and fertilizers and overexploiting water resources contributes to exacer‐
bate land degradation processes. In these places, we observe the reverse problem affecting
marginal areas and thus appropriate strategies are required to locally encourage farmers to‐
wards sustainable soil management practices and technical skill improvement.

PP_UAA

UAA_VAR

Two or more indicators

MLI

Figure 14. Map of the Main Contributing Factor (MCF) computed for the anthropic component
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5.3. Analysis of trends in photosynthetic activity (NDVI_PV)

In Fig. 15 absolute values of NDVI_PV are displayed. Positive values of the indicator (gener‐
ally fairly high) are visible especially in areas located south of Matera city and they mainly
are estimated for permanent crops (fruit trees and olive groves) and, in some cases, for ara‐
ble lands. Areas mostly characterized by dense vegetation (coniferous and broad-leaved for‐
ests) reveal stability or a slight increase in photosynthetic activity. Negative values are
detected in correspondence with arable lands (the narrow stripe bordering Apulia region)
and industrial districts (geographically concentrated in Tito Scalo, near Potenza and in S.
Nicola di Melfi at the northern of Basilicata, where we find one of the most recent FIAT
plant, see Fig. 15).

By aggregating the NDVI_PV values in 7 ranges (see Fig. 16) we observe a considerable cov‐
erage of stable areas (more than 50%) and a limited extent of areas characterized by low neg‐
ative values (10%). Areas affected by a strong decrease in vegetation activity are only 1% of
the investigated territory; on the contrary, areas marked by positive trends (slight and ap‐
preciable increases in photosynthetic activity) altogether amount to 30% of the examined
surfaces.

Figure 15. Map of the indicator NDVI_PV (not classified). Areas within the circles 1 and 2 belong to the Tito Scalo and
San Nicola di Melfi locations respectively. In the upper right corner it is shown the geographical reference map
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Figure 16. Frequency distribution of the prevalent indicators (values in abscissa represent the percentage of areas in‐
cluded in the given ranges)

By classifying the obtained values of NDVI_PV in the ESA range (1-2), we can extract some
further information: highly vulnerable areas (medium-high and high) reach about 5% of the
Basilicata surface; there are few medium vulnerability areas (about 10%), whereas the extent
of areas with medium-low/low vulnerability is very significant (about 85%, see Fig. 17).

NDVI – PV classified

Figure 17. Map of the indicator NDVI_PV, classified in the ESA range (1-2)
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5.4. Analysis of the integrated vulnerability map (ESAmod)

As we can see from the map in Fig. 18, the combined analysis of the anthropic component
and the vegetation one, does not show a particularly critical picture of the Basilicata region.
The most vulnerable areas (ESAmod>1.5) are located, as expected, in the Northeastern sector
of the region, including the agriculture-oriented lands bordering Apulia region, a part of the
Ionian coast and some areas belonging to the hilly zone in the surrounding of Matera city.
More densely vegetated areas, but also a large part of grasses, pastures and semi-natural
areas, where the anthropic influence is clearly lower, seem to show good health conditions
and thus a rather negligible vulnerability.

As established by the ESA methodology, the arrangement of the examined areas in different
risk classes points out that about 23% of the region is included in the critical areas (ESAmod >
1.38) and nearly the 30% in the fragile (1.23<ESAmod<1.37); the rest of the investigated territo‐
ry is characterized by potential or non-threatened areas (ESAmod<1.22; 50% of the regional
surface) according with results from independent studies [85]. The composite picture emerg‐
ing from all these investigations suggests that for areas falling within the first two categories
(critical and fragile) several measures should be put in place to prevent more severe degra‐
dation processes by promoting mitigation/restoration actions. As for the third category (po‐
tential and non-threatened areas), a periodic monitoring can be a great (and sometimes cost-
effective) solution.

Vulture 
Melfese
Basin

Agri
Valley

Matera
Potenza

Figure 18. Map depicting the integration of the analyzed components (ESAmod). In the upper right corner it is shown
the geographical reference map

Finally, Fig.19 shows the ESAmod map segmented according to four different levels of influ‐
ence of MLI and NDVI_PV.
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The extent of areas having both the anthropogenic component (LMI) and the biophysical
one (NDVI_PV) not exceeding the value of 1.4 (vulnerability threshold) is very considerable
(blue pixels). These pixels are principally concentrated in the Western side of the region and
belong to various type of land cover including mainly forested and seminatural areas and
some human-influenced covers such as arable lands. These last dominate, instead, in two of
the four classes: areas showing both negative vegetation trends and inappropriate land man‐
agement (red pixels), and areas affected by substantial decreases of photosynthetic activity
(yellow pixels) but where management is quite satisfactory. Finally, a lot of permanent crops
occupy largely those areas experiencing positive trends of vegetation activity but unsuitable
agricultural practices (green pixels).

NDVI_PVand LMI>1.4

NDVI_PVand LMI<1.4

NDVI_PV>1.4 LMI<1.4

NDVI_PV<1,4 LMI>1.4

Figure 19. Zones of influence resulting from the partition of the ESAmod map
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6. Conclusions

In order to estimate the vulnerability to land degradation of a typical Mediterranean region
(Basilicata) we have jointly considered the impact of the anthropic component and the vege‐
tation conditions, using socio-economic indicators related to agriculture/grazing activities
and analyzing trends of photosynthetic activity. As regards anthropic pressure we have
used census-based indicators (UAA_VAR, PP_UAA and GI computed at municipal scale)
and the mechanization indicator (MLI) based on land cover map and morphological infor‐
mation (DEM). Thanks to its formulation, the new indicator we elaborated is independent
from census data, enabling a faster rate of update and providing a better discrimination of
the vulnerability values because the adopted spatial resolution is connected to the used land
cover map or DEM in state of the municipal level. It allows friendly exportability to different
monitoring scales, which can be obtained by selecting the most opportune land cover map,
and high adaptability, thanks to the possibility of selecting the number of classes for the sat‐
ellite data classification.

We have combined all the socio-economic indicators to define the Land Management Index
(LMI) and have carried out an analysis aimed at identifying the dominant factors driving
human-induced degradation processes.

In order to estimate trends of vegetation activity we have calculated the NDVI_PV indicator
using a time series (2000-2010) of the MODIS sensor observations. This indicator is able to
compute interannual variations of NDVI compared with the starting conditions, so that it is
possible to detect also slow variations and long-term processes of increase/decrease of the
photosynthetic activity in the analyzed period.

The final map of the ESAmod index, taking into account the vulnerability due to the anthropic
and vegetation components, depicts a very complex picture characterized by a wide range
of vulnerability values and by many combinations of degradation causes.

The adopted procedure, which integrates remote sensing data (synoptic view, multi-tempo‐
ral availability) and socio-economic indicators, is a valuable tool for estimating vulnerability
to land degradation in large anthropized areas, which are highly complex in terms of land
cover type and economic vocation (intensive agriculture, grazing, industrial activities).

Our methodology allows the early detection of the most vulnerable areas and the identifica‐
tion of the local prevailing stress factors, providing key information for the setting up of sus‐
tainable development strategies.
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