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1. Introduction

Human T cell leukemia virus type-1 (HTLV-1) is the only retrovirus known to be the etiologic
agent of a human cancer, adult T-cell leukemia/lymphoma (ATLL), a highly aggressive cancer
of mature T cells. Epidemiological reports suggest that 10 to 20 million people throughout the
world are infected with HTLV-1, which is endemic in parts of sub-Saharan Africa, the
Caribbean, Japan, and South America [1]. HTLV-1 encodes a regulatory protein, Tax, which is
essential for virus replication and plays a significant role in the oncogenic potential of HTLV-1.
This chapter will summarize the effects of Tax on cellular processes including transcription,
cell cycle checkpoints, and DNA repair, and will discuss how these activities may contribute
to its transforming potential.

2. HTLV-1 epidemiology and pathogenesis

HTLV-1 is  a  type C,  complex,  enveloped retrovirus  belonging to  the  family  Retroviridae
and  the  genus  deltaretrovirus.  This  genus  includes  three  additional  HTLV  members
(HTLV-2,  -3,  and -4),  and two non-human members,  bovine  leukemia  virus  (BLV),  and
simian T cell leukemia virus (STLV). HTLV-1 was originally isolated from a patient diag‐
nosed with  cutaneous  T  cell  lymphoma,  and was  subsequently  shown to  be  the  causa‐
tive  agent  of  ATLL  [2-4].  HTLV-1  is  also  recognized  as  the  etiologic  agent  of  a
neurodegenerative  disease,  tropical  spastic  paraparesis/HTLV-1  associated  myelopathy
(TSP/HAM), that affects the central nervous system [5,6]. The route of HTLV-1 transmis‐
sion influences its pathogenesis.  Sexual transmission, which occurs most efficiently from
males  to  females,  IV drug use,  and blood transfusions are  typically  associated with the
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development of  TSP/HAM, whereas the most  common route of  transmission,  mother to
child, is preferentially associated with the development of ATLL [7-12].

ATLL, a rapidly progressing cancer of mature CD4+ T cells, has been classified into four clinical
subtypes:, smoldering, chronic, lymphoma, and acute [13]. Leukemic cells from ATLL patients
have a phenotype of CD2+, CD3+, CD4+, CD8-, and HLA-DR+, express high levels of interleukin
2 (IL-2) and its receptor (IL-2R), and frequently have lobulated nuclei, causing them to be
referred to as flower cells. Interestingly, these cells are only moderately responsive to IL-2, and
HTLV-1 infected T cells proliferate continuously in the absence of exogenous IL-2, a charac‐
teristic associated with late stage T-cell transformation [14]. Other members of the deltaretro‐
virus family have also been linked to proliferative diseases. For instance, sheep infected with
BLV develop B-cell leukemia/lymphoma, and the simian counterpart of HTLV-1, STLV-1,
induces an ATLL like disease in African green monkeys [15,16]. In contrast, HTLV-2 has not
been definitively linked to human cancer and the disease potentials of the newly discovered
HTLV-3 and -4 viruses remain unknown [17,18].

2.1. HTLV-1 genome

The HTLV-1 proviral genome is approximately 9 kb in length including flanking long ter‐
minal repeats (LTR) composed of U3, R, and U5 regions. HTLV-1 encodes structural (gag,
env)  and enzymatic (pro,  pol)  genes typical  of  all  retroviruses.  In addition,  a highly con‐
served pX region located near the 3’ LTR, encodes four open reading frames (ORFs) that
produce regulatory proteins [19,20]. ORF I encodes p12, which undergoes proteolytic cleav‐
age to generate p8. Alternative splicing of ORF II produces the p13 and p30 proteins. Anal‐
ysis of full-length infectious molecular clones of HTLV-1 containing mutations in p12, p13,
and/or p30 in a rabbit infection model demonstrated an important role for these viral acces‐
sory proteins in establishing and maintaining viral persistence [21-26]. ORFs III and IV pro‐
duce  doubly  spliced  mRNA  encoding  Rex  and  the  viral  oncoprotein  Tax,  respectively.
These proteins differentially regulate transcription, which is essential for viral replication
[26-29]. Rex is a 27 kDa protein that regulates post-transcriptional viral gene expression by
transporting unspliced mRNA from the nucleus to the cytoplasm and increases viral RNA
stability, potentially influencing latent and productive phases of the virus life cycle [26,29].
Tax is a potent transcriptional regulator of viral and cellular gene expression and modu‐
lates cellular protein function. Unlike Tax, HBZ is transcribed from the antisense strand of
the proviral  genome and appears to be constitutively expressed in HTLV-1-infected and
ATLL cells [30]. HBZ promotes the proliferation of human T cells and may play an impor‐
tant  role  in  maintaining  malignant  transformation  of  HTLV-1  infected  T  cells  [31].  The
mechanisms of Tax-mediated cellular transformation will be discussed below.

2.2. Transformation by HTLV-1

Multiple studies have demonstrated that Tax is sufficient for cellular transformation and is
important for HTLV-1 mediated tumorigenesis [32-38]. Acute transforming retroviruses
rapidly induce tumors by expressing a viral oncogene [39]. In contrast, chronic transforming
retroviruses induce tumors at a much slower rate by aberrantly regulating genes upstream or
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downstream of the proviral insertion site [40]. Neither of these models explains HTLV-1
mediated transformation since no cellular homologue of Tax has been identified and HTLV-1
integration is random. The oncogenic potential of Tax has been extensively characterized in
rodent fibroblast cell culture systems, transgenic mouse models, and immortalization and
transformation studies in primary human T cells.

One of the first studies to show that Tax could independently transform human T cells used a
transformation–defective but replication competent herpes saimiri vector encoding Tax to infect
primary cord blood lymphocytes [32]. The transformed T cells were CD4+/CD8- and expressed
high levels of IL-2R, resulting in clonally expanded cell populations similar to ATLL cells.
Deletion of the Tax gene in this vector eliminated its transforming potential [32]. In addition,
a replication defective HTLV-1 provirus isolated from leukemic cells of an ATLL patient
expressed Tax and promoted loss of contact inhibition and anchorage-independent growth in
rodent fibroblasts [37]. Mutation of the Tax gene in this proviral vector reduced tumor
formation in nude mice, suggesting that Tax is required for the transforming potential of
HTLV-1. Loss of Tax expression in HTLV-1-transformed Rat-1 cells resulted in an inability to
form tumors and restoring Tax expression restored the tumorigenic potential of these cells,
indicating that Tax is required to establish transformation [38]. In combination with ras, Tax
is sufficient to transform primary rat embryo fibroblast cells in culture and to induce tumors
in nude mice. Tax alone can transform Rat-2 cells and induce tumors in athymic mice [41].
These studies demonstrated that HTLV-1 is a transforming retrovirus with a broad transform‐
ing potential not limited to primary T cells, and that Tax is necessary and sufficient to transform
cells in vitro and induce tumor formation in vivo.

3. Characterization of Tax-induced tumors in transgenic mouse models

To determine whether Tax plays a role in HTLV-1 induced leukemia/lymphoma, first gener‐
ation transgenic mouse models expressing Tax under the control of the HTLV-1 LTR were
developed, resulting in broad expression of Tax in tissues including thymus, lung, and brain
[35]. Interestingly, these mice developed neurofibromas and mesenchymal tumors with visual
tumors on the ears, feet, and tail, instead of T cell derived lymphoid tumors, indicating that
Tax expression driven by the HTLV-1 promoter leads to neurotropic associated tumor
development in this model [35]. To generate a mouse model that more closely recapitulates
ATLL, second generation transgenic mice expressed Tax under control of the human granzyme
B (GzmB) promoter, which limits transgene expression to CD4+ and CD8+ T lymphocytes (T),
natural killer (NK), and lymphokine-activated killer cells [42]. These GzmB-Tax mice devel‐
oped T-cell lymphomas that expressed high levels of nuclear factor kappa B (NF-κB) [42].
Antisense inhibition of NF-κB expression resulted in tumor regression suggesting that Tax-
dependent tumor formation and regression correlate with NF-κB expression [43]. Although
GzmB-Tax mice presented with hepatosplenomegaly similar to ATLL patients, they developed
large granulocytic leukemia (LGL) indicative of infiltrating neutrophils, basophils, and
eosinophils [42]. LGL tumor cells exhibited antibody-dependent cellular cytotoxicity, a
primary function of NK-cells, and did not express T-lymphocyte markers, thus these tumors
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were derived from malignant NK cells [42,44]. Although GzmB-Tax mice did not develop T-
cell leukemia/lymphoma, this model demonstrated that limiting Tax expression to the
lymphoid compartment could drive lymphomagenesis.

Third generation transgenic  mice expressed Tax under the control  of  the Lck promoter,
which restricts  expression to developing thymocytes [45].  At 10 months of  age,  Lck-Tax
transgenic mice developed swollen and enlarged spleens, livers, and lymph nodes, recapit‐
ulating clinical features observed in patients with ATLL, and presented with large mesen‐
teric tumors [45]. These mice displayed skin ulcerations involving infiltration of leukemic
cells in to the dermis, and lymphoma cells from these tumors had a “flower-like” morphol‐
ogy consistent with ATLL cells [45]. Engraftment of these tumor cells into SCID mice led to
the  development  of  an  aggressive  and  rapidly  progressing  leukemia  resulting  in  death
within 28 days, similar to the aggressive nature of ATLL [45]. Although Lck-Tax mice reca‐
pitulate the clinical features of ATLL, isolated tumor cells were CD25+, CD44+, CD69+, but
CD4-/CD8-  double negative, indicating that the lymphomas were derived from malignant
transformation of immature T cells [45]. In this model restriction of Tax expression to the T
cell compartment produced transgenic mice having clinical features of ATLL however, the
absence of CD4+ lymphomas and continued expression of Tax in the tumor cells does not
precisely model ATLL in these mice.

HTLV-1 humanized SCID mice (HTLV-1-Hu-SCID) were generated by reconstituting hema‐
topoiesis in non-obese SCID mice using human CD34+ hematopoietic progenitor stem cells
(HPSCs) infected with HTLV-1 [46]. Within 12-20 weeks of reconstitution, the Hu-SCID mice
developed CD4+ T cell lymphomas with clinical and histopathological features similar to ATLL
and Lck-Tax transgenic mice [45,46]. Isolated tumor cells expressed HTLV-1 Gag, CD25, CD4,
and CD8 proteins, demonstrating that the tumor cells originated from malignant transforma‐
tion of mature T cells [46]. Additionally, Hu-SCID mice generated using HPSCs infected with
a lentiviral vector expressing Tax (Tax-Hu-SCID) developed monoclonal CD4+ tumors
suggesting that reconstituting mice with a human hematopoietic system drives Tax-mediated
lymphomagenesis of mature T cells [46]. The HTLV-1 infected Hu-SCID mouse model
provides a promising tool with which to assess the development and progression of HTLV-1-
induced CD4+ T cell lymphomas.

4. Molecular mechanisms of Tax mediated transformation

4.1. Regulation of CREB and NFκB pathways by Tax

Since multiple studies have shown that Tax is sufficient for cellular transformation and is
important for HTLV-1 mediated lymphomagenesis [32-38] much effort has been invested into
understanding the molecular mechanisms that drive Tax-mediated transformation and
tumorigenesis. Microarray analysis of HTLV-1 infected and Tax transfected cells demonstrated
genome-wide changes in cellular gene expression patterns including changes in the expression
of genes that control proliferation, cell cycle checkpoints, apoptosis, and transcription,
suggesting potential pathways through which Tax might function to modulate normal cellular
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responses [47,48]. Extensive mutational analysis of Tax revealed the presence of a nuclear
localization signal, nuclear export signal, and activation domains specific for the NF-κB and
cAMP-responsive element binding protein (CREB) pathways [49-51]. Tax does not bind DNA
but, interacts with cellular proteins to modulate at least three major transcription factor
pathways NF-κB, CREB, and serum response factor (SRF) pathways, of which the CREB and
NF-κB pathways have been most extensively studied [52-62] and shown to be essential for Tax-
mediated transformation.

Modulation of the CREB pathway by Tax is important for transcriptional activation of the
HTLV-1 promoter (LTR). The HTLV-1 LTR contains three non-palindromic 21-bp repeats
called Tax responsive elements (TRE). Each TRE contains a core CRE sequence flanked by
GC-rich  sequences,  which  are  required  for  Tax-mediated  transactivation.  Under  normal
physiological  conditions,  CREB activation is  initiated by growth factor  stimulated phos‐
phorylation of the kinase inducible domain (KID) of CREB followed by CREB dimerization
and recruitment of the CREB binding protein (CBP) through its KID interaction KIX do‐
main [63,64]. The CBP-CREB complex then binds to palindromic CREs to activate transcrip‐
tion of CREB-dependent genes. In Tax expressing cells, Tax interacts with CREB to enhance
CREB dimerization and selectively increase the binding affinity of CREB for the viral TRE,
which is mediated by the flanking GC rich regions [65-67]. Tax also interacts with the KIX
domain of CBP and its homologue p300 to enhance their recruitment to the Tax-CREB-TRE
ternary complex, thereby stabilizing the complex and activating viral gene expression in
the absence of CREB phosphorylation [67-71]. Thus, Tax can bypass cAMP signaling medi‐
ated activation of CREB and induce preferential binding of CREB to the viral LTR rather
than to cellular CREs. These results emphasize the importance of the CREB pathway for vi‐
ral gene expression [54,66,70,70,71,71]

Tax regulation of cellular gene expression through the NF-κB pathway results in cell prolif‐
eration, resistance to apoptosis, and maintenance of malignant transformation. In a resting cell,
NF-κB is sequestered in the cytoplasm in an inactive complex with inhibitor of kappa B (IκB),
which prevents activation of NF-κB -dependent genes [72]. External growth factor stimulation
initiates a signaling cascade that induces phosphorylation of IκB by IκB kinase (IKK), resulting
in ubiquitination, and subsequent degradation of IκB, which then releases NF-κB to translocate
to the nucleus and activate NF-κB-dependent gene expression. Tax disrupts NF-κB regulation
by several mechanisms. First, cytoplasmic Tax increases phosphorylation and subsequent
degradation of IκBα by forming a ternary complex containing NF-κB essential modulator
(NEMO), IKKγ, Tax, and PP2A that blocks deactivation of IKK [73-76]. Constitutively active
IKK results in persistent IκB degradation and translocation of NF-κB to the nucleus. Second,
nuclear Tax interacts with NF-κB on promoters resulting in constitutive activation of NF-κB
dependent genes [77,78]. Persistent degradation of IκB and constitutive activation of NF-κB
dependent genes leads to persistent activation of the NF-κB pathway in HTLV-1 infected, and
Tax-expressing cells [79]. Upregulation of NF-κB-dependent genes including, but not limited
to key T cell activators (IL-2, high affinity IL-2R alpha subunit, and IL-15) is required for
immortalization and survival of HTLV-1 transformed cells, setting the stage for neoplastic
conversion of a normal T cell [53,60,80]
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4.2. CREB and NF-κB pathways in Tax-mediated transformation

A Tax mutant (M47) that is defective for activation of CREB-dependent genes did not induce
loss of contact inhibition or anchorage independent growth in Rat 2 cells and failed to induce
tumors in nude mice [36], suggesting that activation of the CREB pathway is required to
establish Tax-induced tumors. In the same study, a Tax mutant (M22) that is defective for NF-
κB activation did transform Rat 2 cells in vitro and induce tumors in athymic mice similar to
wild-type Tax, indicating that NF-κB activation is not required to initiate Tax-mediated
tumorigenesis [36]. In a different study, a herpesvirus saimiri vector carrying the Tax S258A
mutant that is defective for NF-κB activity, retained the ability to immortalize PBMCs, which
is a prerequisite for transformation [81]. However, a Tax mutant (M319) that fails to activate
CREB dependent genes comparable to Tax M47 induced anchorage independent growth in
Rat-1 cells and tumor formation in nude mice, suggesting that CREB activation is not required
for transformation [82]. Differences between the effect of CREB mutants in this study and the
previous study may be due to differences in the specific cell lines and Tax mutants used in the
studies. However, since NF-κB mutants retained transforming ability in both studies, and since
ablation of NF-κB expression in established Tax tumors led to tumor regression, there is strong
evidence that NF-κB is required for tumor maintenance, but not for tumor induction [43].
Analysis of the roles of the CREB and NF-κB pathways in Tax mediated transformation reveal
complex effects on tumor initiation, and maintenance. Taken together, the effects of Tax on,
NF-κB, IκB, CREB, and CBP/p300 appear to commit a normal cell to a highly proliferative state,
setting the stage for the development of ATLL (Figure 1).

5. Effect of Tax on genome stability

5.1. Disruption of DNA repair pathways by Tax

DNA repair and cell cycle progression are tightly linked and involve multiple overlapping
pathways that ensure error-free inheritance of genetic material. If a cell incurs extensive DNA
damage that cannot be repaired, it will undergo apoptosis or enter a state of replicative
senescence. Tax disrupts DNA repair by modulating the functions of key DNA repair enzymes
and disrupting the DNA damage response (DDR), resulting in an increased mutation fre‐
quency in Tax-expressing cells [83,84]. Cellular DNA damage is repaired by four functionally
overlapping pathways that respond to different types of DNA alterations; mismatch repair
(MMR) base excision repair (BER), nucleotide excision repair (NER), and double strand break
repair (DSBR) [85]. The suppression or disruption of BER, NER or DSBR by Tax appears to
contribute to its cellular transformation activity.

BER is initiated by a glycosylase that recognizes helical distortions and flips out the base
promoting recruitment of a major repair enzyme, DNA polymerase beta (pol β) [86,87]. Tax
has been shown to repress pol β transcription [88,89]. The decreased availability of pol β would
reduce the efficient repair of DNA lesions that arise from reactive oxygen species and depu‐
rination events consistent with increased mutagenesis of the host genome.
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The NER pathway preserves genome stability by scanning for and repairing UV- and chemi‐
cally-induced bulky adducts [85]. Proliferating cell nuclear antigen (PCNA) is a trimeric sliding
clamp that assists in DNA synthesis during DNA replication and repair, by increasing the
processivity of DNA polymerase delta (pol δ) to fill in the gap after lesion excision [85,90,91].
In the presence of DNA lesions, elevated levels of p21Cip1/waf1 interact with PCNA to block DNA
replication without blocking PCNA-dependent DNA repair [92]. Tax activates PCNA gene
expression [93], which may allow Tax-expressing cells to overwhelm the p21Cip1/waf1-induced
replication block and continue DNA replication in the presence of damage, resulting in
misincorporation of DNA nucleotides [94,95]. Thus, Tax appears to suppress NER and
promote genome instability by increasing the cellular mutation rate.

Unlike NER and BER, less is known about effects of Tax on the DSBR pathway. Double strand
DNA breaks (DSBs) are sensed by ataxia telangiectasia mutated (ATM) kinase, which phos‐
phorylates downstream DNA damage checkpoint regulators such as H2AX, Chk2, p53, Nbs1
and MDC1 that function together to arrest the cell cycle and repair DNA [96]. ATM signaling
also promotes the recruitment of Ku70 and Ku80 hetereodimers to free DNA ends to facilitate
DNA end joining. Tax has been shown to repress Ku80 gene expression, which may impact
the cell’s ability to recognize and repair free DNA ends [97,98]. In addition, the phosphoryla‐
tion of ATM targets (H2AX, Chk2 and Nsb1) and ATM autophosphorylation is reduced in
Tax-expressing cells, which attenuates the DDR, causing these cells to be released from the S-
phase checkpoint while DSBs remain [99-101]. Cells that undergo mitosis in the presence of
DSBs frequently form micronuclei (MN), which are markers of genome instability and
interestingly, Tax-expressing cells exhibit significantly more micronuclei than control cells
[101]. Since, the response to DNA damage and the initiation of DNA repair are tightly linked,
the effect of Tax on early cellular processes such as ATM-mediated DNA damage signaling,
translates to defects in later processes including cell cycle checkpoints and DNA repair,
creating an environment that promotes cellular transformation as shown in Figure 1.

5.2. Impact of Tax on cell cycle regulation

Under normal conditions, eukaryotic cells undergo growth and division resulting in the
passage of genetic information, which is essential for survival. Eukaryotic cell division is
controlled by four distinct phases: cell growth (G1, and G2), DNA synthesis (S), and mitosis
(M). Critical cell cycle checkpoints (G1/S, G2/M, and M) can be activated to block cell cycle
progression and ensure accurate DNA replication and chromosome distribution. Specific
complexes containing cyclins, cyclin-dependent kinases (CDK), CDK inhibitors (CKIs), and
tumor suppressor proteins work together to maintain genome integrity and prevent uncon‐
trolled proliferation.

Prior  to  entering  G1,  mitogenic  stimulation  increases  the  levels  of  type  D (D1,  D2,  and
D3) and E (E1, E2) cyclins. During early G1 of a normal cell, active D-CDK4/6 complexes
phosphorylate  the  tumor  suppressor  retinoblastoma  (Rb),  allowing  release  of  transcrip‐
tion factor E2F and subsequent activation of S phase genes [102].  At this stage, cells are
committed  to  entering  S  phase  where  the  E-CDK2  complex  phosphorylates  substrates
needed for S phase. Tax expression accelerates progression through G1  by activating the
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transcription of genes encoding D cyclins,  which directly interact  with D-CDK4/6 to en‐
hance  Rb  phosphorylation  [103-105].  Following  its  release  and  translocation  to  the  nu‐
cleus,  E2F  interacts  with  Tax  to  transcribe  E2F-dependent  S  phase  genes  [103].  These
transcriptional  effects,  and  modulation  of  CDK  complexes  propel  Tax-expressing  cells
through G1 and force early entry into S phase [104-106].

During  the  transition  from  G1  to  S,  cells  pass  through  a  checkpoint  regulated  by  p53.
The  tumor  suppressor  p53  protects  cells  from  transformation  by  activating  the  expres‐
sion of  cell  cycle control  proteins [107]  that  mediate cell  cycle arrest  or  apoptosis  in re‐
sponse  to  various  cellular  stresses,  including  DNA  damage.  In  the  presence  of  DNA
damage,  p53 arrests  the cell  cycle by activating the CKI p21waf1/cip1,  which binds and in‐
activates  CDK2.  Therefore,  overexpression  of  p21waf1/cip1  induces  cell  cycle  arrest  and
prevents  progression  into  S-phase  until  DNA  is  repaired.  p21waf1/cip1  also  binds  to  and
stabilizes  the  cyclin  D-CDK4/6  complex,  leading  to  increased  kinase  activity  and  cell
cycle  progression,  which  is  consistent  with  p21waf1/cip1  overexpression  in  Tax-transfected
and  HTLV-1  transformed  cells  [108,109].  In  addition,  Tax-expressing  cells  display  a
shortened  G1  phase  followed  by  early  S-phase  entry,  suggesting  that  the  G1/S  check‐
point  is  deregulated  to  avoid  p21waf1/cip1  induced  cell  cycle  arrest  [110].  Tax  mediated
overexpression  of  p21waf1/cip1  may  contribute  to  transformation  by  accelerating  the  pro‐
gression  of  cells  through G1  and  disrupting  the  DNA damage-induced G1/S  checkpoint
[108,111,112].

Further disruption of the G1/S checkpoint occurs by Tax-mediated inactivation of p53. Tax and
p53 have been shown to directly compete for binding to the coactivator CBP/p300, thus p53-
dependent transcription could be compromised in Tax-expressing cells [113-115]. Tax has also
been shown to suppress p53 function by inducing hyperphosphorylation of p53 at Ser15 and
Ser392, preventing p53 from interacting with the basal transcription machinery [116,117]. In
supporting studies, Tax mutants defective in NF-κB activation failed to suppress p53-mediated
transcription [117,118]. Thus, the transcriptional activity of Tax affects p53 regulation of cell
cycle checkpoints, DDR and DNA repair, thereby altering the cell’s response to internal and
external stress stimuli.

Although p53 and p21waf1/cip1  prevent unchecked proliferation and genome stability, addi‐
tional  CKIs  prevent  replication  of  damaged DNA by inhibiting  cyclin-CDK interactions
[119,120]. Tax regulates the function of cyclin-CDK complexes by disrupting the inhibito‐
ry  activities  of  CDK4 (INK4)  inhibitors  p15INK4b  (p15),  p16INK4a  (p16),  p18INK4c  (p18),  and
p19INK4d  (p19),  which  share  overlapping functions  to  regulate  G1  entry  and progression.
Before entering G1 external anti-growth factors such as transforming growth beta (TGF-β)
can  stimulate  cell  cycle  exit  by  inducing  the  binding  of  p15  to  D-CDK4/6  complexes,
thereby  promoting  the  degradation  of  D  cyclins  [121].  Because  a  decrease  in  active  D-
CDK4/6  complexes  prevents  cell  cycle  progression,  cellular  mechanisms  to  promote  cy‐
clin  D  overexpression  could  antagonize  p15-mediated  arrest.  Specifically,  the
overexpression  of  D-cyclins  and  p21waf1/cip1  in  Tax  expressing  cells  correlates  with  in‐
creased  cell  proliferation,  consistent  with  cell  cycle  progression  in  the  presence  of  ge‐
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nome  instability.  Tax  also  binds  to  p16  and  suppresses  its  inhibitory  function  by
allowing cyclin D1 to form active complexes with CDK4/6. Inhibition of p15 and p16 by
Tax increases  the  pool  of  active  D-CDK4/6  complexes  resulting in  continuous Rb phos‐
phorylation and leading to S phase entry [122,123]. Lastly, Tax represses transcription of
p18INK4c,  and p19INK4d,  again linking Tax-mediated transcription with cell  cycle  deregula‐
tion [112,122-125]. Cumulative effects of Tax on the G1  and the G1/S checkpoints contrib‐
ute  to  Tax  mediated  transformation  by  continuously  promoting  cell  growth  and
proliferation in the absence of growth factors.

During S phase, cyclin A-CDK2 begins to accumulate after the G1/S transition, and is required
both to complete S phase and to enter and exit from M phase. HTLV-1 infected cells express
low levels of cyclin A because Tax represses cyclin A transcription in a CREB-ATF-dependent
manner [126]. Reduced cyclin A levels also promote early egress from mitosis and disrupt the
G2/M checkpoint, producing the types of chromosomal abnormalities observed in ATLL and
HTLV-1 transformed cells [127-135].

When cells sense DNA-damage prior to mitosis the G2/M DNA-damage checkpoint is ac‐
tivated through two DNA damage sensors ATM and ATR, which phosphorylate down‐
stream  effectors  such  as  p53,  and  checkpoint  kinases  1  and  2  (Chk1  and  Chk2).  These
downstream  effectors  phosphorylate  downstream  substrates  to  induce  cell  cycle  arrest.
Following DNA damage, phosphorylation of Cdc25A by Chk1 targets it  for proteasomal
degradation,  thereby  inhibiting  activation  of  the  Cdk1/2  complex,  which  is  required  to
progress  through  the  S  and  G2/M  checkpoints.  Chk1  also  phosphorylates  p53  and
CDC25A/C to induce G1 and G2/M arrest, respectively. In response to gamma irradiation,
Tax interacts with Chk1 and inhibits its kinase activity, thereby disrupting the G1 and G2/
M checkpoints and allowing cells to proceed to mitosis in the presence of DNA damage
[136].  Interestingly,  Tax prevents the release of Chk2 from chromatin after activation by
ATM/ATR,  thereby  preventing  phosphorylation  of  downstream  effectors  like  p53  [137].
Tax disruption of cell cycle regulation and abrogation of the DNA damage response con‐
tributes to the proliferation of cells containing DNA damage.

After  transiting  the  G2/M  checkpoint,  the  cell  encounters  one  last  critical  checkpoint
known as the mitotic  spindle checkpoint (MSC).  The MSC regulates cell  cycle transition
from metaphase  to  anaphase,  and its  disruption is  associated with  altered chromosome
structures and numbers [138]. HTLV-1 infected/transformed cells and ATLL cells display
chromosomal abnormalities including deletions, insertions, rearrangements and transloca‐
tions,  suggesting  that  Tax  disrupts  the  MSC  [127-135,139,140].  The  direct  interaction  of
Tax with MAD-1 and APC interferes with proper chromosome alignment along the met‐
aphase plate resulting in the potential loss or gain of genetic material and early exit from
mitosis  [141,142].  The  intimate  linkage  between the  DDR and DNA repair  expands  the
effects of Tax on normal cell proliferation by targeting cell modulators, such as p53, that
function in multiple cellular processes.
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Figure 1. Effects of Tax contribute to cellular transformation: Tax dysregulates cellular gene expression by interact‐
ing with cellular proteins and modifying their functions. In the presence of DNA damage (red bolt) Tax interacts with
cellular proteins to disrupt cell cycle checkpoints and DNA repair. Persistent activation of NFkB responsive genes such
as IL-2, IL-2Rα, and BCL2 drives T cell proliferation and survival. Over many rounds of DNA replication Tax-expressing
cells accumulate mutations and promote genome instability, leading to cellular transformation.

6. Conclusions and perspectives

The progression from HTLV-1 infection to the development of ATLL is complicated and not
fully understood. The long clinical latency between infection and disease progression makes
HTLV-1 an interesting and useful model in which to study multistep oncogenesis [143]. After
initial infection, viral proteins including Tax promote viral replication and aid in virus
dissemination. HTLV-1 manipulates normal cellular processes to ensure successful replication
of the viral genome, which requires entry into and completion of S phase of the cell cycle. Tax
inactivates tumor suppressors, interacts with cellular proteins to deregulate cellular gene
expression and cell cycle regulation, and inhibits the DDR and apoptosis, all in an effort to
disable cell cycle checkpoints and promote cell cycle progression regardless of long-term
consequences to the cell (Figure 1). Although the virus remains integrated into the host genome
for the life of the host, the virus can successfully replicate and disseminate to other host cells
in a matter of days. Thus, accumulation of genetic insults is of little consequence to the virus.
Indeed, these insults can be considered an unintended consequence of successful viral
replication and dissemination. The ability of Tax to increase the overall cellular mutation rate
sets the stage for the development of ATLL. While the effects of Tax on cellular processes are
well studied, gaps remain in our understanding of how Tax influences cellular functions due
to the interconnectedness of these functions. Advances in animal model systems and experi‐
mental systems to study Tax function will help to reveal the complex effects of Tax on interplay
between cellular function networks and will increase our ability to identify the key steps
involved in HTLV-1 induced leukemogenesis.
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