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1. Introduction

The Ant Colony Optimization (ACO) metaheuristic [1] is a constructive population-based
approach based on the social behavior of ants. As it is acknowledged as a powerful method to
solve academic and industrial combinatorial optimization problems, a considerable amount
of research is dedicated to improving its performance. Among the proposed solutions, we
find the use of parallel computing to reduce computation time, improve solution quality or
both.

Most parallel ACO implementations can be classified into two general approaches. The first
one is the parallel execution of the ants construction phase in a single colony. Initiated by
Bullnheimer et al. [2], it aims to accelerate computations by distributing ants to computing
elements. The second one, introduced by Stützle [3], is the execution of multiple ant
colonies. In this case, entire ant colonies are attributed to processors in order to speedup
computations as well as to potentially improve solution quality by introducing cooperation
schemes between colonies.

Recently, a more detailed classification was proposed by Pedemonte et al. [4]. It shows that
most existing works are based on designing parallel ACO algorithms at a relatively high
level of abstraction which may be suitable for conventional parallel computers. However,
as research on parallel architectures is rapidly evolving, new types of hardware have
recently become available for high performance computing. Among them, we find multicore
processors and graphics processing units (GPU) which provide great computing power
at an affordable cost but are more difficult to program. In fact, it is not clear that
conventional high-level abstraction models are suitable for expressing parallelism in a way
that is efficiently implementable and reproducible on these architectures. As academic and
industrial combinatorial optimization problems always increase in size and complexity, the
field of parallel metaheuristics has to follow this evolution of high performance computing.
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The main purpose of this chapter is to complement existing parallel ACO models with a
computational design that relates more closely to high performance computing architectures.
Emerging from several years of work by the authors on the parallelization of ACO in various
computing environments including clusters, symmetric multiprocessors (SMP), multicore
processors and graphics processing units (GPU) [5–10], it is based on the concepts of
computing entities and memory structures. It provides a conceptual vision of parallel
ACO that we believe more balanced between theory and practice. We revisit the existing
literature and present various implementations from this viewpoint. Extensive experimental
results are presented to validate the proposed approaches across a broad range of computing
environments. Key algorithmic, technical and programming issues are also addressed in this
context.

2. Literature review on Parallel Ant Colony Optimization

During the past 20 years, the ACO metaheuristic has improved significantly to become one
of the most effective combinatorial optimization methods. For about a decade, following
this trend, a number of parallelization techniques have been proposed to further enhance
its search process. Works on traditional CPU-based parallel ACO can be classified into
two general approaches: parallel ants and multiple ant colonies. These approaches are
briefly explained in Sections 2.1 and 2.2. On the other hand, few authors have proposed
parallel implementations dedicated to specific architectures. Section 2.3 is dedicated to these
hardware-oriented approaches. In all cases, a survey of related works is also provided.

2.1. Parallel ants

Works related to the parallel ants approach, which aims to execute the ants tour construction
phase on many processing elements, were initiated by Bullnheimer et al. [2]. They
proposed two parallelization strategies for the Ant System on a message passing and
distributed-memory architecture. The first one is a low-level and synchronous strategy that
aims to accelerate computations by distributing ants to processors in a master-slave fashion.
At each iteration, the master broadcasts the pheromone structure to slaves, which then
compute their tours in parallel and send them back to the master. The time needed for these
global communications and synchronizations implies a considerable overhead. The second
strategy aims to reduce it by letting the algorithm perform a given number of iterations
without exchanging information. The authors conclude that this partially asynchronous
strategy is preferable due to the considerable reduction of the communication overhead.

The works of Talbi et al. [11], Randall and Lewis [12], Islam et al. [13], Craus and Rudeanu
[14], Stützle [3] and Doerner et al. [15] are based on a similar parallelization approach
and a distributed memory architecture. Delisle et al. [5, 6] implemented this scheme on
shared-memory architectures like SMP computers and multi-core processors. They also
compared performance between the two types of architectures [7].

2.2. Multiple ant colonies

The multiple ant colonies approach, also based on a message-passing and distributed
memory architecture, aims to execute whole ant colonies on available processing elements.
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It was introduced by Stützle [3] with the parallel execution of multiple independent copies
of the same algorithm. Middendorf et al. [16] extended this approach by introducing four
information exchange strategies between ant colonies: exchange of globally best solution,
circular exchange of locally best solutions, migrants or locally best solutions plus migrants.
It is shown that it can be advantageous for ant colonies to avoid communicating too much
information and too often. Giving up on the idea of sharing whole pheromone information,
they based their strategy on the trade of a single solution at each exchange step.

Chu et al. [17], Manfrin et al. [18], Ellabib et al. [19] and Alba et al. [20] have also
proposed different information exchange strategies for the multiple ant colony approach.
Many parameters are studied like the topology of the links between processors as well as
the nature and frequency of information exchanges. These strategies are implemented using
MPI on distributed memory architectures. On the other hand, Delisle et al. [8] adapted some
of them on shared-memory architectures.

2.3. Hardware-oriented parallel ACO

Even though they mostly follow the parallel ants and multiple ant colonies approaches,
hardware-oriented approaches are dedicated to specific and untraditional parallel
architectures. Scheuermann et al. [21, 22] designed parallel implementations of ACO on
Field Programmable Gate Arrays (FPGA). Considerable changes to the algorithmic structure
of the metaheuristic were needed to take benefit of this particular architecture.

Few authors have tackled the problem of parallelizing ACO on GPU in the form of
preliminary work. Catala et al. [23] propose an implementation of ACO to solve the
Orienteering Problem. Instances of up to a few thousand nodes are solved by building
solutions on GPU. Wang et al. [24] propose an implementation of the MMAS where the tour
construction phase is executed on a GPU to solve a 30 city TSP. Similar implementations are
reported by You [25], Zhu and Curry [26], Li et al. [27], Cecilia et al. [28] and Delévacq et

al. [9] . Following these works, Delévacq et al. [10] have proposed various parallelization
strategies for ACO on GPU as well as a comparative study to show the influence of various
parameters on search efficiency.

Finally, concerning grid applications, Weis and Lewis [29] implemented an ACO algorithm
on an ad-hoc grid for the design of a radio frequency antenna structure. Mocholi et al. [30]
also proposed a medium grain master-slave algorithm to solve the Orienteering Problem.

In addition to a complete survey, Pedemonte et al. [4] proposed a taxonomy for Parallel
ACO which is illustrated in Fig. 1. Although it provides a comprehensive view of the
field, its relatively high level of abstraction does not capture some important features that
are crucial for obtaining efficient implementations on modern high performance computing
architectures.

The present work does not seek to replace this taxonomy but rather provides a conceptual
view of parallel ACO that relates more closely to real parallel architectures. By bringing
together the high-level concepts of parallel ACO and the lower-level parallel computing
models, it aims to serve as a methodological framework for the design of efficient ACO
implementations.
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Figure 1. Taxonomy for parallel ACO [4].

3. A new architecture-oriented taxonomy for parallel ACO

The efficient implementation of a parallel metaheuristic in optimization software generally
requires the consideration of the underlying architecture. Inspired by Talbi [31], we
distinguish the following main parallel architectures: clusters/networks of workstations,
symmetric multiprocessors / multicore processors, grids and graphics processing units.

Clusters and Networks of Workstations (COWs/NOWs) are distributed-memory
architectures where each processor has its own memory (Fig. 2(a)). Information exchanges
between processors require explicit message passing which implies programming efforts and
communication costs. NOWs may be seen as an heterogeneous group of computers whereas
COWs are homogeneous, unified computing devices.

Figure 2. Shared-memory and distributed-memory parallel architectures [31].

Symmetric multiprocessors (SMPs) and multicore processors are shared-memory
architectures where the processors are connected to a common memory (Fig. 2(b)).
Information exchanges between processors are facilitated by the single address space but
synchronizations still have to be managed. SMPs consist of many processors that are linked
to a bus network and multicore processors contain many processors on a single chip.
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Grids may be considered as pools of heterogeneous and dynamic computing resources
geographically distributed across multiple administrative domains and owned by different
organizations ([32]). These resources are usually high performance computing platforms
connected with a dedicated high-speed network or workstations linked by a nondedicated
network such as the Internet. In such volatile systems, security, fault tolerance and resource
discovery are important issues to address. Fortunately, middleware usually frees the grid
application programmer from much of these issues.

Finally, graphics processing units (GPUs) are devices that are used in computers to
manipulate computer graphics. As GPU technology has evolved drastically in the last few
years, it has been increasingly used to accelerate general-purpose scientific and engineering
applications. As shown in Figure 3, the conventional NVIDIA GPU [33] includes many
multiprocessors and processors which execute multiple coordinated threads. Several
memories are distinguished on this special hardware, differing in size, latency and access
type.

Figure 3. NVIDIA GPU architecture [33].

Considering the variety of architectures currently available in the world of high performance
computing, the successful design and implementation of a parallel ACO algorithm on one
platform or another may be a significant challenge. Moreover, most computers fall into many
categories: a computational cluster may be composed of many distributed nodes which
include multicore processors and GPUs. The challenge then becomes two fold: identifying
a suitable combination of parallel strategies and implementing it on the target system. In
order to make this process simpler, we propose a taxonomy for parallel ACO which takes
implementation details into account. It distinguishes three criteria: the ACO granularity
level, the "computational entity" associated to that level and the memory structure available
at that level.

3.1. ACO granularity level

The decomposition of an ACO algorithm into tasks to be executed by different processors
may be performed according to several granularities. One of the main goals of the
parallelization process is to find an equitable compromise between the number of tasks and
the cost associated to the management of these tasks. Based on the algorithmic structure of
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ACO, the proposed classification distinguishes four granularity levels from coarsest to finest:
colony, iteration, ant and solution element.

Parallelization at the colony level consists in defining the execution of a whole ACO
algorithm as a task and assigning it to a processor. The multiple independent colonies
and the multiple cooperating colonies approaches, as defined respectively by Stützle [3] and
Middendorf et al. [16], may be associated to this level. A single colony is typically assigned
to a processor but it is possible to assign many with some form of scheduling. At this level,
the main factors to consider in the parallelization process are the homogeneity of the colonies
as well as their interactions.

Depending on design choices, parallelization at the iteration level may be considered as a
particular case of either the colony level or the ant level parallelizations. In fact, it may
be seen as a hybrid between these two levels instead of a full level. The idea is then to
share the iterations of the algorithm between available processors. A first way to implement
this strategy is to divide the ants of a single colony into groups and to let each group
evolve independently during the algorithm. A second way is to let these groups share their
pheromone information after a given number of iterations in a way similar to the partially
asynchronous implementation of Bullnheimer et al. [2]. At this level, the way the iterations
are coordinated between groups will effect the global parallel performance.

Parallelization at the ant level implies the distribution of the tasks included in an iteration to
available processors. It is mainly the ants construction phase but also operations associated
to pheromone update and solution management. This level is related to the typical parallel
ants strategy where one or many ants are assigned to each processing element. In that
case, special care must be taken to ensure that pheromone updates and general management
operations like the identification and update of the best ant do not significantly degrade the
performance of the implementation.

Until a few years ago, parallelization at the ant level was generally the finest granularity
considered for most optimization problems. However, the emergence of massively parallel
architectures like the GPU have resulted in the need for finer approaches. At the solution
element level, the main operations that are considered for parallelization are the state
transition rule and solution evaluation. In the first case, one possible strategy is to evaluate
several candidates in parallel to speedup the choice of the next move by an ant. In the second
case, the evaluation of the objective function of a particular ant is decomposed among several
processors.

The approach proposed in this section sought to determine a parallelization framework
taking into account both the main ACO components and the multiple possible granularities.
In the next section, it is augmented by considering the underlying computational
architecture.

3.2. Computational entity

Nowadays, the typical high performance parallel computer is composed of a hierarchy of
several different architectures. For example, it is common to find a computational cluster
with multiple distributed SMP nodes, each one of them being composed of multicore
processors and GPU cards. Moreover, this type of machine is often found in computational
grids. In order to obtain the best possible performance on these platforms, an algorithm has
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to be implemented according to at least a part of this hierarchy. The proposed classification
distinguishes each level of this hierarchy from the parallel programming perspective. This
translates into the definition of five computational entities: system, node, process, block and
thread.

A system defines a parallel computer as a unified computational resource which may be a
standard workstation or a cluster. A distinction is made between these single systems and
grids which are considered multiple systems.

A node is a discernable part of a system to which tasks can be assigned. A system may then
be composed of a single node which is the case of the standard workstation, or of multiple
nodes which is the case of clusters.

A process is a computational entity that manages and executes sequential and parallel
programs. As this concept refers to the typical process in operating systems, it can hold
one or many threads which may be grouped together or not. When a process executes only
sequential code, it is considered as the smallest indivisible entity of an implementation.

A block is an intermediate entity between process and thread. This notion comes from
the field of GPU computing in which a block is composed of many threads. The standard
processor may be seen as a particular case where a single block is executed. A sequential
processor then holds one block and one thread whereas a multicore processor holds one
block and several threads.

Finally, a thread is a sequential flow of instructions that is part of a block. It represents an
indivisible entity and the smallest one in the model: it is always sequential and executes
instructions on a processor at a given time. Therefore, even though in practice there may
be more threads than processors (some threads will be executed while some others will be
idle), in this model we consider that these threads may be merged into a smaller number of
threads corresponding to the number of available processors.

Complementary to the notion of computational entity, we add the concept of memory that
may be relevant to all five levels previously defined.

3.3. Memory

Memory is an important aspect of ACO algorithms. It serves as a container for pheromone
information, problem data and various parameters. It also serves as a channel for information
exchange in many parallel implementations. Therefore, as accessibility and access speed will
have a significant impact on the feasibility and performance of the parallel implementation,
three categories are distinguished: local, global and remote.

Local memory refers to a memory space that is directly accessible by the computational
entities of a given level and fast in access time relatively to this particular level. For example,
the shared memory of one multiprocessor of a GPU (see Figure 3) is considered as local
memory for all the threads that are executed by a block on this multiprocessor. The registers
of a processor could also be considered as local memory if they were managed directly,
although it is usually not the case.

Global memory is a memory space that can also be accessed directly by the computational
entities of a given level, but relatively slow in access time. For example, the device memory of
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a GPU is considered as global memory for the threads of a given block. The shared memory
of a SMP node is also considered as global memory for the processors or cores of that node.

Remote memory is a memory space that can not be directly accessed by the entities, but
for which the information can be made available by an explicit operation between entities.
Obviously, remote memory access is considered to be slower than global memory access. For
example, the memory available to a processor located in a specific node of a cluster will be
considered as remote for the processors on other nodes.

Table 1 summarizes the proposed taxonomy. According to it, designing a parallel ACO
implementation implies to link a computational entity and a memory structure to each
ACO granularity level. In the next section, two case studies, extracted from the author’s
previous works, are proposed and expressed according to this taxonomy. In each case, the
parallelization strategy and experimental results are synthesized and discussed in order to
illustrate various features of the classification.

ACO granularity Computational entity Memory

Colony System Local
Iteration Node Global

Ant Process Remote
Solution element Block

Thread

Table 1. Architecture-based taxonomy for parallel ACO.

4. Case studies

Two case studies are presented to illustrate how the proposed framework relates to real
implementations. In order to cover the two main general parallelization strategies for ACO,
both parallel ants and multicolony approaches are proposed. In the first case, SMP and
muticore processors are considered as underlying architectures. In the second case, a GPU is
used as a coprocessor of a sequential processor. This section is then concluded with a more
general discussion about how this taxonomy applies to most other combinations of ACO
algorithms and parallel architectures.

4.1. Multi-Colony parallel ACO on a SMP and multicore architecture

This approach deals with the management of multiple colonies which use a global shared
memory to exchange information. The whole algorithm executes on a single system and
a single node so there is no parallelism at these levels. The colonies are executed in
parallel and spawn multiple parallel ants. Therefore, colonies are associated to processes
and ants to threads. At the programming level, this can be implemented either with multiple
operating system processes and multiple threads or with multiple nested threads. In this
implementation, we choose the latter as the available SMP node supports nested threads
with a shared memory available to all processors. Therefore, this implementation is defined

as COLONY
global
process-ITERATION

global
process-ANT

global
thread . There is no additionnal parallelism at the

solution element level so it is not specified here.
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The proposed implementation is defined assuming a shared-memory model based on threads
in which algorithm execution begins with a single thread called the master thread and
executed sequentially. To execute a part of the algorithm in parallel, a parallel region
is defined where many threads are created, each one of them executing that part of the
algorithm concurrently. All threads have access to the whole shared memory, but we can
define private data, which is data that will be accessible only by a single thread. Inside a
parallel region, we can define a parallel loop, which is a loop where cycles are divided among
existing threads in a work-sharing manner. To manage synchronizations between threads,
some form of explicit control must be used. A barrier, as the name implies, is a point in
the execution of the algorithm beyond which no thread may execute until all threads have
reached that point. Also, a critical region is a part of a parallel region which can be executed
only by one thread at a time. It is usually used to avoid concurrent writes to shared data. We
can now describe the shared-memory parallelization strategy for ACO.

Two versions of the multicolony strategy are proposed which are related to the author’s
previous work ([6, 8]). The first one, related to parallel independent runs as defined by Stützle
[3], implies multiple threads each executing their own copy of the sequential metaheuristic.
For the second strategy, we let the colonies cooperate by using a common global best known
solution in the shared memory. In both cases, ants are executed in parallel by many nested
threads.

In the first implementation, search processes are independent. There are as many copies
of data structures as there are colonies. In particular, even if they all reside in the shared
memory, pheromone structures are private and exclusive to each thread. ACO parameters
are also private, which means that they could be different even if it will not be experimented
in this study. In a theoretical context, this kind of parallelization should imply minimal
communication and synchronization overheads, hence maximal efficiency. However, this is
not the case in a practical context. Even if the data structures are private, colonies need to
simultaneously access them through common system resources. At this point, it is up to the
computer system to efficiently manage this concurrency.

Parallelizing ACO in multiple search processes is quite simple: we only need to create a
parallel region at the beginning of the sequential algorithm. This way, we can create as many
threads as we have colonies. A memory location dedicated to store the global best solution
known by all processors is reserved in the shared memory and is accessible by all threads. At
the end of the parallel region, a critical section lets each thread verify if the best solution it has
found qualifies for replacing the global best one and update the data structure accordingly.
The best solution of the parallel independent runs can then be identified after the parallel
region as the result of the parallel algorithm.

To illustrate the scheme of multiple interacting colonies in a shared-memory model, the
simple case of a common best global solution located in the shared memory is implemented.
This relates to the first strategy defined by Middendorf [16], that is, exchange of the globally
best solution. The exchange rule of this strategy implies that in each information exchange
step, the globally best known solution is broadcast to all colonies where it becomes the locally
best solution. Information exchanges are performed at each given number of cycles.

In a shared-memory context, there is no such thing as an explicit broadcast communication
step. It is replaced by the use of the global best solution as a dedicated structure in the shared
memory. However, it is now used differently and more frequently. At each information
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exchange step, each thread compare its local value of the best solution with the global best
solution. If it has lower cost, it then becomes the new global best known solution. The use
of a critical region lets threads do their comparison without risking concurrent writes to the
data structure. At this point, the new global best known solution is used by all colonies for
the upcoming pheromone update. Since all threads need to have done their comparisons for
the new global best solution to be effectively known globally, a synchronization barrier needs
to be placed before the pheromone update procedure.

Each colony executes its own ants in parallel by creating a nested group of threads with
an additional parallel region. Ants are then distributed to the available processor cores and
update the global shared pheromone structure of the colony. Therefore, these updates must
be carried out within some form of critical zone to guarantee that unmanaged concurrent
writes are avoided. Next subsection shows how these strategies translate into a real
computing environment.

4.1.1. Experimental results

The proposed experimentations are based on the Ant Colony System (ACS) applied to
the Travelling Salesman Problem ([34]). Both implementations have been experimented
on ROMEO II in the Centre de Calcul de Champagne-Ardenne. ROMEO II is a
parallel supercomputer of cluster type, consisting of 8 Novascale SMP nodes dedicated to
computations. Each node includes 4 Intel Itanium II dual-core processors running at 1.6
GHz with 8MB of cache memory, for a total number of 8 cores, as well as from 16 GB to
128 GB of memory. Each execution is performed on a single node using from 1 to 8 cores.
Application code is written in C++ with OpenMP directives for parallelization. The chosen
TSP instances range in size from 783 cities to 13 509 cities. For a more detailed version of the
experimental setup and results, the reader may consult Delisle et al. [8].

Table 2 provides the summary of the experimentations with 1 to 8 independent colonies,
each colony residing on a separate core. For each problem and number of cores, the 4
columns provide respectively the speedup, the average tour length, the best tour length and
the relative closeness of the average tour length to the optimal solution. For each execution,
computed time comes from the last colony that finishes its search and tour length comes
from the colony that found the best solution.

We first notice that this implementation is quite scalable. In fact, speedups are relatively
close to the number of cores in all configurations. Obviously, there are still some system
costs associated to the parallel execution in a shared memory environment, which tend to
slightly grow as the number of processors/cores increases. Also, as each core performs
the computations associated with a whole ant colony, workload is considerably large in the
parallel region. The ratio between parallelism costs and total execution time per core is then
greatly reduced.

Table 3 provides results obtained with multiple cooperating colonies. Every 10 iterations, the
global best solution is used for the global pheromone update. For the remaining iterations,
each colony uses its own best known solution to update its pheromone structure. We first
note that the exchange strategy does not significantly hurt the execution time as speedups are
still excellent with up to 8 processors. Still, when 4 and 8 processors are used, most efficiency
measures are slightly inferior to the ones obtained with independent colonies. This was
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Problem
Nb. of

Speedup
Avg. tour Best tour

Closeness
cores length length

rat783

1 - 8,824 8,810 99.80
2 1.98 8,823 8,806 99.81
4 3.69 8,820 8,815 99.84
8 5.93 8,829 8,822 99.74

d2103

1 - 80,511 80,466 99.92
2 1.97 80,573 80,466 99.85
4 4.00 80,508 80,477 99.93
8 6.92 80,501 80,463 99.94

pla7397

1 - 23,365,444 23,353,738 99.55
2 1.99 23,352,192 23,332,663 99.61
4 3.80 23,380,613 23,350,736 99.48
8 7.80 23,425,288 23,396,612 99.29

usa13509

1 - 20,465,969 20,414,755 97.58
2 1.89 20,376,567 20,250,719 98.03
4 3.65 20,443,190 20,423,250 97.70
8 7.30 20,441,068 20,410,519 97.71

Table 2. Multiple independent colonies: number of cores, speedup, average tour length, best tour length and relative

closeness of the average tour length to the optimal solution.

Problem
Nb. of

Speedup
Avg. tour Best tour

Closeness
cores length length

rat783

1 - 8,824 8,810 99.80
2 1.95 8,822 8,810 99.82
4 3.69 8,819 8,815 99.86
8 5.72 8,816 8,812 99.89

d2103

1 - 80,511 80,466 99.92
2 1.95 80,475 80,450 99.97
4 3.81 80,489 80,450 99.95
8 6.85 80,484 80,454 99.96

pla7397

1 - 23,365,444 23,353,738 99.55
2 2.00 23,348,946 23,322,729 99.62
4 3.89 23,358,733 23,334,364 99.58
8 7.75 23,356,251 23,350,596 99.59

usa13509

1 - 20,465,969 20,414,755 97.58
2 2.02 20,456,702 20,392,284 97.63
4 3.20 20,450,581 20,414,972 97.66
8 5.55 20,434,287 20,375,145 97.74

Table 3. Multiple cooperating colonies - Global best exchange each 10 cycles: number of cores, speedup, average tour

length, best tour length and relative closeness of the average tour length to the optimal solution.
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expected as the information exchange steps imply a synchronization cost that grows with
the number of colonies used.

Concerning solution quality, the reader may observe that in all cases, the average tour length
obtained with multiple cooperating colonies is closer to the optimal solution than with
independent colonies or sequential execution. In most cases, the minimum solution found
is also better. It shows that the information exchange scheme, while simple, is benefical to

solution quality. Overall, results show that a COLONY
global
process-ITERATION

global
process-ANT

global
thread

implementation can be efficiently implemented on a SMP and multi-core computer node
containing up to 8 processors.

4.2. Parallel ants on Graphics Processing Units

This approach deals with the execution of a single ant colony on a GPU architecure as defined
in the author’s previous work ([10]). Ants are associated to blocks and solution elements are
associated to threads. As it is shown below, ants may communicate with the relatively slow
device memory of the GPU and solution elements may do so with the faster, shared memory
of a multiprocessor. As the ACO is not parallelized at the colony and iteration levels, their
execution remain sequential and memory structure is not specified. This implementation is

then defined as COLONY−

process-ITERATION−

process-ANT
global
block -SOLUTION_ELEMENTlocal

thread.
Before providing more details about this implementation, a brief description of the
underlying GPU architecture and computational model are given.

As it may be seen in Figure 3, the conventional NVIDIA GPU [33] includes many Streaming
Multiprocessors (SM), each one of them being composed of Streaming Processors (SP). Several
memories are distinguished on this special hardware, differing in size, latency and access
type (read-only or read/write). Device memory is relatively large in size but slow in access
time. The global and local memory spaces are specific regions of the device memory that can
be accessed in read and write modes. Data structures of a computer program to be executed
on GPU must be created on the CPU and transferred on global memory which is accessible
to all SPs of the GPU. On the other hand, local memory stores automatic data structures that
consume more registers than available.

Each SM employs an architecture model called SIMT (Single Instruction, Multiple Thread)
which allows the execution of many coordinated threads in a data-parallel fashion. It is
composed of a constant memory cache, a texture memory cache, a shared memory and registers.
Constant and texture caches are linked to the constant and texture memories that are
physically located in the device memory. Consequently, they are accessible in read-only
mode by the SPs and faster in access time than the rest of the device memory. The constant
memory is very limited in size whereas texture memory size can be adjusted in order to
occupy the available device memory. All SPs can read and write in their local shared
memory, which is fast in access time but small in size. It is divided into memory banks
of 32-bits words that can be accessed simultaneously. This implies that parallel requests for
memory addresses that fall into the same memory bank cause the serialization of accesses
[33]. Registers are the fastest memories available on a GPU but involve the use of slow
local memory when too many are used. Moreover, accesses may be delayed due to register
read-after-write dependencies and register memory bank conflicts.
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GPUs are programmable through different Application Programming Interfaces like CUDA,
OpenCL or DirectX. However, as current general-purpose APIs are still closely tied to specific
GPU models, we choose CUDA to fully exploit the available state-of-the-art NVIDIA Fermi
architecture. In the CUDA programming model [33], the GPU works as a SIMT co-processor
of a conventional CPU. It is based on the concept of kernels, which are functions (written
in C) executed in parallel by a given number of CUDA threads. These threads are grouped
together into blocks that are distributed on the GPU SMs to be executed independently of
each other. However, the number of blocks that an SM can process at the same time (active
blocks) is restricted and depends on the quantity of registers and shared memory used by
the threads of each block. Threads within a block can cooperate by sharing data through the
shared memory and by synchronizing their execution to coordinate memory accesses. In a
block, the system groups threads (typically 32) into warps which are executed simultaneously
on successive clock cycles. The number of threads per block must be a multiple of its size to
maximize efficiency. Much of the global memory latency can then be hidden by the thread
scheduler if there are sufficient independent arithmetic instructions that can be issued while
waiting for the global memory access to complete. Consequently, the more active blocks
there are per SM, and also active warps, the more the latency can be hidden.

It is important to note that in the context of GPU execution, flow control instructions (if,
switch, do, for, while) can affect the efficiency of an algorithm. In fact, depending on the
provided data, these instructions may force threads of a same warp to diverge, in other
words, to take different paths in the program. In that case, execution paths must be serialized,
increasing the total number of instructions executed by this warp.

In the parallel ants general strategy, ants of a single colony are distributed to processing
elements in order to execute tour constructions in parallel. On a conventional CPU
architecture, the concept of processing element is usually associated to a single-core processor
or to one of the cores of a multi-core processor. On a GPU architecture, the main choices are
to associate this concept either to an SP or to an SM. As this case study is concerned with
the latter, each ant is associated to a CUDA block and runs its tour construction phase in
parallel on a specific SM of the GPU. A dedicated thread of a given block is then in charge of
managing the tour construction of an ant, but an additional level of parallelism, the solution
element level, may be exploited in the computation of the state transition rule. In fact, an ant
evaluates several candidates before selecting the one to add to its current solution. As these
evaluations can be done in parallel, they are assigned to the remaining threads of the block.

A simple implementation would then imply keeping ant’s private data structures in the
global memory. However, as only one ant is assigned to a block and so to an SM, taking
advantage of the shared-memory is possible. Data needed to compute the ant state transition
rule is then stored in this memory that is faster and accessible by all threads that participate
in the computation. Most remaining issues encountered in the GPU implementation of the
parallel ants general strategy are related to memory management. More particularly, data
transfers between CPU and GPU as well as global memory accesses require considerable
time. As it was mentioned before, these accesses may be reduced by storing the related data
structures in shared memory. However, in the case of ACO, the three central data structures
are the pheromone matrix, the penalty matrix (typically the transition cost between all pairs
of solution elements) and the candidates lists, which are needed by all ants of the colony
while being too large (typically ranging from O(n) to O(n2) in size) to fit in shared memory.
They are then kept in global memory. On the other hand, as they are not modified during
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the tour construction phase, it is possible to take benefit of the texture cache to reduce their
access times.

4.2.1. Experimental results

The proposed GPU strategy is implemented into an MMAS algorithm ([35]) and
experimented on various TSPs with sizes varying from 51 to 2103 cities. Minimums and
averages are computed from 25 trials for problems with less than 1000 cities and from
10 trials for larger instances. An effort is made to keep the algorithm and parameters as
close as possible to the original MMAS. Following the guidelines of Barr and Hickman [36]
and Alba [37], the relative speedup metric is computed on mean execution times to evaluate
the performance of the proposed implementation. Speedups are calculated by dividing the
sequential CPU time with the parallel time, which is obtained with the same CPU and the
GPU acting as a co-processor.

Experiments were made on one GPU of an NVIDIA Fermi C2050 server available at the
Centre de Calcul de Champagne-Ardenne. It contains 14 SMs, 32 SPs per SM, 48 KB of
shared memory per SM and a warp size of 32. The CPU code runs on one core of a 4-core
Xeon E5640 CPUs running at 2.67 Ghz and 24 GB of DDR3 memory. Application code was
written in the "C for CUDA V3.1" programming environment.

The implementation uses a number of blocks equal to the number of ants, each one of them
being composed of a number of threads equal to the size of candidate lists, in that case 20.
Also, the number of iterations is set with the intent of globally keeping the same global
number of tour constructions for each experiment. For more details on the experimental
setup, the reader may consult Delévacq et al. ([10]).

A first step in our experiments is to compare solution quality obtained by sequential and
parallel versions of the algorithm. Table 4 presents average tour length, best tour length
and closeness to the optimal solution for each problem. The reader may note the similarity
between the results obtained by our sequential implementation and the ones provided by
the authors of the original MMAS ([35]), as well as their significant closeness to optimal
solutions.

A second step is to evaluate and compare the reduction of execution time that is obtained
with the GPU parallelization strategy. Table 4 shows the speedups obtained for each
problem. The reader may notice that speedups are ranging from 6.84 to 19.47. This shows
that distributing ants to blocks and sharing the computation of the state transition rule
between several threads of a block is efficient. Also, speedup generally increases with
problem size, indicating the good scalabilty of the strategy. However, a slight decrease
is encountered with the 2103 cities problem. In that case, the large workload and data
structures imply memory access latencies and bank conflicts costs that grow faster than
the benefits of parallelizing available work. Associated to the combined effect of the
increasing number of blocks required to perform computations and a limited number
of active blocks per SM, performance gains become less significative. Overall, results

show that a COLONY−

process-ITERATION−

process-ANT
global
block -SOLUTION_ELEMENTlocal

thread
implementation can be efficiently implemented on a state-of-the-art GPU.
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Problem Speedup
Stützle Avg. tour Best tour

Closeness
and Hoos length length

eil51
Sequential - 427.80 427.32 426 99.69

Parallel 6.84 - 427.20 426 99.72

kroA100
Sequential - 21,336.90 21,314.36 21,282 99.85

Parallel 8.12 - 21,317.32 21,282 99.83

d198
Sequential - 15,952.30 15,973.84 15,913 98.77

Parallel 11.13 - 15,961.64 15,851 98.85

lin318
Sequential - 42,346.60 42,341.72 42,107 99.26

Parallel 11.03 - 42,325.32 42,147 99.29

rat783
Sequential - - 9,042.44 8,923 97.32

Parallel 15.58 - 9,002.32 8,899 97.77

fl1577
Sequential - - 24,490.30 24,201 89.83

Parallel 19.47 - 24,287.80 23,938 90.84

d2103
Sequential - - 82,754.30 82,378 97.14

Parallel 17.64 - 82,756.00 82,547 97.13

Table 4. GPU implementation: speedup, average tour length from Stützle and Hoos original MMAS implementation [35],

average tour length, best tour length and relative closeness of the average tour length to the optimal solution.

5. Conclusion

The main objective of this chapter was to provide a new algorithmic model to formalize the
implementation of Ant Colony Optimization on high performance computing platforms. The
proposed taxonomy managed to capture important features related to both the algorithmic
structure of ACO and the architecture of parallel computers. Case studies were also
presented in order to illustrate how this classification translates into real applications. Finally,
with its synthesized literature review and experimental study, this chapter served as an
overview of current works on parallel ACO.

Still, as it is the case in the field of parallel metaheuristics in general, much can still be done
for the effective use of state-of-the-art parallel computing platforms. For example, maximal
exploitation of computing resources often requires algorithmic configurations that do not let
ACO perform an effective exploration and exploitation of the search space. On the other
hand, parallel performance is strongly influenced by the combined effects of parameters
related to the metaheuristic, the hardware technical architecture and the granularity of the
parallelization. As it becomes clear that the future of computers no longer relies on increasing
the performance on a single computing core but on using many of them in a hybrid system,
it becomes desirable to adapt optimization tools for parallel execution on many kinds of
architectures. We believe that the global acceptance of parallel computing in optimization
systems requires algorithms and software that are not only effective, but also usable by a
wide range of academicians and practitioners.
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