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1. Introduction

Coronary Artery Disease (CAD) is a leading type of heart disease in the world caused by the
gradual build-up of plaque on the walls of the arteries. Due to CAD’s high incidence rate and
mortality, it is very harmful to human health. CAD can develop slowly and silently over years
without any symptoms. Early diagnose of CAD is one of the most important medical research
areas. Diastolic murmurs that occur as additional components in the heart sound signal
provide clinicians with valuable diagnostic and prognostic information about the function of
heart valves. When coronary arteries become narrowed or blocked, the turbulence appears
which is produced by blood moving across the stenotic arteries. During the relatively quiet
diastolic period of the cardiac cycle, the murmurs are likely to be loudest when coronary blood
flow is maximal. Initial studies show that diastolic murmurs produced by coronary arterial
stenosis contain higher frequency components.

The heart sound signal represents the mechanical activity of the cardiohemic system, which is
complicated and non-stationary. It contains physiological and pathological information
between the heart and the various parts of the body, so it can be used in diagnosis of heart
disease. Heart sound has been widely used in diagnosis of heart disease and many methods
have been adopted to aid the diagnosis [1, 2]. The heart sound signal generally can be separated
into four parts: the 1st heart sound S1, the systolic period, the 2nd heart sound S2 and the
diastolic period, shown in figure 1.

Diastolic murmurs occur between S2 and the next S1 when the heart muscle relaxes between
beats. Heart murmurs are usually considered pathological. They can be caused by some kinds
of heart attacks, such as coronary artery stenosis, aortic regurgitation, etc. Diastolic murmurs
can provide clinicians with valuable diagnostic and prognostic information about the function
of heart valves.
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Figure 1. Heart sound signal

Short Time Fourier Transform, Wigner-Ville Distribution and Wavelet Transform, etc., have
some inherent limitations [3, 4, 5]. Short Time Fourier Transform involves an intrinsic trade-
off between time resolution and frequency resolution. In Wigner-Ville distribution, the
inherent cross-term interferences often mask the true time-frequency information associated
with the signal of interest. The wavelet transform has received considerable attention in recent
years. It provides a multi-resolution representation of signals, however, it is not adaptive in
nature; once the wavelet mother function is given, one will have to use it to analyse all the
data. In addition, the wavelet transform also underlies an uncertainty principle. In 1998,
Dr.Norden Huang proposed a novel signal processing algorithm: the Hilbert Huang Trans-
form (HHT) [6, 7]. It has proved to be a powerful tool to analyse non-stationary and nonlinear
signals. The key parts of HHT are the Empirical Mode Decomposition (EMD) and Hilbert
transform. EMD can decompose adaptively diastolic murmurs into a finite and usually small
number of Intrinsic Mode Functions (IMFs) that admit a well-behaved Hilbert transform. The
Hilbert transform of IMFs can yield instantaneous frequency and instantaneous amplitude.
The local energy and instantaneous frequency derived from the IMFs give the fine-resolution
frequency-time distribution of the energy thatis designated as the Hilbert spectrum. The three-
dimensional distribution can reflect the inherent essential characteristic of the signal.

The paper is organized as follows: section 2 introduces generalized wavelet shrinkage
denoising method. In section 3, the Hilbert spectrum based on EMD and marginal spectrum
distributions of diastolic murmurs are studied; a new method to restrict the end effect of EMD
is proposed in section 4.In section 5, the algorithm based on the Empirical Mode Decomposi-
tion (EMD) and Teager Energy Operation (TEO) is proposed as an effective approach for
estimating the instantaneous frequency of diastolic murmurs. Finally, some conclusions are
given in section 6.

2. Wavelet shrinkage method

We consider the following model of a discrete noisy signal:
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x=0+o0z (1)

The vector x represents noisy signal and 0 is an unknown original clean signal. zis independent
identity distribution Gaussian white noise with mean zero and unit variance. o is intensity of
noise. For simplicity, we assume intensity of noise is one.

The step of wavelet shrinkage is defined as follows:

1. Apply discrete wavelet transform to observe noisy signals.

2. Estimate noise and threshold value, thresholding the wavelet coefficients of the observed
signal.

3. Apply the inverse discrete wavelet transform to reconstruct the signal.

The wavelet shrinkage method relies on the basic idea that the energy of signal will often be
concentrated in a few coefficients in the wavelet domain while the energy of noise is spread
among all coefficients in the wavelet domain. Therefore, the nonlinear shrinkage function in
the wavelet domain will tend to keep a few larger coefficients over threshold value that
represent the signal, while noise coefficients” down threshold value will tend to reduce to zero.

In wavelet shrinkage, how to select the threshold function and how to select the threshold
value are most crucial. Donohue introduced two kinds of thresholding functions: ‘hard
threshold function” and “soft threshold function’.

0 Ilxkka

sH(x) =

2 () {x x> A )
0 IxI<A

S (x)=1x-1 x>24 3)

x+A1 x<-A

The hard threshold function (2) results in larger variance and can be unstable because of the
discontinuous function. The soft threshold function (3) results in unnecessary bias due to
shrinkage of the large coefficients to zero. We build the generalized threshold function:

o) (x)=x—

S me 120 (4)

A is threshold value.
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When m is an even number:

O (x)=x—xI(lxI<A)- };_1 I(lx1>2) )
X
When m is odd number:
A AT .
0 (x)=x—xI(lxI< 1)~ — I(Ix 1> A)sign(x) (6)
X

When m=1, it is the soft threshold function; when m= o, it is the hard threshold function. When
m=2 it is Non-Negative Garrote threshold function. We show slope signal as an example,
Figure2 illustrates the generalized threshold functions for different m.
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Figure 2. Generalized threshold function

It can clearly be seen that when the coefficient is small, the smaller m is, the closer the gener-
alized function is to the soft threshold function; when the coefficient is big, the bigger m is, the
closer the generalized function is to the hard threshold function; when m lies between 1 and
o, the general threshold function achieves a compromise between hard and soft threshold
function. With careful selection of m, we can achieve better denoising performance [8, 9].

We derived the exact formula of mean, bias, variance and [, risk for the generalized threshold

function.
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Letx~N (6, 1)

P(x-0)=¢(x +0)
xm

A4,0)=]

¢ And @ are density and probability function of standard Gaussian random variable respec-
tively. Then:

dx Bm(9)=j: o _9)x+m¢(x ) i

Mean:
M"™(2,0)=M"(1,0)-A"A, ,(0) 7)
Bias:
SB™(,0) =(M"™(A,6) - 6)* 8)
Variance:
V"™(2,0)=V(1,0)-24"B, ,(0)-A*"AZ (0)+A*"B,, ,(0)+2A"M"(1,0)A,, ,(0) )
[2 Risk:
PI(0) = E(8)'(x) - 0)* = pi(0)—2A"B,, ,(0)+A*"B,, ,(0)+20A"A, ,(0) (10)
Where

PA(O)=E (5" (x)=0)*=p; (0)=2A"B,,(0) + A *" By, ,(0) + 201" A,,_,(0)

MY, 0)=0+0[1-D(A-0)-D(A +0)]+Pp(A-0)-p(A +0)

VA, 0)=(87+1)2-D(A-0)-D(A +0)] + (A + O)p(A -6) + (A -O)p(A + 0)-M " (*%3,
P (0)=1+(0*-1)(PA-0)-D(-A-0)) + (A + O)p(A + O) + (A -0)p(A-0)

M™A, 0),SB™(A, 0), V"(A, 0) are the mean, bias, variance and risk of generalized thresh-

old function. When m is 1, 2, p;"(0), they are the mean, bias, variance and risk of the risk of

soft, Non-Negative Garrote, hard threshold functions, respectively.

The soft threshold function provides smoother results in comparison with the hard threshold
function; however, the hard threshold function provides better edge preservation in compar-
ison with the soft threshold function. The hard threshold function is discontinuous and this
leads to the oscillation of denoised signal. The soft threshold function tends to have bigger bias
because of shrinkage, whereas the hard threshold function tends to have bigger variance
because of discontinuity. The Non-Negative Garrote threshold function is the trade-off
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between the hard and soft threshold function. Firstly, it is continuous; secondly, the shrinkage
amplitude is smaller than the soft threshold function.

Stein Unbiased Risk Estimate (SURE) [10] is an adaptive threshold selection rule which is data
driven. The threshold value minimizes an estimate of the risk.

If  is weakly differentiable, for single coefficient, 0, =x, + H(x,), k=1..N, H is true risk.
Then

P 2) =1+ 2 H ) + HEx) an
k

A d
is the unbiased risk estimate of p(x;, A)=1+ Z(WH(xk)) +H 2(xk):
k
Proof:
A 2
p(x, AEN 6,0, =E(x;, + H(x)=0,)*=E(z, + H(x;))*=1+2E(zH (%)) + E(H Z(Xk))

Where =1+2E(z H (0, +z.))+ E(H 2(xk)) and by partial integral

Then
52 1 (=6,
E(z.H (O +z.))= J_IZkH(Qk +2z)e ? T.[(le ~OH (N exp(-————)dn;
1 (M= 0,)* dH (1) H ()
=J2_nIeXp(_ 5 ) n, dT?k=E( n, | e=2)
So
dH(xk)
p(x,, A)=E| Gk Ol —1 +2E( )+ E(H (xk)) is the unbiased risk estimate of true risk
dH(xk) ]
E[p(xk, A)]=1+2( )+ H “(x;).

For the generalized threshold function (5) and single coefficient, when m is even,
p(x, A)
The SURE is

2
2(m - 1)1 N

SURE(x,,A) =1+ (x> = 2)I(|x,| < 1) +( —)(|x|> ) (12)

K Xg

When m is odd,
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2m-1A™ A"

SURE (x,, A)=1+(x,2-2)I (| x, | <A)+( T | x, | >1)
The SURE is
2m m m
SURE(x;,, 2) =1+ (x; —2)I(|x,| < l)+%l(‘xk‘ > /1)+Ml(xk > l)—@[(xk <-2) (13)
X Xk Xk
Suppose wavelet coefficients are
AZm 2( _1)/\ m 2( _1)/\ m

SURE (x,, A)=T1+(x2=-2)I(| x, | <A)+ el |x, [ >1)+ mxTI(ka\)—mxTI(xk< -1)

, the threshold value A is set to minimize the estimate of the x;....x); risk for the given data,

N
A= argr}qzi(r)lgSURE(xk,ﬂ) (14)

For hard threshold function (m is <), because H (x) is discontinuity, the SURE is illogical.

The noisy PCG signal is processed using the method mentioned above. For the generalized
threshold functions, parameter m is selected as 2 which is simple and provides a good
compromise between the hard and soft threshold function. The data-driven SURE threshold
value is used. The filtered PCG signal is illustrated as figure 4(a). The phase space diagram of
the filtered PCG signal is shown in figure 4(b). From visual inspection of figure 3, the PCG
signal is much cleaner after being denoised; the first heart sound, the systolic period, the second
heart sound and the diastolic period can be clearly identified. The results indicate that the
method we have proposed significantly reduces noise and preserves well the characteristics
of the PCG signal.

3. Analysis of diastolic murmurs for coronary artery disease based on
empirical mode decomposition

Since anovel signal processing algorithm - the Hilbert HuangTransform (HHT) - was proposed
by N.E.Huang in 1998 [6], it has been seen as a data-driven tool for nonlinear and non-
stationary signal processing. HHT consists of two parts: the EMD and Hilbert transform. EMD
as the important part of the HHT that can adaptively decompose signal into a finite and often
a series of small numbers of Intrinsic Mode Functions (IMFs) subjected to the following two
conditions:

1. Inthe whole dataset, the number of extrema and the number of zero-crossing must either
be equal or differ at most by one.
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Figure 4. a) PCG signal after denoising (b) Phase space diagram of denoised signal
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2. Atany time, the mean value of the envelope of the local maxima and the envelope of the
local minima must be zero.

These two conditions guarantee the well-behaved Hilbert transform. The IMFs represent the
oscillatory modes embedded in the signal. Most signals include more than one oscillatory
mode and are not IMFs. EMD is a numerical sifting process to decompose a signal into a finite
number of hidden fundamental intrinsic oscillatory modes, i.e., IMFs. Applying the Hilbert
transform to each IMF, the instantaneous frequency and amplitude of each IMF can be obtained
which constitute the time-frequency-energy distribution of the signal, called the Hilbert
spectrum. The Hilbert spectrum provides higher resolution and concentration in the time-
frequency plane, and avoids the false high frequency and energy dispersion existent in the
Fourier spectrum.

Figure5 shows a classical IMF. The IMFs represent the oscillatory modes embedded in the
signal. Each IMF actually is a zero mean monocomponents AM-FM signal with the following
form:

x(t) = a(t) cos g(t) (15)

with time varying amplitude envelope x(t)=a(t)cos¢(t) and phase a(t). The amplitude and
phase both have physical and mathematical meaning.

Most signals include more than one oscillatory mode, so they are not IMFs. EMD is a numerical
sifting process to disintegrate empirically a signal into a finite number of hidden fundamental
intrinsic oscillatory modes, thatis, IMFs. The sifting process can be separated into the following
steps:

1. Finding all the local extrema, including maxima and minima; then connecting all the
maxima and minima of signal x(t) using smooth cubic splines to get its upper envelope
¢(t) and lower envelope X,y (£).

2. Subtracting mean of these two envelopes x,,,,(t) from the signal to get their difference:
ml(t)=(xup(t) + xlow(t))/z'

3. Regarding the h(t)=x(t)—m,(t) as the new data and repeating steps 1 and 2 until the
resulting signal meets the two criteria of an IMF, defined as h(t). The first IMF c¢,(t)

contains the highest frequency component of the signal. The residual signal ¢(t) is given
by 7,(t).

4. Regarding r(t)=x(t)—¢(t) as new data and repeating steps (1) (2) (3) until extracting all
the IMFs. The sifting procedure is terminated until the m-th residue r,(t) becomes less than

a predetermined small number or becomes monotonic.

The original signal x (t) can thus be expressed as follows:
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M
x(t) = c;(H) +ry(H) (16)
j=1

M
x(H)=), c]-(t) +1y,(t) is an IMF where j represents the number of corresponding IMFs and c]-(t)
j=1

is residue. The EMD decomposes non-stationary signals into narrow-band components with
decreasing frequency. The decomposition is complete, almost orthogonal, local and adap-
tive. All IMFs form a completely and nearly orthogonal basis for the original signal. The ba-
sis comes directly from the signal, which guarantees the inherent characteristic of signal and
avoids the diffusion and leakage of signal energy. The sifting process eliminates riding
waves, so each IMF is more symmetrical and is actually a zero mean AM-FM component.
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Figure 5. A classical IMF

Heart sounds are recorded from the chest of normal objects and CAD patients using a specially
designed high sensitivity cardiac microphone. The ECG signals are also recorded as a time
reference to aid in locating the diastolic phase. For each cycle, the central portion of diastole is
digitized (sample frequency equals 2.0 kHz).

Figure6 shows the diastolic murmurs of a normal object. Figure7 shows the IMFs of the
murmur obtained by EMD. The diastolic murmurs can be decomposed into six IMFs. The
Hilbert spectrum is shown in figure 8. The vertical bars on the right of the panel give the
relative amplitude scale. Figure6 provides more distinct information on the time-frequen-
cy contents of diastolic murmurs, which reveals clearly the dynamic characteristic of
murmurs in the time-frequency plane. The Hilbert spectrum contains no energy with
frequency above 350Hz. The spectrum appears in the skeleton form and can provide the
frequency variations from one instance to the next. Figure 9 shows the marginal spec-
trum of the diastolic murmurs. It can be clearly seen that the energy mainly concentrates
on the lower frequency domain.
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Figure 6. Diastolic murmurs of a normal object
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Figure 7. IMFs of diastolic murmurs from the normal people
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Figure 8. Hilbert spectrum of the diastolic murmurs
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Figure 9. Marginal spectrum of the diastolic murmurs

Figure 10 shows the diastolic murmurs of the CAD patient, as diagnosed by coronary artery
radiography. The left anterior descending artery is stenosed about 60% and the right coronary
artery is stenosed about 85%. Figure 11 shows the IMFs of the murmur obtained by EMD. The
diastolic cardiac cycle can be decomposed into six IMFs. The Hilbert spectrum is illustrated in
figure 12. Figure 13 shows the marginal spectrum of diastolic murmurs. The HHT spectrum
has superior temporal and frequency resolutions. The spectrums show precise time-frequency
representation of signal. The energies spread over a much wider frequency domain. Much
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higher spectral energies are concentrated on high frequency compared with those of normal
people. More energy distributes in the frequency band over 200Hz and a peak also lies around
350Hz, which often does not appear in diastolic murmurs of normal people. It can be explained
as follows: for the CAD patient, the narrowed coronary arteries lead to the blood flow in
coronary artery changing from laminar flow to turbulence flow, from simplicity to complexity.
Coronary arterial stenosis gives rise to high frequencies of diastolic murmurs. The EMD
method makes no assumption about the linearity or stationarity of the signal, and the IMFs
are usually easy to interpret and relevant to the underlying dynamic processes being studied.

(o) 50 100 150 200 250

Figure 10. Diastolic Murmurs of CAD patient
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Figure 11. Six IMFs of diastolic murmurs from patient
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Figure 12. Hilbert spectrum of the diastolic murmurs from patient
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Figure 13. Marginal spectrum of the diastolic murmurs from patient

4. A new method for processing end effect in empirical mode
decomposition

In the procedure of EMD, the cubic splines interpolation creates top and bottom envelopes
that are implemented in the first step of the above sifting process. It is difficult to interpolate
data near the beginnings or ends, where the cubic splines can have swings. The common
method to deal with end effect is to consider the end points both as maximum and minimum
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locations with values unchanged, but this method will give a distorted view of the local mean
near the boundaries. We propose a simpler method to restrict the end effect in spline interpo-
lation [11]. The key points are to determine the values and locations of extrema nearby end
points. Suppose the length of data x is N, the steps can be implemented as follows:

1. Finding all the maxima and minima, and considering the end points both as maximum
and minimum, that is, maximum= [ maximum N] and minimum= [1 minimum N].

2. Theend points are still considered both as maximum and minimum, whereas their values
can be adapted to ), (t) and §,, ;. Taking 6y, ¥y, 0; as the mean of all maximum except

for the first and last maximum (the subscript represents location of maximum). Similarly,
taking 0y, y; as the mean of all minimum except for the first and last minimum (the

subscript represents location of minimum).
3. Comparing y, with x (1), ; with x (N), 6, with x(1) and y; with x (N), respectively.
If 5y <x(1) then 6,= x (1);if 6,< x (N) then 6= x (N); if 65> x (1)then y;=x (1);If y;>x(N) then
yn=x(N).

4. Using cubic splines interpolation to get top and bottom envelopes, and repeating the
second step of above sifting process to extract IMF.

The performance of the proposed method is compared with the traditional method where the
endpoints are considered both as maximum and minimum with values unchanged. As an
example, we decompose a sinusoid signal by the sifting process. Figure 14 shows the signal.
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Figure 14. A sinusoid signal
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Figure 15. Cubic splines interpolation in sifting process using the traditional method
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Figure 16. IMFs of the sinusoid signal

Firstly, we consider the endpoints both as maximum and minimum with value unchanged.
Figure 15 shows the top and bottom envelopes calculated by cubic splines interpolation in the
sifting process. Top and bottom red dash dot line represent the envelopes. The sinusoid signal
is decomposed into six IMFs and one residue by sifting process as depicted in figure 16.
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Figure 17. Cubic splines interpolation in sifting process using the proposed method
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Figure 18. IMF and residue of the sinusoid signal using the proposed method

Secondly, applying the proposed method above to restrict the end effect, figure 17 shows the
top and bottom envelopes calculated by cubic splines interpolation in the sifting process. Red
circles represent the end values predicted. The sinusoid signal is decomposed into one IMF
and a residue by the sifting process as depicted in figure 18. The IMF is just the sinusoid and
the value of the residue is smaller than 10. From figure 18, it can easily be seen that the swings
appear near both ends and propagate inwards and produce superfluous IMFs. Actually, the
sinusoid signal is an IMF itself in nature because it satisfies the IMF conditions which has the
same numbers of zero-crossing and extrema, and can also be local symmetric. Therefore, the
sifting process as represented by figure 18 should extract only one IMF. The results indicate
that the method we proposed is effective.
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5. Instantaneous frequency estimation of diastolic murmurs based on EMD
and TEO

Diastolic murmurs can provide clinicians with valuable diagnostic and prognostic information
about the function of heart valves. Quantitative analysis of instantaneous frequency (IF) of the
murmurs can aid diagnosis [1, 13].

Instantaneous Frequency (IF) is an important signal characteristic, which characterizes the
transients and fast changes in frequency as time progresses. The IF of diastolic murmur is used
to describe the time-varying spectral contents of the characteristic frequency bands that are of
interest for cardiovascular research. The IF of a signal is traditionally obtained by taking the
first derivative of the phase of the signal with respect to time using the Hilbert transform.
However, this definition is questionable and will mislead interpretation of instantaneous
frequency, such as negative frequency. Instantaneous frequency can also be obtained from a
time—frequency distribution (TFD) as the first conditional moment in the frequency, suggesting
that the instantaneous frequency is the average frequency at each time, whereas the cross terms
existing in TFD will lead to a very rapid degradation of performance and severely pollute the
instantaneous frequency estimation [14].

TEO is a powerful nonlinear operator and has been successfully used in a number of applica-
tions including speech signal processing, image processing, etc. [15]. TEO can track the
modulation energy and estimate the instantaneous amplitude and frequency of AM-FM
signals with the form

x(F) = a(t) cos[ 27 j; o(7)dr] (17)

t
x(t)= a(z‘)cos[ZnJ0 w(t)dt]and a(t) are the instantaneous amplitude and frequency respectively.

In continuous time domain, TEO is defined by
P (x(H) =[x - x(t)i(t) (18)

W(x(t)=Lx(t)]*-x(H)x(t) corresponds to continuous signal, x(t) and x(t) are the first order
and second order time derivatives of x(t) respectively.

For example, for a sinusoid signal x(t), the TEO gives

Y(x(t)) = A%0? (19)
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For a monochromatic signal, the output by TEO is proportional to the squared product of

frequency and amplitude.The TEO of the first order derivative W(x(t))= Aw?of %(t) produce
the output:

Y(x(t) = A%0* (20)

The two results above can be combined to estimate the frequency and amplitude of the signal
W(x(t)=A%w* as follows [14]:

B

Oy @
2

| A28l X)) 22

O 22)

The estimate of instantaneous frequency and amplitude above are also suitable for AM, FM
and AM-FM signals.

The discrete-time counterpart of TEO can be defined as:
Y(x(n)) = x*(n) — x(n—1)x(n+1) (23)

A discrete-time real value AM-FM signal that is usually used to model time-varying amplitude
and frequency patterns can be expressed as:

x(n) = a(n)cos(4(n)) = a(n)cos(wn + w,, J.On q(k)dk + 0) (24)

n

Where x(n)=a(n)cos(¢p(n))=a(n)cos(w.n + wmjo q(k)dk + 0) is the time-varying amplitude
modulation, a(n) is the carrier frequency, w, is the maximum frequency deviation from the
carrier frequency and w,, 0<w,,<w, is the frequency deviation function and |¢(n) | <1 is the

initial phase shift. The derivative of the phase 0, that is, the FM part of the signal is called as
instantaneous frequency:

w(n) = % = o, +o,q(n) (25)
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de(n)

The instantaneous frequency w(n)=—7 —=w, +w,q(n) and amplitude w(n) of the AM-FM

modulated signal a(n) at any time instant can be respectively demodulated by applying the
TEO to x(n) and its difference, which is called the Discrete Energy Separation Algorithm

(DESA):
y(n) =x(n)—x(n-1) (26)
_ - Wy(m}+ Wly(n+ 1)}
o(n) = arccos[l 29 () j (27)
| ¥{x(n)
la(n) = |———2—
ar) sin’(w(1n)) 29
or

1 ~ Plx(n+1)—x(n-1)}
w(n) = > arccos[l 29 (x() ] (29)
| a(n) = 2% bx(m) (30)

\/‘P{x(n +1)—x(n—-1)}

The estimates above are valid under the assumptions that the signal does not vary too fast nor
too much compared to the carrier frequency. In general, the first demodulation algorithm (26)
~(28)is called DESA-1 where ‘1" implies the approximation of derivatives with a single sample
difference. That is, the signal derivative is approximated by the average of forward and
backward 1-point differences. The second demodulation algorithm (29) ~ (30) is called DESA-2
where ‘2" implies a difference between samples whose time indices differ by 2. Both DESA-1
and DESA-2 algorithms yield very small errors and can give the accurate estimate of instan-
taneous frequency. The DESA-2 algorithm is less computationally complex and has an
excellent, almost instantaneous, time resolution which can also lead to a simpler mathematical
analysis. In this paper, we focus on the instantaneous frequency rather than the instantaneous
amplitude by DESA-2.

2Wix(n)}

NP+ 1)-x(n-1) where

Figure 19 shows an AM-FM signal | a(n) | =

a(n) =1+0.6cos(0.017n)

V4 V4 (31)
n)=-—n+cos—n
#(0) 10 80
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The theoretic instantaneous frequency is shown in figure 20. The estimated instantaneous
frequency by DESA-2 is shown in figure 21. The estimated amplitude envelope is also
illustrated in figure 22. Note that there are no apparent discrepancies between the real values
and the DESA-2 calculations. The errors are very slow but less smooth. The results indicate
that DESA-2 can be used to track the instantaneous frequency and amplitude accurately.
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Figure 19. Original AM-FM signal
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Figure 20. Theoretic instantaneous frequency
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Figure 21. Estimated instantaneous frequency by DESA-2

Amgliude

= L s s s N L " ! I
20 100 =200 300 400 S00 Sso00 7oOo B00 200 1000

Figure 22. Estimated amplitude envelope by DESA-2

Another mixture signal is composed of two linear swept-frequency signals shown in figure
23. The frequency of one chirp signal varies from 1Hz to 0.1 Hz and the other varies from 2 Hz
to 0.1 Hz. The estimated IF is shown in figure 24. The two chirp signals are also better identified
and localized except for near boundaries.
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Figure 24. Estimated IF of two IMFs by DESA-2

In this paper, we present a novel method to estimate the IF of diastolic murmurs using
Empirical Mode Decomposition (EMD) and nonlinear the Teager Energy Operator (TEO).
EMD has been analysed as in section 3 and can decompose diastolic murmurs into a
series of Intrinsic Mode Functions (IMFs), then accurate IF estimation can be acquired

by TEO.
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Figure 25. Block diagram of Instantaneous Frequency (IF) estimate based on EMD-TEO

The block diagram of the instantaneous frequency estimate based on EMD-TEO is shown in
tigure 25 (IF refers to the instantaneous frequency in the block diagram).

The instantaneous frequency of the original signal can be obtained in the following steps:

a. a(n)=1+0.6cos(0.017tn)

Decompose the original single into IMFs: =1...M.
P 8! meiet qb(n)=1%n +cos%n ]

b. Calculate the instantaneous frequency c]-(t) of each IMF I F ]-(t) by DESA-2.

c. Calculate the average instantaneous frequency of the original signal:

M
o(t)= IF(t)/ M (32)
j=1

It is the average frequency of mainly IMFs at each instant time.

Next we estimate the IF of diastolic murmurs from clinical coronary artery disease (CAD)
patientbased on the EMD-Teager method. The left anterior descending artery is stenosed about
40% and the right coronary artery is stenosed about 55%, which has already been diagnosed
by catherization. Figure 26 shows the diastolic murmurs. Figure 27 shows the IMFs obtained
by EMD. The diastolic murmurs can be decomposed into six IMFs and one residue. The
amplitudes of IMF5 and IMF6 are smaller compared with the original signal. So IMF5 and
IMF6 are abandoned. Figure 28 shows the IF of each effective IMF by DESA-2. Figure 29 shows
the average IF of diastolic murmurs. Then some features such as mean, standard deviation,
etc., can be extracted from the average IF. For the normal subject, figure 30 shows the IF of each
effective IMF and figure 31 shows average IF of diastolic murmurs.



Adaptive Analysis of Diastolic Murmurs for Coronary Artery Disease Based on Empirical Mode Decomposition 115
http://dx.doi.org/10.5772/55690

-0.05

—0.1 |

_0.15 L L L L L L L L L
o 50 100 150 200 250 300 350 400 450 500

Figure 26. Diastolic Murmurs of CAD object
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Figure 27. Six IMFs and one residue by EMD



116  Adaptive Filtering - Theories and Applications

800 T T T T T T T

700~ -

600 ~ -

|
il

| 1 1 1
0 a0 100 140 200 250 300

500 -

400 -

300

Instantaneous FrequencyiHz)

200

100

Figure 28. Estimated IF of four selective IMFs by DESA-2
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Figure 29. The average instantaneous frequency of diastolic murmurs
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Figure 30. Estimated instantaneous frequency of normal object by DESA-2 algorithm
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Figure 31. Estimated IF of normal object

For the CAD object, we can see that both the IF of each IMF and average IF are higher than
those for normal subject. The diastolic murmurs contain rich higher frequencies. The mean of
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average IF is 185Hz and the standard deviation is 40Hz. For the normal subject, the mean of
average IF is 140Hz and the standard deviation is 26Hz. These can be explained as follows: for
the CAD subject, the narrowed coronary arteries lead to the blood flow in coronary artery
changing from laminar flow to turbulence flow, from simplicity to complexity. Coronary
arterial stenosis gives rise to high frequencies of diastolic murmurs. The instantaneous
frequency features effectively reveal the information as to whether the arteries are blocked and
denote the frequency change of diastolic murmurs when the coronary arteries are occluded.

6. Conclusion

Diastolic murmurs contain the information of coronary artery occlusions which give the basis
of CAD diagnosis. The Hilbert Huang Transform is an adaptive powerful method to analyse
nonlinear and non-stationary time series. The important part of HHT is the Empirical Mode
composition (EMD). In this paper, we firstly studied wavelet shrinkage denoising using the
generalized threshold function and the data-driven SURE threshold value, which successfully
removed noise from the PCG signal. Secondly, we obtained the Hilbert spectrum and marginal
spectrum of diastolic murmurs for normal subjects and CAD patients after EMD. They provide
higher resolution and energy concentration in the time-frequency plane. The Hilbert spectrum
and marginal spectrum effectively reveal the information as to whether the arteries are blocked
and provide a reliable indicator of CAD. For restricting the end effect of EMD, a simple,
powerful and effective method is presented. The IF estimation algorithm is studied based on
EMD-TEO. The results indicate that the IF of diastolic murmurs effectively reveal the infor-
mation on whether the arteries are blocked and provide a reliable indicator of CAD and
provides a reliable indicator of coronary artery disease.
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