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1. Introduction

In many fields considering information at microscale or nanoscale requires to achieve an

automatic shape classification by image analysis, because of the amount of particles, on the

one hand, and because of their size and reachability. This shape classification can be set up in

2D or in 3D. In 2D, images are generally provided by a scanning electron microscope (SEM). In

3D, different means can be used, such as reconstruction from a set of 2D sections or as direct

tridimensionnal acquisition, for example by an atomic force microscope (AFM). Depending

on the microscope resolution, shape studies can be lead either at nanoscale or at microscale.

In this chapter, several shape parameters are defined and examples are given in two different

fields of application: nanoelectronics and nuclear power. Both applications are achieved in 2D

and 3D.

2. Shape classification: state of the art

In pattern recognition, an important field of interest concerns shape classification. Most of the

methods used to reach this aim, consist in evaluating some geometrical features of the shapes

under study, in order to determine which kind of shape family they belong to. For example,

symmetry according to a point [23][24][47][48] can be measured by several means, such as

Minkowski’s, Besicovitch’s, Winternitz’s or Blaschke’s coefficients [5][19]. Other applications

require the evaluation of the symmetry degree according to an axis [31][42][43]. These studies

are realized in 2D, 3D or arbitrary dimensions. And finally, circularity, elongation and so on

[21][26], can be estimated in order to classify shapes. Classification methods can be shared in

two different sets: the first one processing on natural images in gray levels or in color, in 2D

or 3D, and the second one on binary images describing well-defined objects. In the last case,

natural images need to be pre-processed in order to identify shapes to study. Our method is

one of this kind, and we are going to study the similarity between 2D or 3D objects.

©2013 Robert-Inacio et al., licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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3. Shape parameters in 2D and 3D

Several means can be used to describe shapes: circularity parameter, fractal degree of a 2D

shape, polar study of the 2D boundary, peak dispersion on a surface in 3D or study of height

variations in 3D.

3.1. Circularity parameters

Let us start these studies by considering a classical shape parameter enabling to estimate the

circularity degree of an object in two dimensions. It is based on a simple observation about

circular objects. For a disk D of radius R, the perimeter P(D) is given by:

P(D) = 2π.R (1)

and the surface area S(D):
S(D) = π.R2 (2)

It yields that the circularity parameter CP, defined, for any object X, by:

CP(X) =
P(X)2

4π.S(X)
(3)

is equal to 1, if and only if X is a disk.

Shape Perimeter P Surface area S CP

Square X1 4.l l2 4
π ≈ 1.273

Hexagon X2 6.l 3.l2.cos π
6

3
π.cos π

6
≈ 1.103

Hexagon X2(α) with a triangular concavity (6 + α).l
(

3 − α2

2

)

.l2.cos π
6

(6+α)2

2π(6−α2).cos π
6

Rectangle X3 2.l.(1 + t) t.l2 (1+t)2

πt >
4
π

Rectangle X3(α) with a square concavity 2l.(1 + t) l2.(t − α2) (1+t)2

π(t−α2)

Rectangle X′
3(α) with a rectangular concavity P(X3) + α S(X3)−

α(k−α)
4

[P(X3)+α]2

4π.S(X3)−π.α(k−α)

Table 1. CP values for the set of shapes of Fig. 7

In this way, we can see that CP increases when X becomes less close to a disk in shape. Fig. 8

illustrates the results given in Table 1. The shapes under study are:

• A square X1 of edge length l,

• A regular hexagon X2 of edge length l,

• A regular hexagon X2(α) with a triangular concavity (Fig. 1)

• A rectangle X3 of height length l, and width length t.l, t > 1

• A rectangle X3(α) with a square concavity (Fig. 2)

• A rectangle X′
3(α) with a rectangular concavity (Fig. 3)

Let us notice that the following relation is true, whatever the connected shape X:

CP(X) ≥ CP(ch(X)) (4)

where ch(X) denotes the convex hull of X.
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Figure 1. Shape family of non convex sets X2(α) of convex hull defined by a regular hexagon, with a
single triangular concavity Tα (equilateral triangle of edge length α.l with 0 ≤ α ≤ 1). X2(0) and X2(1)
are the two extreme shapes of the family

Figure 2. Shape family of non convex sets X3(α) of convex hull defined by a rectangle, with a single
square concavity Sα (square of edge length α.l with 0 ≤ α ≤ 1). X3(0) and X3(1) are the two extreme
shapes of the family

Figure 3. Definition of Xα according to a scalar value α, α ∈ [0, k]

Figure 4. Classification of shapes X1, X2 and X3 from the less to the most circular one, according to CP

Actually, P(X) ≥ P(ch(X)) and S(X) ≤ S(ch(X)). So we get the relation of eq. 4.

Furthermore, the parameter CP presents some interesting features such as invariance under

affine transformations such as translations, scaling and rotations. It is then quite obvious that

shape studies can be led without taking into account neither shape position and orientation,

nor scale. As the parameter value is only related with the perimeter and the surface area, it

can be interesting to pay more attention to the evolution of CP, when shapes are damaged by

one or more concavities. We call concavity of X a connected set of points included in ch(X)
but not in X, having a non-empty intersection between its boundary and those of ch(X). In

this way, holes are not allowed. Furthermore, we assume that two concavities of a same set X

have an empty intersection.

The concavity number is not really preponderant as it is always possible to find an equivalent

concavity to a set of alterations, in terms of perimeter and surface area. In other words, the

estimation of CP is the same, when considering a single concavity C or a set of concavities Ci,

as far as the two following assumptions are satisfied:

115Shape Classifi cation for Micro and Nanostructures by Image Analysis
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P(C) =
N

∑
i=1

P(Ci) (5)

and

P (Bd(ch(X)) ∩ Bd(C)) = P

(

Bd(ch(X)) ∩

(

N
⋃

i=1

Ci

))

(6)

where Bd(X) is the boundary of X, S(C) = ∑
N
i=1 S(Ci).

In this way, if X is a convex shape:

CP(X\C) = CP

(

X\
N
⋃

i=1

Ci

)

(7)

A second circularity parameter can be defined by considering the ratio between radii of the

Figure 5. a) Evolution of CP values according to the elongation t of rectangular shapes, b) Evolution of
CP according to α for a regular hexagon with a triangular concavity, c) Evolution of CP according to α
and t for a rectangle with a square concavity, d) Evolution of CP according to α and S(Cα) for a rectangle
with a square concavity

inscribed and circumscribed disks to the shape under study. If r(X) and R(X) are respectively

the inscribed and circumscribed disks radii, then CP2(X) is defined as follows:

CP2(X) =
r(X)

R(X)
(8)

Fig. 6 illustrates the inscribed disk and circumscribed disk positions for a shape. While the

circumscribed disk is unique, the inscribed disk can be located at different positions.
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Figure 6. Disks associated to a shape (star or rectangle): in blue, circumscribed disk, in red, inscribed
disk

CP2 values belong to [0,1] as they are positive values and CP2(X) is equal to 1 if X is a disk.

In this case, the circumscribed and the inscribed disks are equal to X, that gives the maximal

value for CP2.

The inscribed disk can be easily defined by using a euclidean distance map [16] that gives for

each point of X its distance to the boundary. The maximal values of such a map are located at

inscribed disk centers. The circumscribed disk can be determined by using the circumscribed

disk algorithm (see section 3.2.2).

3.2. Shape classification according to a given shape

In order to achieve shape classification according to a reference shape, a similarity parameter

P is defined for any pair of convex shapes (X, Y) by considering two scale ratios. The first

one gives the smallest homothetic set of X containing Y, and the second one, the smallest

homothetic set of Y containing X. Thus, let us define the following function SX(Y):

SX : K −→ R
+

Y 	→ SX(Y)
(9)

where

SX(Y) = in f {k > 0; Y ⊂t k.X} (10)

⊂t means "included in, regardless to any translation". And then, a definition of the similarity

parameter can be:

P(X, Y) =
SY(X)

SX(Y)
.
μ(X)

μ(Y)
(11)

where μ is the surface area measure. The parameter properties are the following:

1. if X ⊂t Y then P(X, Y) belongs to ]0, 1]

2. P is invariant by translation

3. P is invariant by scaling

4. if X and Y are of the same shape regardless to a positive scale ratio then

P(X, Y) = P(Y, X) = 1

5. P(X, Y) = P(Y, X)−1

117Shape Classifi cation for Micro and Nanostructures by Image Analysis
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Shape X Xi SX(Y) SY(X) μ(X) PY(X)

Square X1 0.84375 2.09677 961 0.18736
Pentagon X2 0.81250 1.45455 829 0.22436

Parallelogram X3 0.93750 2.40741 891 0.16811
Rectangle 1 X4 0.96875 1.69767 1118 0.30909
Rectangle 2 X5 0.78125 2.56000 825 0.12198

Triangle X6 0.71875 2.41026 585 0.08452
Ellipse 1 X7 0.68750 2.17500 691 0.10585
Ellipse 2 X8 0.84375 4.33333 365 0.03445

Circle X9 0.96875 1.58537 1320 0.39087
Regular hexagon X10 0.93750 1.39130 1320 0.43094

Table 2. Results of computation for PY(X), μ(Y) = 2064

In order to set up a process of shape classification, the two most interesting properties of the

similarity parameter P are given in (1) and (4). In other words, under the assumption that

X ⊂t Y, we can compute a similarity parameter PY , estimating for each convex set X, its

similarity degree to Y. By this way, the values reached by PY belong to the interval ]0, 1]. So

we are able to arrange in order the sets X under study, from the less similar to Y to the most

similar. Let us study the following example. The reference shape Y that has to be compared

with the others is a hexagon. Then, let us consider ten arbitrary shapes Xi, such as a square,

a pentagon, a parallelogram, two rectangles, a triangle, two ellipses, a circle and a regular

hexagon. We compute the parameter PY for each of these ten arbitrary shapes, and, by this

way, we are able to define a partial order for this set of shapes, according to their similarity

degree to the hexagon Y. Fig. 7a describes the convex sets Y and Xi and Table 2 gives the

computational results. In this way, the previous results can be illustrated as shown in Fig. 7b.

(a) Convex sets under study:
hexagon Y and arbitrary shapes Xi

(b) Convex sets under study: hexagon Y and arbitrary shapes Xi

Figure 7. Shape study on a set of simple sets

About this classification, we can note that the closest set in shape to the hexagon Y is the

regular hexagon. Furthermore, the second one is the circle, which is close to every regular

polygon. And finally, the third one is the rectangle oriented in the horizontal direction, like

the hexagon Y. On the opposite side, the less close shape to Y is an ellipse oriented in the

vertical direction. Thus, the similarity parameter seems to take into account some geometrical

features such as the orientation and the elongation. Then, if the reference shape is a disk P

estimates the circularity degree. Furthermore this parameter can be used in 2D or in 3D. It

is enough to change the area measure μ into a volume measure to obtain the tridimensionnal

version of the parameter P.
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3.2.1. Implementation of the similarity parameter

In order to implement the similarity parameter, we must set up fast and easy algorithms

determining the features of circumscribed convex shapes. In this way, the scale ratios required

for the similarity degree estimation will be easily evaluated. Assuming that we have at our

disposal an algorithm called CircumRatio(X, Y), determining the scale ratio to apply to a

convex set X to circumscribe it to a convex set Y, the algorithm estimating the similarity degree

between two shapes is the following:

Algorithm

k = CircumRatio(X, Y)
k′ = CircumRatio(Y, X)
Compute the two surface areas of X and Y

Compute the similarity degree of X and Y

First of all, let us consider the circumscribed disk algorithm that allows the user to compute

and design the minimal disk containing a given planar object X. The extension of this

algorithm to convex sets is the algorithm used to evaluate the scale ratios, and then, the

similarity parameter.

3.2.2. The circumscribed disk algorithm

The main results concerning the circumscribed disk algorithm are:

Proposition 1

X is a compact set of R
2 and B(x, R], the closed ball whose center is x and radius R. The

following assertions are equivalent:

X ⊂ B(x, R] (12)

x ∈
⋂

y∈X

B(y, R] (13)

x ∈
⋂

y∈∂X

B(y, R] (14)

x ∈
⋂

y∈E(X)

B(y, R] (15)

where E(X) is the extreme point set of the convex hull of X. Let us recall that a point a of a

convex body K is extreme if ∀x, y ∈ K, a =
x+y

2 ⇒ x = y. Fig. 8 is an illustration of the four

previous assertions.

Then, the features of the circumscribed disk to any compact set are given by the following

formulae:

R(X) = in f {R > 0, B(O, R]⊖ ∂X �= ∅} (16)

aX = {a(X)} = B(O, R(X)]⊖ ∂X (17)

R(X) is the radius of the circumscribed disk and a(X) its center.

119Shape Classifi cation for Micro and Nanostructures by Image Analysis
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Figure 8. Illustration of Proposition 1: in plain line, the compact set X, in dashed line, its convex hull
C(X) and in gray, its extreme points E(X)

Figure 9. R(X) ≤ R(Y)

Furthermore, let R ≥ R(X), a(X) is the ultimate eroded set of B(O, R]⊖ ∂X by a closed ball

of elementary radius ε > 0. Let us recall that the ultimate eroded set of a set X by a set Y, is

the last non-empty eroded set of X in succesive erosions by Y. In other words, there exists a

positive integer n such that X ⊖ nY �= ∅ and X ⊖ (n+ 1)Y = ∅. In this way, X ⊖ nY �= ∅ is the

ultimate eroded set of X by Y. From the previous properties, an algorithm can be described

by the following steps:

Algorithm 1

1) Acquire a compact set X

2) Search C(X), convex hull of X

3) Search E(X), extreme point set of C(X)
4) For each point x of E(X)
4-1) Draw the circle whose center is x and radius R

4-2) Fill this circle with respect to the intersection set found yet

4-3) Delete all points which do not belong to the new intersection

5) Ultimate eroded set of the disk intersection

Some classical algorithms exist for the convex hull computation [2][4]. For the determination

of extreme points of this convex hull, we can consider that the convex hull is a polygon when

working in a discrete space. Then, it is sufficient to determine for each vertex of this polygon

if it is extreme or not, in other words, if it is convex or not.
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The computation of the ultimate eroded set enables not only to find the location of the center

but also to evaluate the radius value. In fact, if B(O, R0] is the closed ball used to obtain the

ultimate eroded set of B(O, R]⊖ ∂X, then the radius R(X) is given by:

R(X) = R − R0 (18)

The initial value R can be chosen as half the length of the diagonal line of a circumscribed

rectangle Y to the given compact X. This value is actually the radius value R(Y) of the

circumscribed disk to the rectangle Y. As the rectangle Y contains the compact set X, X is

also included in its circumscribed disk and R(Y) is greater or equal to R(X) (Fig. 9).

We can remark that solving the difficult problem of computing the circumscribed disk to any

object is reduced to obtain the inscribed disk in a convex set. Actually, the convex set is

B(O, R]⊖ ∂X (that is convex because it is the intersection of convex sets) and, when computing

the ultimate eroded set by B(O, R0], the resulting point is the center of the inscribed disk into

B(O, R]⊖ ∂X (the radius of this disk is R0).

3.2.3. Extension to the third dimension

The similarity parameter can easily be extended to the third dimension by replacing the

surface area measure by the volume measure of 3D objects. The definition is the following:

P(A, B) =
SA(B)

SB(A)
.
V(A)

V(B)
(19)

where V is the volume measure. The circumscribed disk algorithm is based on theoretical

results that are also true in 3D. That is why the process can be set up in 3D.

3.3. Circularity parameter and fractal degree

The definition of CP and the previous considerations on some particular shapes leads us to

the conclusion that the circularity parameter CP is able to estimate a ratio giving indications

about the fractal degree [44] on shapes in 2D. It is indeed based on the computation of a ratio

between the square of the perimeter and the surface area of the shape under study. In this case,

CP increases according to the perimeter while the surface area remains constant. This feature

is appropriate to deduce information about the fractal degree for the shape under study, as

fractal objects have the feature that their perimeters tend to an infinite value, whereas their

surface areas are bounded. So the greater this parameter value, the more fractal the shape, in

other words, shapes of a same surface area are more and more fractal while their perimeter

increases. Fig. 10 shows that CP increases in an exponential way, when the perimeter

value grows. The initial value is computed for a disk of radius of 5. Then the perimeter is

approximately equal to 31.4159 and the surface area to 78.5398, and obviously, CP is equal to

1.

As CP depends on the square of the perimeter, its values tend to +∞ when the perimeter

increases.

CP(X) = f
(

P(X)2
)

⇒ limP(X)→+∞CP(X) = +∞ (20)
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Figure 10. Evolution of CP according to the perimeter

That induces that CP estimates the fractal degree of a shape X. In other words, the higher the

CP value, the more fractal the shape X.

3.4. Polar study of the boundary of 2D objects and estimation of the circularity

degree

This section presents a local estimation of the circularity degree for objects in 2D [37]. The

method consists in drawing the boundary of the shape under study, in polar coordinates,

according to an appropriate centre. This centre is chosen as the best-centred point amongst

the set of centres of the inscribed disks in the shape. In other words, this centre is the centre of

an inscribed disk and it is the closest one to the centroid of the shape under study. We will call

this particular point the polar centre of the shape. In the three following examples, this polar

centre coincides with the centroid.

The polar graphs corresponding to a square, a rectangle and a regular hexagon (Fig. 11)

show a visual estimation of the circularity degree of those three shapes, whereas the standard

deviation measures the dispersion of radius values around the average radius. The higher the

standard deviation, the less circular the shape. Table 3 gives numerical results of average and

standard deviation computation for the three shapes under study. Obviously, if the shape is a

disk, the average value is equal to its radius and the standard deviation to 0.

Shape Square Rectangle Regular hexagon

Average radius value 5.7381 4.2000 4.5611
Standard deviation of radius values 0.6311 1.0596 0.2031
Maximal distance to the average value 1.3330 1.7000 0.4389

Table 3. Visual estimation of the circularity degree from polar graphs

>From Table 3, shapes can be ordered from the less circular to the most circular, according to

the standard deviation values: rectangle, square and regular hexagon. This result coincides

with those obtained from the circularity parameter CP.

Fig. 11 shows that the circularity degree of a shape is closely linked to the amplitude of its

polar graph. In other words, the maximal distance measured to the average value of each

graph is another way to estimate the circularity degree, that is equivalent to the standard

deviation evaluation, as shown in Table 3.
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Figure 11. Boundary in polar coordinates of the three previous shapes (coarse angle sampling step). In
dark blue, the hexagon, in light blue, the square and in pink, the rectangle

3.5. Study of peak dispersion on a surface in 3D

A surface can present several particular spots located at local maxima in terms of height. These

spots are called peaks and they are characterised by their summit (single point) that is higher

than its neighbours. Detection of peaks is achieved by considering a square sliding window

of 5 pixels width. In order to study the peak dispersion on a given surface, the first step of the

process consists of the computation of an Euclidean distance map [16], giving at each point

of the surface its distance to the boundary. This distance map is computed on a projection

of the surface in the plane (O, x, y), defined in the introduction section as the plane of the

corresponding grey-level image. Fig. 12 shows such a bounded surface whose projection is a

square of 80 pixel-width and Fig. 13 is the associated Euclidean distance map. On this map,

every point belonging to the surface outside is set to 0 and points of the surface are set to

their Euclidean distance from the boundary. Then the surface is scanned in order to detect

peaks as local maxima. Such a task is achieved by considering decreasing height values. Then

each point is checked to determine if it is a local maximum or not. Three main peaks can be

detected on this surface. Their features as well as those of the 2D centroid are given in Table 4.

The centroid is taken under consideration as it is a point representative of the whole shape in

2D. Furthermore, in this case, it is also the point where the distance map reaches its maximal

value. In other words, this point can be considered as the centre of an inscribed disk into the

2D shape.

Figure 12. Overview of a bounded surface (left) and its 3D representation (right)
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Point Location (X, Y) Height Distance to the boundary Peak parameter

Peak 1 (25, 25) 150 16 0.2927
Peak 2 (60, 60) 200 31 0.7561
Peak 3 (40, 80) 100 11 0.1341
Centroid in 2D (50, 50) 100 41 0.5000

Table 4. Features of main peaks and centroid

Figure 13. Associated Euclidean distance map

Figure 14. Influence of peak height on PP values

>From the previous features, a parameter can be associated to each peak. This peak parameter

PP is defined as follows:

PP(p) =
h(p).d(p)

hmax.dmax
(21)

for a peak p of the shape X, with:

hmax = max{h(m), m ∈ X} (22)

and

dmax = max{d(m), m ∈ X} (23)

where h(m) represents the height at the point m and d(m) the distance from the point m to

the boundary of X. In the previous case, dmax = 41 and hmax = 200. The parameter

PP is maximal (equal to 1) if the highest peak coincides with the point of maximal value

on the Euclidean distance map. This parameter enables to estimate a combination between
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height and centring. Its values vary between 0 and 1 and a value close to 0 represents a

non-significant peak in terms of height or centring, or both. The peak dispersion is then

established by arranging in order all the significant peaks according to the value of parameter

PP. In order to characterize the shape X, the parameter PP is determined as the average value

of PP on the peaks p of X:

PP(X) =
1

N ∑
p∈X

PP(p) (24)

where N is the number of peaks p of X. In the previous case:

PP(X) = 0.3943 (25)

Figure 15. Influence of peak height and distance to the boundary on PP values

The estimation of PP at the maximal point of the distance map gives an evaluation of the

centring degree of the shape in terms of height. Fig. 14 shows how the peak height influences

the value of PP. The distance to the boundary is then preponderant to determine the

coefficient of the slope. On Fig. 15, the influence of the distance and the height of a peak

has been drawn for a maximal distance value dmax of 41 and a maximal peak height hmax

of 200 (S1 corresponds to a height of 0, S11 to 100 and S21 to 200), that are the characteristic

values of the bounded surface X. This graph is representative of the surface and gives the

features of centring and height of an arbitrary peak, whatever its position or height. It is then

enough to read the corresponding value on the graph to determine PP.

Furthermore, a coefficient of centring CC can be estimated at each peak p of X, described by

the following formula:

CC(p) =
d(p)

dmax
(26)

Table 5 gives the CC values for the main peaks of X.
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Peak (X, Y) (25, 25) (60, 60) (40, 80)

CC 0.3902 0.7561 0.2683

Table 5. Coefficients of centring for the three peaks of X

3.6. Study of height variations

The simplest value to be computed from a bounded surface X in order to estimate height

variation is the average value h̄(X).

h̄(X) =
1

card(X) ∑
m∈X

h(m) (27)

where card(X) is the number of points belonging to X. In this case:

h̄(X) = 32.6795 (28)

The second way to study height variations consists in locally combining height and distance

to the boundary, in order to link height and centring. That has been done in Fig. 16. Each

point of this image is the result of the product of the height by the distance to the boundary of

X. Table 6 shows values at the main peaks of X.

Figure 16. Local estimation of height variation and centring

Figure 17. Graph of height variations (VH) according to the distance from the boundary of X

This time too, the peak located at (60, 60) is the most significant. But what is interesting on

Fig. 16 is the spot of yellow points where values are around 4000. They are representative of
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Peak (X, Y) (25, 25) (60, 60) (40,80)

Local estimation of height and centring combination 2400 6200 1100

Table 6. Height and centring combination (HCC) at main peaks of X

a region of well-centred points at a medium height. The HCC values are more significant in

this region than they are at peaks located at (25, 25) and (40, 80). For example, the centroid

located at (50, 50) has a HCC value equal to 4100. But we must remember that the centroid is

also the maximal point for the Euclidean distance map in this particular case.

Finally, the variation in height VH according to the distance to the edges can be estimated

by computing the average value on a given level of the distance map. In other words, we

consider all points at a given distance to the boundary and we compute the average height.

This can be done for each distance value from 1 to the maximal value. Fig. 17 is the graph of

VH(X).

Unfortunately, such a graph (Fig. 17) makes the assumption that the bounded surface under

study has an isotropic behaviour, as it is based on an average value computation that does

not take into account orientation. It should be better to draw an equivalent surface in

polar coordinates to unfold the original surface. The resulting information would show the

variations of height according to the angle, with respect to the polar centre.

The peak dispersion on the considered bounded surface is then determined by setting up a

process computing the heights (from the original grey-level image) and locations (from the

Euclidean distance map) of the main peaks. That will define a simplified map of the surface,

including only main information in terms of height.

4. Application 1: sphericity of microscopic particles

4.1. Context

V/HTR (Very/High Temperature Reactors) are advanced nuclear power reactors that employ

spherical particles made of an uranium kernel surrounded by four different layers (Fig.

18) [14, 27, 33]. During fuel particle manufacturing, the coating process may generate non

spherical particles and/or ceramic layers with abnormal thickness. For such particles, the

fuel performances are highly decreased [12, 18]. That is why, it is necessary to set up a

characterizing tool allowing, on the one hand, to estimate the thickness and sphericity degree

of these fuel particles at each step of the fabrication and, on the other hand, to measure

a statistically representative sample taken from fabrication batches containing millions of

particles [13]. A classification of fuel particles has to be established in order to reject through

statistical control HTR particles batches presenting too serious faults.

4.2. Aim of the study

HTR nuclear fuel particles are made of a kernel of uranium oxide of 500 ţm covered by a

first layer of porous pyrocarbon (fission gas tank) and a layer of silicium carbide sandwiched

between two layers of dense pyrocarbon. The aim of this study is to measure some geometrical

features of such particles, in particular, the kernel diameter and sphericity, and the thickness
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Figure 18. Fuel particle in 3D and polished cross-section

of each layer. The presented method is based on different thresholding processes enabling

to extract the kernel or one of the layers from the image [37]. Then, an Euclidean distance

map is computed on the binary images, giving for the one corresponding to the kernel its

diameter, and for the others, an estimation of the layer thickness. An original shape parameter

evaluating the sphericity degree of the kernel is then deduced from the distance map and its

value is compared to the shape parameter computed from Féret’s diameters. Furthermore,

some information related to thickness is extracted from the layer distance maps. For example,

the maximum, minimum and average thicknesses are computed from these maps, but a

regular set of thickness values can be obtained according to angular sampling. This method

enables an automatic control of the particle features in order to classify them in two sets :

satisfactory particles and rejected particles [37].

The Euclidian distance mapping [16] is a method that estimates the minimal distance between

each pixel of the background and the nearest object. It works on binary images (Fig. 19).

The first distance map is computed inside the kernel in order to obtain for each of its points,

its distance to the outside, and then, the centre of inscribed disk of the kernel. This centre

is determined as the maximal value of the distance map, which represents the radius of

the inscribed disk, and it is also considered as the real centre of the particle. After that,

a second distance map is computed in order to calculate the kernel radius, by temporarily

considering the centre of the particle as the only object of the image. Thus, this new distance

map gives a set of concentric circles centred at the kernel centre (Fig. 20). The use of a border
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Figure 19. Binary images corresponding to a) the kernel, b) porous pyrocarbon, c) inner pyrocarbon, d)
silicium carbide and e) outer pyrocarbon

follow-up method will reveal the kernel local radius by looking at the intersection between

the binary image of the kernel and the last distance map. Finally, the process is extended to

the surrounding layers by computing four other distance maps on the different binary images

representing the different layers. The half thickness of a layer is then determined as the locally

maximal values on the distance map. In this way, we obtain thickness measurements in every

direction, that allow us to draw the polar graphs.

Figure 20. Distance maps associated with a) the kernel and b) the SiC layer

4.3. Experimental results

Fig. 21 shows polar graphs of the different layers and Fig. 22 presents the links between the

particle and the polar graphs. Futhermore, Table 7 gives thickness results at the equatorial

cross-section, in other words, theoretical and computed thickness results of each element of

the particle. The minimum and maximum values for each element are useful in order to detect

major local deformation of the particle, while the average value is more representative of the

particle regularity.
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a b

c d

Figure 21. Real deposit of the different layers : a) Porous PyC, b) inner PyC, c) SiC and d) outer PyC

(a) Polished cross-section of a HTR fuel particle (b) Polar graph representing the kernel and the four
layers boundaries of the particle

Figure 22. HTR fuel particle study

Element Thickness at the Equatorial Cross-section (μm)

Maximum Minimum Average Theory

Kernel (radius) 263.38 247.96 253.18 250±20

Porous PyC 88.03 81.14 85.29 90±20

Inner PyC 48.47 32.29 40.61 40±10

SiC 31.44 20.21 28.40 35±7

Outer PyC 37.20 27.22 32.12 40±10

Table 7. Thickness results appearing at the equatorial cross-section
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Table 8 gives the computed spherical results of a particle at different states of reconstruction.

The results are given in percentages where 100 % means that the particle is perfectly circular.

Element Sphericity degree (%)

CP CP2

Kernel (K) 96.02 94.81

K + Porous PyC 97.24 96.14

K + Inner PyC 94.57 94.00

K + SiC 94.27 94.25

K + Outer PyC 94.06 93.80

Table 8. Sphericity degree results at different levels of the particle

5. Application 2: shape analysis on molecular islands of carbon chains in

nanoelectronics

5.1. Self-assembly

Self-assembly is an universal phenomenon, responsible for the structural organization of a

system without external intervention. The molecular self-assembly is studied in order to

obtain nanometer-sized structures in a bottom-up approach. This one consists in building

a structure from individual base elements step by step.

Such an approach is conceivable for the realization of molecular layers since K. Blodgett

and I. Langmuir have achieved the transfer of monolayers from water/air interface to solid

surfaces[6, 7], thereby bequeathing their name to the method: the Langmuir-Blodgett (LB).

Kuhn et al.[22] achieved in the 1970’s nano-manipulation of molecules. To overcome the

drawbacks of the LB method, J.Sagiv et al.[32] prepared SAMs by chemisorption, based on

silane chemistry. With the same aim, Mallouk et al.[20] used crystalline chemistry. Since

then, other techniques such as vapor deposition, nanolithography[34] have been developed

for self-assembled monolayers (SAMs).

Except for the LB method, self-assembling molecules can be divided into three parts (fig.

23)[1].

Surface-active head group: This moiety will react with the surface. The choice of the head

group depend on the surface used. Grafting can provide different chemical bonds

(covalent, ionic, ...).

body group: Generally, the body is an alkyl, or derivatized-alkyl group. The ordering process

is driven by van der Waals or electrostatic interaction.

Surface group: the choice of this group depends on the aim. This group gives its properties

to the SAM (wettablility, reactivity, ...).
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Surface group
CH3, COOH, CH2OH, NH2, CH=CH2

body group
(CH2)n, C≡C, phényl

Surface-active head group
SH => Au, Cu, Ag ; SiX3 =>SiO2, Al2O3, mica ;
C=C => SiH

Surface

Figure 23. A schematic view of molecular structure [1]

Note that SAMs are more stable than LB films. Indeed, the latter are simply physisorbed,

while self-assembled films, by their chemisorption, are more resistant to chemical attack and

are more stable in temperature[45].

5.1.1. Self-assembly: interest

The interest of the self-assembly is in the control and the modification of the surface for

specific applications. One can set the affinity of a surface with water or other solvents, such as

protecting non-oxidized surfaces from water by making them hydrophobic[17]. SAMs also

ensure biological compatibility for anchoring proteins[41] or conversely make bactericidal

surface[38]. Note also the control of friction properties[25], the formation of very thin

insulator[28, 46]. The combined use of these techniques with others, such as photolithography,

allows also the organization of carbon nanotubes on a surface[15]. Furthermore, sequential

self-assembly of SAM can be used to create 3D structures[3, 29, 30, 45].

5.1.2. Self-assembly: difficulties

Although the exothermic reaction[1] (∼ 1-2 eV) between the surface-active group and the

substrate promotes the use of a maximum of docking sites, forming a compact and orderly

SAM on a large scale is not easy. Indeed, to enable the interchain interactions, it is first

necessary that the molecules are close enough, requiring a high density of grafted molecules.

Alkyl chains are tilted with respect to the normal to the surface by an angle (α), that depends

on the recovery rate and defects[39]. Generally the higher the coverage, the smaller is α.

5.2. Self-assembly of organosilanes: generalities

The reaction of organosilane (R(4−n)-Si-Xn; n ∈ [1, 2, 3]) derivatives with hydroxylated surface

has attracted attention for several years. R is most often an alkyl chain, which may have
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different features, and X is an alkoxy or a chlorine. In the further study only organosilanes

trifunctionalized (n = 3) will be used. They have the distinction of creating intermolecular

bonds (fig. 24), which leads to the formation of an ordered molecular monolayer robust due

to the crosslinking.

5.2.1. Grafting mechanism

The grafting process of organosilanes trifunctionalized takes place in four steps (fig. 24)[1].

H2O

Step 1: Physisorption

H2O

Step 2: Hydrolysis

H2O

Step 3: In plane reticulation Step 4: Covalent grafting to the substrate

Figure 24. Different steps involved in the mechanism of SAM formation on a hydrated silica surface [1]

Step 1: Physisorption of molecules onto the adsorbed water monolayer(s) on the surface by

the hydrophilic Si-R3 moieties. Depending of the humidity rate there is one to three layer(s)

of water on surface.

Step 2: Hydrolysis of the active-head group Si-R3 by reaction with water.

Step 3: In plane reticulation: the surface-active head groups of two molecules react, and the

reaction entails the formation of intermolecular siloxane bond(Si-O-Si). This reticulation is

essential to the formation of close-packed and well-ordered SAMs.

Step 4: During this step molecule will react vita the surface forming siloxane bond (Si-O-Si).

During the various steps, the molecules, isolated or not, can diffuse on top of the water

layer present on the surface. Through the interactions between neighboring molecules

(hydrophobic body and active-surface group) under certain conditions leading to growth

by islands, this mobility allows the molecules to compact enough for the transition from

step 2 to step 3. Steps 3 and 4 are difficult to separate because they seem to occur almost

simultaneously[8, 49].
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5.2.2. Molecular structure influence

Each part of the molecule has an impact on the SAM growth[35]:

Surface-active head group: The kinetics of the monolayer formation is driven by the
hydrolysis of the head group. Generally, the trifunctionalized organosilanes (R-Si-X3) bear
the same moieties X. Three moieties are particularly used: chlorine, methoxy and ethoxy.
The table 9 present a classification by decreasing reactivity with SiO2 as a function of the
surface-active head group:

silane moieties name

Si-Cl3 trichlorosilane

Si-(OCH3)3 trimethoxysilane

Si-(OCH3)2(OC2H5)1 dimethoxyethoxysilane

Si-(OCH3)1(OC2H5)2 methoxydiethoxysilane

Si-(OC2H5)3 triethoxysilane

Table 9. Classification of silanes moieties by decreasing reactivity with SiO2 [40]

body group: The interchain van der Waals and electrostatic interactions are responsible of the
final organization. The longer is the alkyl chain, the better is the organization. Note that
beyond 18 carbons in the chain the SAMs are more disordered[1].

Surface group: This part of the molecule has few influence on the order. The use of large size
groups can lead to steric hindrance.

5.3. Self-assembly of organosilanes: methodology

5.3.1. Cleaning process

Silicon substrates are cut from Si (100) wafers covered with native oxide. First, substrates are
degreased in a sonicated chloroform bath (① fig. 25), and then dried under a nitrogen flow(②
fig. 25). Substrates are then soaked into a piranha mixture (H2SO4, H2O2 30%; (v/v) 7:3,
highly exothermic reaction, caution!) for 30 minutes at 150 ◦C (③ fig. 25) in order to remove
any organic impurities from the surface and to increase the amount of hydroxyl moieties (OH)
necessary for the grafting of silane heads. After that they are rinsed (④ fig. 25) with ultrapure
deionized water (18 MΩ.cm) and quickly immersed into a beaker of de-ionized water(⑤ fig.
25).

5.3.2. Grafting process

Still in this beaker, substrates are introduced into a glove-box filled with nitrogen at 40%
relative humidity in which silanization is performed. Substrates are dried under a nitrogen
flow (① fig.26) and dipped into the silanization solution (② fig. 26), consisting of a mixture of

hexadecane, carbon tetrachloride and the trichlorosilane at 10−2 M total concentration. This
solution was beforehand thermalized on a thermostated plate during ∼20 minutes at 11◦C to
which it is kept during all the silanization time of 1.5 to 2 hours. Then, samples are rinsed in
a sonicated chloroform bath (④ fig. 26) and dried under a nitrogen flux (⑤ fig. 26).
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Figure 26. Silanization process

5.4. Self-assembly of organosilanes: critical parameters

In addition to the structure of the molecule and its density on the surface, the realization
of a SAM from a solution involves other essential parameters to be controlled such as the
nature of the solvent, the concentration, temperature and duration of the deposition which is
conditioned by the kinetics reaction between the surface-active group and the surface.

5.4.1. Substrate cleaning

The silica surfaces are very sensitive to organic contaminants because of their high polarity.
Simon Desbief, during his thesis at the IM2NP, tested different cleaning protocols (UV-ozone
+ HF, UV-ozone + HF + piranha, piranha ...) and their influence on the quality of an
octadecyltrichlorosilane (OTS) layer. It appears that in the absence of a piranha treatment
the layers obtained are very disorganized. The piranha removes most organic contaminants
and makes the surface hydrophilic by promoting the formation of hydroxyl groups on the
surface, i.e., attachment points of the molecules. On the other hand, results are not better when
treatment is preceded by an attack of hydrofluoric acid and followed by a UV-ozonolysis.

5.4.2. Temperature

The grafting temperature is an important parameter. Contrary to what one might think,

decreasing the grafting temperature favors the order of the layer. Brzoska et al.[9, 10] were the

first to highlight this feature. They demonstrated the existence of a critical growth temperature

(TC) above which the monolayer is disordered. This temperature increases linearly with the
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length of the alkyl chain of the molecule, TC=Kn where n is the number of carbon forming

the chain. Other studies have shown that the change of the type of growth does not occur

at a temperature TC but within a temperature range[TC1;TC2]. When the temperature of

the solution is in this range, there is a competition between ordered and disordered growth

modes. Sung et al. observed a change of the state of the layer depending on the temperature

of the bath. They prepared a SAM at a temperature T<TC, then soaked it into a bath at T>TC

and then plunged it back into a bath at T<TC. It appears that in this sequence the layer grows

in patches and then is made of completely disordered structure islands. It also highlights a

pre-organization of the layer before grafting to the surface.

5.4.3. Solvent

Solvent polarity plays a role on the reactivity of molecules. In fact, the speed of steps 2 et

4 (fig. 24) increases as a function of the polarity of the solvent used. Moreover, the solvent

had to solubilize the molecules to prevent their aggregation in solution and at the same time

it has to facilitate its transfer on the surface. During the synthesis of binary monolayer1, the

molecule-solvent affinity allows to better control of the phase separation between the two

molecules and thereby to facilitate the adsorption of a molecule with respect to the other.

5.4.4. Hydrometry

Water plays a key role during grafting. Indeed, studies have shown that the use of fully

dehydrated substrates led to the formation of disordered layers, or conversely that the

presence of water in the grafting solution activated the layer growth. Note that the presence

of a big amount of water can cause polycondensation[11].

5.4.5. Concentration

The concentration of the grafting solution influences the kinetics of grafting. The more

concentrated the solution is, the more molecules will interact with the hydroxyl groups of

the surface. It should be noted that too high concentration may cause the formation and

deposition of aggregates[11].

5.5. Shape analysis

It is thus interesting to statistically study the evolution in shape of such molecular islands

according to various experimental parameters (time elapsed during the experiment, length

of the molecule, temperature, etc.) in order to predict their further properties [36]. Images

are obtained by microscopy with atomic force (AFM) and then analyzed. A model of

identification card for a given island is then presented in Fig. 27. This card includes a

number identifying the island, the location of its centroid, its perimeter and surface values,

its feature values (CP: circularity parameter, dmax: maximal diameter, hmax: maximal height,

d̄max: average diameter), its representation in 2D and 3D, and finally, the graphs of PN (point

numbers from the boundary) and VH (average height variations). Then, a set of identification

cards can be gathered in order to get statistical data.

1 In this case there are 2 kinds of molecules in the silanization solution.
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Figure 27. Identification card of an island

6. Conclusion

In this chapter, a similarity parameter has been presented in order to compare shapes. Other

parameters have been considered to determine shape features and their efficiency has been

tested in real situations. Shape classification is achieved in an automatic way, that enables

the processing of a huge amount of data, as well as statistical studies. The process has been

illustrated in two different application contexts. For nuclear fuel particles, the estimation of

the sphericity degree gives a mean of detection of what step of the fabrication is defective

or deviating. This allows to characterize a sample of particles in order to determine if the

batch they belong should be rejected or not. For molecular islands, the parameters define the

identification card of each bounded surface. This leads to a statistical study in shape according

to the time elapsed during the experiment.
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