
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 9

Dual-Hop Amplify-and-Forward Relay Systems with
EGC over M2M Fading Channels Under LOS Conditions:
Channel Statistics and System Performance Analysis

Talha Batool and Pätzold Matthias

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/55333

1. Introduction

The recently growing popularity of cooperative diversity [1–3] in wireless networks is due
to its ability to mitigate the deleterious fading effects. By utilizing the existing resources of
the network, a spatial diversity gain can be achieved without any extra cost resulting from
the deployment of a new infrastructure. The fundamental principle of cooperative relaying is
that several mobile stations in a network collaborate together to relay the transmit signal from
the source mobile station to the destination mobile station. In the simplest mode of operation,
the relay nodes just amplify the received signal and forward it towards the destination mobile
station. They can also first decode the received signal, encode it again, and then forward
it. In both cases, multiple copies of the same signal reach the destination mobile station,
which can be combined to achieve a diversity gain by exploiting the virtual antenna array.
In addition to the spatial diversity gain, cooperative relaying promises increased capacity,
improved connectivity, and a larger coverage range [4–6].

In this paper, a dual-hop amplify-and-forward configuration has been taken into account,
where there exist K mobile relays between the source mobile station and the destination
mobile station. In addition, the direct link from the source mobile station to the destination
mobile station is also present. Such a configuration in turn gives rise to K + 1 diversity
branches. Thus, the previously mentioned spatial diversity gain is achieved by combining
the signal received from the K + 1 diversity branches at the destination mobile station.
Among the most important diversity combining techniques [7], maximal ratio combining
(MRC) has been proved to be the optimum one [7]. It is widely acknowledged in the
literature that a suboptimal and less complex combining technique, referred to as equal
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gain combining (EGC), performs very close to MRC [7]. Studies regarding the statistical
properties of EGC and MRC in non-cooperative networks over Rayleigh, Rice, and Nakagami
fading channels are reported in [8–10]. Furthermore, the performance analysis of the
said schemes in terms of the bit error and outage probability over Rayleigh, Rice, and
Nakagami fading channels can be found in [11–13]. During the last decade, a large number
of researchers devoted their efforts to analyzing the performance of cooperative networks.
For example, the performance of dual-hop amplify-and-forward relay networks has been
extensively investigated for different types of fading channels in [14–26]. A performance
analysis in terms of the average bit error probability (BEP) as well as the outage probability
of single-relay dual-hop configurations over Rayleigh and generalized-K fading channels is
presented in [14] and [16], respectively. A study pertaining to the asymptotic outage behavior
of amplify-and-forward dual-hop multi-relay systems with Nakagami fading channels is
available in [19], whereas the diversity order is addressed in [23]. The common denominator
in the works [15, 17–24] is that they consider MRC at the destination mobile station, where
the authors of [24] have also included in their analysis results when EGC is deployed.
Performance related issues in multi-relay dual-hop non-regenerative relay systems with EGC
over Nakagami-m channels are investigated in [25, 26].

The success story of cooperative relaying in cellular networks has motivated the
wireless communications research community to explore their application possibilities
in mobile-to-mobile (M2M) communication systems. Relay-based M2M communication
systems find their application in intervehicular systems or in other words vehicle-to-vehicle
systems. Spreading the information of any kind of emergency situation on roads can be
made possible with the use of relay-based M2M systems. The development of relay-based
M2M communication systems, however, requires the knowledge of the propagation channel
characteristics. It is well known that the multipath propagation channel can efficiently
be described with the help of proper statistical models. For example, the Rayleigh
distribution is considered to be a suitable distribution to model the fading channel under
non-line-of-sight (NLOS) propagation conditions in classical cellular networks [27–29]; a
Suzuki process represents a reasonable model for land mobile terrestrial channels [30, 31],
and the generalized-K distribution is widely accepted in radar systems [32, 33]. To model
fading channels under NLOS propagation conditions in relay-based M2M communication
systems, the double Rayleigh distribution is the appropriate choice (see, e.g., [34, 35] and the
references therein). Motivated by the applications of the double Rayleigh channel model,
a generalized channel model referred to as the N∗ Nakagami channel model has been
proposed in [36]. Furthermore, an extension from the double Rayleigh channel model
to the double Rice channel model that is based on the assumption of line-of-sight (LOS)
propagation conditions has been proposed in [37]. The authors of [38] have explored the
performance of intervehicular cooperative schemes, and they proposed optimum power
allocation strategies assuming cascaded Nakagami fading. The performance of several
digital modulation schemes over double Nakagami-m channels with MRC diversity has been
studied in [39], whereas the BEP analysis of M-ary phase shift keying (PSK) modulated
signals over double Rayleigh channels with EGC can be found in [40].

This article focuses on analyzing the statistical properties of EGC over M2M fading channels
under LOS propagation conditions as well as the performance of relay-based networks in
such channels. As far as the authors are aware, the statistical analysis of EGC over M2M
channels assuming LOS propagation conditions has not been carried out yet. In addition,

Vehicular Technologies - Deployment and Applications200



the performance analysis of multi-relay dual-hop amplify-and-forward cooperative networks
in such fading channels is also an open problem that calls for further work. In many
practical propagation scenarios, asymmetric fading conditions can be observed in different
relay links. Meaning thereby, LOS components can exist in all, none or just in some few
transmission links between the source mobile station and the destination mobile station via
K mobile relays. Similarly, the LOS component can be present in the direct link from the
source mobile station to the destination mobile station. Thus, in order to accommodate
the direct link along with the unbalanced relay links, the received signal envelope at the
output of the EG combiner is modeled as a sum of a classical Rice process and K double
Rice processes. Here, the classical Rice process and double Rice processes are assumed to
be statistically independent. Furthermore, it is assumed that K double Rice processes are
mutually independent but not necessarily identically distributed. Analytical approximations
are derived for the probability density function (PDF), the cumulative distribution function
(CDF), the level-crossing rate (LCR), and the average duration of fades (ADF) of the resulting
sum process by exploiting the properties of a gamma process1. The analysis of these
statistical quantities give us a complete picture of the fading channel, since the PDF can well
characterize the channel’s envelope distribution, and the LCR along with the ADF provide
an insight into the fading behavior of the channel. Several performance evaluation measures,
such as the statistics of the instantaneous signal-to-noise ratio (SNR) at the output of the equal
gain (EG) combiner, amount of fading (AOF), the average BEP, and the outage probability,
are thoroughly investigated in this work. It includes also a discussion on the influence of
the number of diversity branches K + 1 as well as the presence of LOS components in the
transmission links on the statistics of M2M fading channels with EGC. The approximate
analytical results for the PDF, CDF, LCR, ADF, the average BEP, and the outage probability
are compared with those of the exact simulation results to validate the correctness of the
proposed approach. From the presented results, it can be concluded that the performance
of relay-based cooperative systems improves with the presence of LOS components in the
relay links. In addition, if the number K + 1 of diversity branches increases, the better is the
system performance.

This article has the following structure. In Section 2, we present the system model for EGC
over M2M fading channels under LOS propagation conditions in amplify-and-forward relay
networks. Section 3 deals with the derivation and analysis of approximations for the PDF,
CDF, LCR, and ADF of the received signal envelope at the output of the EG combiner. In
Section 4, analytical approximations for the PDF as well as the moments of the SNR at the
output of the EG combiner, the average BEP, and the outage probability are derived and
analyzed. Section 5 studies the accuracy of the analytical approximations by simulations and
presents a detailed discussion on the obtained results. Finally, the article is concluded in
Section 6.

2. EGC over M2M fading channels with LOS components

In this section, we describe the system model for EGC over narrowband M2M fading
channels under isotropic scattering conditions with LOS components in a dual-hop
cooperative network. In the considered system, we have K mobile relays, which are connected

1 The material in this paper was presented in part at the International Conference on Communications, ICC 2010, Cape
Town, South Africa, May 2010.
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in parallel between the source mobile station and the destination mobile station, as illustrated
in Fig. 1. It can be seen in this figure that the direct transmission link from the source mobile
station to the destination mobile station is also unobstructed.

Source
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Mobile relay #1 Mobile relay #2 Mobile relay #K
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K
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-
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Figure 1. The propagation scenario describing K-parallel dual-hop relay M2M fading channels.

It is assumed that all mobile stations in the network, i.e., the source mobile station, the
destination mobile station, and the K mobile relays do not transmit and receive a signal at
the same time in the same frequency band. This can be achieved by using the time-division
multiple-access (TDMA) based amplify-and-forward relay protocols proposed in [41, 42].
Thus, the signals from the K + 1 diversity branches in different time slots can be combined
at the destination mobile station using EGC.

Let us denote the signal transmitted by the source mobile station as s(t). Then, the signal

r
(0)(t) received at the destination mobile station from the direct transmission link between

the source mobile station and the destination mobile station can be written as

r
(0)(t) = µ

(0)
ρ (t)s(t) + n

(0)(t) (1)

where µ
(0)
ρ (t) models the complex channel gain of the fading channel from the source

mobile station to the destination mobile station under LOS propagation conditions. The

non-zero-mean complex Gaussian process µ
(0)
ρ (t) comprises the sum of the scattered

component µ(0)(t) and the LOS component m
(0)(t) in the direct transmission link from the
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source mobile station to the destination mobile station, i.e., µ
(0)
ρ (t) = µ(0)(t) + m(0)(t). In

addition, n(0)(t) denotes a zero-mean additive white Gaussian noise (AWGN) process with
variance N0/2, where N0 is the noise power spectral density.

Similarly, we can express the signal r(k)(t) received from the kth diversity branch at the
destination mobile station as

r(k)(t) = ς
(k)
ρ (t)s(t) + n

(k)
T (t) (2)

where ς
(k)
ρ (t) (k = 1, 2, . . . , K) represents the complex channel gain of the kth subchannel

from the source mobile station to the destination mobile station via the kth mobile relay

under LOS propagation conditions. Furthermore, n
(k)
T (t) ∀ k = 1, 2, . . . , K is the total noise in

the link from the source mobile station to the destination mobile station via the kth mobile
relay. This noise term is analyzed below.

Each fading process ς
(k)
ρ (t) in (2) is modeled as a weighted non-zero-mean complex double

Gaussian process of the form

ς
(k)
ρ (t) = ς

(k)
ρ1

(t) + jς
(k)
ρ2

(t) = Ak µ
(2k−1)
ρ (t)µ

(2k)
ρ (t) (3)

for k = 1, 2, . . . , K. In (3), each µ
(i)
ρ (t) is a non-zero-mean complex Gaussian process. For

all odd superscripts i, i.e., i = 2k − 1 = 1, 3, . . . , (2K − 1), the Gaussian process µ
(i)
ρ (t)

describes the sum of the scattered component µ(i)(t) and the LOS component m(i)(t) of

the ith subchannel between the source mobile station and the kth mobile relay, i.e., µ
(i)
ρ (t) =

µ(i)(t) + m(i)(t). Whereas, for all even superscripts i, i.e., i = 2k = 2, 4, . . . , 2K, the Gaussian

process µ
(i)
ρ (t) denotes the sum of the scattered component µ(i)(t) and the LOS component

m(i)(t) of the ith subchannel between the kth mobile relay and the destination mobile

station. Each scattered component µ(i)(t) (i = 0, 1, 2, . . . , 2K) is modeled by a zero-mean
complex Gaussian process with variance 2σ2

i . Furthermore, these Gaussian processes are
supposed to be mutually independent, where the spectral properties of each process are
characterized by the classical Jakes Doppler power spectral density. The corresponding

LOS component m(i)(t) = ρi exp{j(2π f
(i)
ρ t + θ

(i)
ρ )} assumes a fixed amplitude ρi, a constant

Doppler frequency f
(i)
ρ , and a constant phase θ

(i)
ρ .

In (3), Ak is called the relay gain of the kth relay. In order to achieve the optimum
performance in a relay-based system, the selection of the relay gain Ak is of critical
importance. For fixed-gain relays under NLOS propagation conditions, Ak is usually selected
to be [41]

Ak =
1

√

E

{

∣

∣

∣
µ
(2k−1)
ρ→0 (t)

∣

∣

∣

2
}

+ N0

(4)

Dual-Hop Amplify-and-Forward Relay Systems with EGC over M2M Fading Channels Under LOS Conditions
http://dx.doi.org/10.5772/55333

203



where E {·} is the expectation operator. Notice that E

{

∣

∣

∣
µ
(2k−1)
ρ→0 (t)

∣

∣

∣

2
}

= 2σ2
2k−1 represents

the mean power of the NLOS fading channel between the source mobile station and the kth

mobile relay. Replacing µ
(2k−1)
ρ→0 (t) by µ

(2k−1)
ρ (t) in (4) allows us to express the relay gain Ak

associated with LOS propagation scenarios as

Ak =
1

√

E

{

∣

∣

∣
µ
(2k−1)
ρ (t)

∣

∣

∣

2
}

+ N0

=
1

√

2σ2
2k−1 + ρ2

2k−1 + N0

. (5)

In practical amplify-and-forward relay systems, the total noise n
(k)
T (t) in the link from the

source mobile station to the destination mobile station via the kth mobile relay has the
following form

n
(k)
T (t) = Ak µ

(2k)
ρ (t)n(2k−1)(t) + n

(2k)(t) (6)

for all k = 1, 2, . . . , K, where n(i)(t) (i = 1, 2, . . . , 2K) denotes a zero-mean AWGN process
with variance N0/2. It is known from the literature (see, e.g., [43] and the references

therein) that the total noise n
(k)
T (t) can be described under NLOS propagation conditions

by a zero-mean complex Gaussian process with variance N0 + 2σ2
2k

N0/
(

2σ2
2k−1 + N0

)

.

It can also be shown that under LOS propagation conditions, the noise process n
(k)
T (t)

is still a zero-mean complex Gaussian process, but the variance changes to N0 +
(

2σ2
2k
+ ρ2

2k

)

N0/
(

2σ2
2k−1 + ρ2

2k−1 + N0

)

.

Finally, the total signal r(t) at the destination mobile station, obtained after combining the

signals r(k)(t) received from K + 1 diversity branches, can be expressed as

r(t) = r
(0)(t) +

K

∑
k=1

r
(k)(t) = Ξρ(t)s(t) + N(t) . (7)

This result is valid under the assumption of perfect channel state information (CSI) at the
destination mobile station. In (7), Ξρ(t) represents the fading envelope at the output of the
EG combiner, which can be written as [7]

Ξρ(t) = ξ(t) +
K

∑
k=1

χ
(k)
ρ (t) =

∣

∣

∣
µ
(0)
ρ (t)

∣

∣

∣
+

K

∑
k=1

∣

∣

∣
ς
(k)
ρ (t)

∣

∣

∣
(8)

where ξ(t) and χ
(k)
ρ (t) are the absolute values of µ

(0)
ρ (t) and ς

(k)
ρ (t), respectively. Thus,

ξ(t) is the classical Rice process, whereas each of the processes χ
(k)
ρ (t) can be identified as

a double Rice process. In (7), N(t) is the total received noise, which is given by N(t) =

n(0)(t) + ∑
K

k=1 n
(k)
T (t).
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3. Statistical analysis of EGC over M2M fading channels with LOS

components

In this section, we analyze the statistical properties of EGC over M2M fading channels under
LOS propagation conditions. The statistical quantities of interest include the PDF, the CDF,
the LCR, and the ADF of the stochastic process Ξρ(t) at the output of the EG combiner.

3.1. PDF of a sum of M2M fading processes with LOS components

Under LOS propagation conditions, the received signal envelope Ξρ(t) at the output of
the EG combiner is modeled as a sum of a classical Rice process and K independent but
not necessarily identical double Rice processes. The PDF pΞρ

(x) of this sum process can

be obtained straightforwardly by solving a (K + 1)-dimensional convolution integral. The
computation of this convolution integral is however quite tedious. It can be further shown
that the evaluation of the inverse Fourier transform of the characteristic function (CF) does
not lead to a simple closed-form expression for the PDF pΞρ

(x). An alternate approach

is to approximate pΞ(x) either by a simpler expression or by a series. Here, we follow the
approximation approach using an orthogonal series expansion. From various options of such
series, like, e.g., the Edgeworth series and the Gram-Charlier series, we apply in our analysis
the Laguerre series expansion [44]. The Laguerre series provides a good approximation for
PDFs that are unimodal (i.e., having a single maximum) with fast decaying tails and positive
defined random variables. Furthermore, the Laguerre series is often used if the first term of
the series provides a good enough statistical accuracy [44].

The PDF pΞρ
(x) of Ξρ(t) can then be expressed using the Laguerre series expansion as [44]

pΞρ
(x) =

∞

∑
n=0

bn e−xxαL L
(αL)
n (x) (9)

where

L
(αL)
n (x) = ex x(−αL)dn

x!dxn

[

e(−x)xn+αL

]

, αL > −1 (10)

denotes the Laguerre polynomial. The coefficients bn can be given as

bn =
n!

Γ(n + αL + 1)

∞
∫

0

L
(αL)
n (x) pΞρ

(x)dx (11)

where x = y/βL, and Γ(·) is the gamma function [45].

Furthermore, we can obtain the parameters αL and βL by solving the system of equations in
[44, p. 21] for b1 = 0 and b2 = 0, which yields

αL =
[

κ2
1/κ2

]

− 1, βL = κ2/κ1 (12a,b)
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where κ1 corresponds to the first cumulant (i.e., the mean value) and κ2 represents the second
cumulant (i.e., the variance) of the stochastic process Ξρ(t). Mathematically, we can express
κn (n = 1, 2) as

κn = κ
(0)
n +

K

∑
k=1

κ
(k)
n (13)

where κ
(0)
n are the cumulants associated with the classical Rice process ξ(t). For n = 1, 2, the

cumulants κ
(0)
n are equal to [46]

κ
(0)
1 = σ0

√

π

2 1F1

(

−

1

2
; 1;−ρ2

0/2σ2
0

)

(14a)

κ
(0)
2 = 2σ2

0

(

1 + ρ2
0/2σ2

0

)

−

π

2
σ2

0

[

1F1

(

−

1

2
; 1;−ρ2

0/2σ2
0

)]2

. (14b)

In (13), κ
(k)
n (k = 1, 2, . . . , K) denote the cumulants of the double Rice process χ

(k)
ρ (t). The

mean value and the variance of χ
(k)
ρ (t) are as follows [37]

κ
(k)
1 = Akσ2k−1σ2k

π

2 1F1

(

−

1

2
; 1;−ρ2

2k−1/2σ2
2k−1

)

1F1

(

−

1

2
; 1;−ρ2

2k/2σ2
2k

)

(15a)

κ
(k)
2 = −

(

Akσ2k−1σ2k
π

2

)2
[

1F1

(

−

1

2
; 1;−ρ2

2k−1/2σ2
2k−1

)

1F1

(

−

1

2
; 1;−ρ2

2k/2σ2
2k

)]2

+A2
k

(

2σ2
2k−1 + ρ2

2k−1

)(

2σ2
2k + ρ2

2k

)

. (15b)

It is imperative to stress that here κ
(k)
n is computed using the expression for Ak given in (5).

In (14a) – (15b), 1F1(·; ·; ·) is the hypergeometric function [45], which can be expanded as

1F1

(

−

1

2
; 1;−

ρ2
i

2σ2
i

)

= e
−

ρ2
i

4σ2
i

[(

1 +
ρ2

i

2σ2
i

)

I0

(

ρ2
i

4σ2
i

)

+
ρ2

i

2σ2
i

I1

(

ρ2
i

4σ2
i

)]

(16)

where In(·) is the nth order modified Bessel function of the first kind [45].

The evaluation of κn in (13) is rather straightforward once we have κ
(0)
n and κ

(k)
n (n = 1, 2)

characterizing ξ(t) and χ
(k)
ρ (t), respectively. Given κn, the quantities αL and βL can easily

be computed using (12a,b). Substituting αL and βL in the Laguerre series expansion leads to
the exact solution for the PDF pΞρ

(x). Note that the first term of the Laguerre series can be

identified as the gamma distribution pΓ(x) [44]. This makes it possible for us to approximate
the PDF pΞρ

(x) of Ξρ(t) to the gamma distribution pΓ(x), i.e.,

pΞρ
(x) ≈ pΓ(x) =

xαL

β
(αL+1)
L Γ(αL + 1)

e
−

x
βL . (17)
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The motivation behind deriving an expression for the PDF pΞρ
(x) of Ξρ(t) is that it can be

utilized with ease in the link level performance analysis of dual-hop cooperative networks
with EGC. This performance analysis, which results in simple closed-form expressions, is
presented in Section 4.

3.2. CDF of a sum of M2M fading processes with LOS components

The probability that Ξρ(t) remains below the threshold level r defines the CDF FΞρ−
(r) of

Ξρ(t) [47]. After substituting (17) in FΞρ−
(r) = 1 −

∫

∞

r pΞρ
(x)dx and solving the integral over

x using [45, Eq. (3.381-3)], we can write the CDF FΞρ−
(r) in closed form as

FΞρ−
(r) ≈ 1 −

1

Γ(αL + 1)
Γ(αL,

r

βL
) (18)

where Γ(·, ·) is the upper incomplete gamma function [45].

3.3. LCR of a sum of M2M fading processes with LOS components

The LCR NΞρ
(r) of Ξρ(t) is a measure to describe the average number of times the stochastic

process Ξρ(t) crosses a particular threshold level r from up to down (or from down to up) in
a second. The LCR NΞρ

(r) can be computed using the formula [48]

NΞρ
(r) =

∞
∫

0

ẋ p
ΞρΞ̇ρ

(r, ẋ)dẋ (19)

where p
ΞρΞ̇ρ

(r, ẋ) is the joint PDF of the stochastic process Ξρ(t) and its corresponding time

derivative Ξ̇ρ(t) at the same time t. Throughout this paper, the overdot represents the time
derivative. The task at hand is to find the joint PDF p

ΞρΞ̇ρ
(r, ẋ). In Section 3.1, we have shown

that the PDF pΞ(x) of Ξ(t) can efficiently be approximated by the gamma distribution pΓ(x).
Based on this fact, we assume that the joint PDF p

ΞΞ̇
(r, ẋ) is approximately equal to the joint

PDF p
ΓΓ̇
(r, ẋ) of a gamma process and its corresponding time derivative at the same time t,

i.e.,

p
ΞρΞ̇ρ

(r, ẋ) ≈ p
ΓΓ̇
(r, ẋ) . (20)

A gamma distributed process is equivalent to a squared Nakagami-m distributed process
[49]. Thus, applying the concept of transformation of random variables [47, p. 244], we
can express the joint PDF p

ΓΓ̇
(x, ẋ) in terms of the joint PDF pNṄ(y, ẏ) of a Nakagami-m

distributed process and its corresponding time derivative at the same time t as

p
ΓΓ̇
(x, ẋ) =

1

4x
pNṄ

(

√
x,

ẋ

2
√

x

)

. (21)
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After substituting pNṄ(y, ẏ) as given in [50, Eq. (13)] in (21), the joint PDF pΓΓ̇(x, ẋ) can be
written as

pΓΓ̇(x, ẋ) =
1

2
√

2πxσ̇

x(m−1)

(Ω/m)mΓ(m)
e
− x

(Ω/m)−
ẋ2

8σ̇2 x (22)

where m, Ω, and σ̇ are the parameters associated with the Nakagami-m distribution. The
result in (22) can be expressed in terms of the parameters of the gamma distribution, i.e., αL

and βL, as

pΓΓ̇(x, ẋ) =
1

2
√

2πβx

xαL

β
(αL+1)
L Γ (αL + 1)

e
− x

βL
− ẋ2

8βx (23)

For a classical Rayleigh fading channel, β is the negative curvature of the autocorrelation of
the inphase and quadrature components of the underlying gaussian processes [46]. Keeping
the expression of β for classical Rayleigh channels in mind, we can intuitively equate β

with π2(κ
(0)
n /κ

(0)
n )( f 2

Smax
+ f 2

Dmax
) + π2(∑K

k=1 κ
(k)
2 / ∑

K
k=1 κ

(k)
1 )( f 2

Smax
+ 2 f 2

Rmax
+ f 2

Dmax
) here. The

quantities fSmax and fDmax represent the maximum Doppler frequencies caused by the motion
of the source mobile station and the destination mobile station, respectively. For simplicity
reasons, the maximum Doppler frequencies caused by the motion of mobile relays are

assumed to be equal such that f
(1)
Rmax

= f
(2)
Rmax

= · · · = f
(K)
Rmax

= fRmax .

Finally, substituting pΞρΞ̇ρ
(r, ẋ) in (19) and solving the integral over ẋ using [45, Eq. (3.326-2)],

we reach a closed-form solution for the LCR NΞρ
(r), i.e.,

NΞρ
(r) ≈

∞
∫

0

ẋ pΓΓ̇(r, ẋ)dẋ =

√

2rβ

π

rαL e
− r

βL

β
(αL+1)
L Γ(αL + 1)

=

√

2rβ

π
pΞρ

(r) (24)

which shows that the LCR NΞρ
(r) is approximately proportional to the PDF pΞρ

(r) of Ξρ(t).

3.4. ADF of a sum of M2M fading processes with LOS components

The ADF TΞρ−
(r) of Ξρ(t) is the expected value of the time intervals over which the stochastic

process Ξρ(t) remains below a certain threshold level r. Mathematically, the ADF TΞρ−
(r) is

defined as the ratio of the CDF FΞρ−
(r) and the LCR NΞρ

(r) of Ξρ(t) [7], i.e.,

TΞρ−
(r) =

FΞρ−
(r)

NΞρ
(r)

. (25)

By substituting (18) and (24) in (25), we can easily obtain an approximate solution for the
ADF TΞρ−

(r).

The significance of studying the LCR NΞρ
(r) and the ADF TΞρ−

(r) of Ξρ(t) lies in the fact that

they provide an insight into the rate of fading of the stochastic process Ξρ(t). The knowledge
about the rate of fading is essential for both the design as well as the optimization of coding
and interleaving schemes to combat M2M fading in the relay links in cooperative networks.
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4. Performance analysis in M2M fading channels with LOS components

and EGC

This section is dedicated to the system’s performance analysis in M2M fading channels with
EGC under LOS propagation conditions. The performance evaluation measures of interest
include the PDF as well as the moments of the SNR, AOF, the average BEP, and the outage
probability.

4.1. Analysis of the SNR

4.1.1. Derivation of the instantaneous SNR expression

We computed the total received signal envelope at the output of the EG combiner Ξρ(t)
and the total received noise N(t) in Section 2. Using these results, we can now express the
instantaneous SNR per bit γEGC(t) at the output of the EG combiner as [51, 52]

γEGC(t) =
Ξ2

ρ(t)

E{N2(t)}Eb (26)

where Eb is the energy (in joules) per bit and E{N2(t)} is the variance of the noise term at
the output of the matched filter. Evaluating E{N2(t)} leads us to

E{N2(t)} = E







(

n(0)(t) +
K

∑
k=1

n
(k)
T (t)

)2






= (K + 1)N0 +
K

∑
k=1

2σ2
2k + ρ2

2k

2σ2
2k−1 + ρ2

2k−1 + N0
N0 . (27)

4.1.2. PDF of the SNR

The PDF pγEGC (z) of γEGC(t) can be obtained using the relation

pγEGC (z) =
1

(Eb/E{N2 (t)}) pΞ2
ρ

(

z

Eb/E{N2(t)}

)

(28)

where pΞ2
ρ
(z) is the squared received signal envelope Ξ2

ρ(t) at the output of the EG combiner,

which can be obtained by a simple transformation of the random variables [47, p. 244] as
follows

pΞ2
ρ
(z) =

1

2
√

z
pΞρ

(
√

z)

≈ 1

2β
(αL+1)
L Γ(αL + 1)

z(
αL−1

2 )e
−

√
z

βL , z ≥ 0 . (29)
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The substitution of (29) in (28) leads us to the approximation for the PDF pγEGC (z) of γEGC(t)
in the following closed form expression

pγEGC (z) ≈
1

2(Eb/E{N2(t)})(
αL+1

2 )

z(
αL−1

2 )

β
(αL+1)
L Γ(αL + 1)

e
−

√
z

βL

√
Eb/E{N2(t)} . (30)

4.1.3. Moments of the SNR

Substituting (30) in m
(n)
γEGC

=
∫ ∞

−∞
zn pγEGC (z)dz and solving the integral over z using [45,

Eq. (3.478-1)] allows us to express approximately the nth moment of the SNR γEGC(t) in
closed form as

m
(n)
γEGC

≈ β2n
L

(

Eb

E{N2(t)}

)n
Γ (αL + 2n + 1)

Γ (αL + 1)
. (31)

4.1.4. Amount of Fading

The AOF is defined as the ratio of the variance σ2
γEGC

and the squared mean value m
(1)
γEGC

of
the SNR γEGC(t), i.e., [26, 53]

AOF =
σ2

γEGC
(

m
(1)
γEGC

)2
=

m
(2)
γEGC

−
(

m
(1)
γEGC

)2

(

m
(1)
γEGC

)2
. (32)

Computing the first two moments of γEGC(t) using (31) and substituting the results in (32)
yields the following closed-form approximation for the AOF

AOF ≈
(

α2
L + 7αL + 12

)

β2
LΓ (αL + 1)− 1 . (33)

4.2. Average BEP

By way of example, we focus on the average BEP Pb of M-ary PSK modulation schemes. The
average BEP Pb over the fading channel statistics at the output of the EG combiner can be
obtained using the formula [51]

Pb =

∞
∫

0

pΞρ
(x)Pb|Ξρ

(x)dx (34)

where Pb|Ξρ
(x) is the BEP of M-ary PSK modulation schemes conditioned on the fading

amplitudes {xk}K
k=0, and x = ∑

K
k=0 xk. Here, the fading amplitude x0 follows the classical
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Rice distribution. Furthermore, the fading amplitudes {xk}K
k=1 are characterized by the

double Rice distribution.

The conditional BEP Pb|Ξρ
(x) of M-ary PSK modulation schemes can be approximated as [54]

Pb|Ξρ
(x) ≈ a

log2 M
Q

(

√

2g log2 MγEGC(x)

)

≈ a

log2 M
Q

(
√

2g log2 M Eb

E{N2(t)} x2

)

(35)

where M = 2b with b as the number of bits per symbol, and Q(·) is the error function [45].
The parameter a equals 1 or 2 for M-ary PSK modulation schemes when M = 2 or M > 2,
respectively, whereas for all M-ary PSK modulation schemes g = sin2 (π/M) [39].

Substituting (17) and (35) in (34) leads to the approximate solution for the average BEP Pb in
the form

Pb ≈ a

log2 M

1

β
(αL+1)
L Γ (αL + 1)

∞
∫

0

xαL e
− x

βL Q

(
√

2g log2 M Eb

E{N2(t)} x2

)

dx . (36)

4.3. Outage Probability

The outage probability Pout(γth) is defined as the probability that the SNR γEGC(t) at the
output of the EG combiner falls below a certain threshold level γth. Substituting (30) in
Pout(γth) = Pr{γEGC ≤ γth} = 1 −

∫

∞

γth
pγEGC (z)dz

Pout (γth) ≈ 1 − 1

Γ (αL + 1)
Γ

(

αL + 1,

√
γth

βL

√

Eb/E{N2(t)}

)

. (37)

5. Numerical results

The aim of this section is to evaluate and to illustrate the derived theoretical approximations
given in (17), (24), (25), (36), and (37) as well as to investigate their accuracy. The correctness
of the approximated analytical results is confirmed by evaluating the statistics of the
waveforms generated by utilizing the sum-of-sinusoids (SOS) method [46]. These simulation

results correspond to the true (exact) results here. The waveforms µ̃(i)(t) obtained from
the designed SOS-based channel simulator are considered as an appropriate model for the

uncorrelated Gaussian noise processes µ(i)(t) making up the received signal envelope at
the output of the EG combiner. The model parameters of the channel simulator have been
computed by using the generalized method of exact Doppler spread (GMEDS1) [55]. Each

waveform µ̃(i)(t) was generated with N
(i)
l = 14 for i = 0, 1, 2, . . . , 2K and l = 1, 2, where

Dual-Hop Amplify-and-Forward Relay Systems with EGC over M2M Fading Channels Under LOS Conditions
http://dx.doi.org/10.5772/55333

211



N
(i)
l is the number of sinusoids chosen to simulate the inphase (l = 1) and quadrature

(l = 2) components of µ̃(i)(t). It is widely acknowledged that the distribution of the absolute

value
∣

∣

∣
µ̃(i)(t)

∣

∣

∣
of the simulated waveforms closely approximates the Rayleigh distribution

if N
(i)
l ≥ 7 (l = 1, 2) [46]. Thus, by selecting N

(i)
l = 14, we ensure that the waveforms

µ̃(i)(t) have the required Gaussian distribution. The variance of the inphase and quadrature

component of µ(i)(t) (µ̃(i)(t)) is equal to σ2
i = 1 ∀ i = 0, 1, 2, . . . , 2K, unless stated otherwise.

The maximum Doppler frequencies caused by the motion of the source mobile station, K
mobile relays, and the destination mobile station, denoted by fSmax , fRmax , and fDmax , were set
to 91 Hz, 125 Hz, and 110 Hz, respectively. The total number of symbols generated for a
reliable evaluation of the BEP curves was 107.

In this section, we have attempted to highlight the influence of a LOS component on the
statistics of the received signal envelope at the output of the EG combiner and the system’s
overall performance. This is done by considering three propagation scenarios called the
full-LOS, the partial-LOS, and the NLOS scenario, denoted by LOSK,K , LOSK,0 (LOS0,K), and
LOS0,0, respectively. Here, K corresponds to the number of mobile relays in the network.
In the full LOS scenario, we have LOS components in the direct link as well as all the
transmission links between the source mobile station and the destination mobile station via
K mobile relays. The scenario in which LOS components are present in only a few links from
the source mobile station to the destination mobile station via K mobile relays is referred to
as the partial-LOS scenario. When LOS components do not exist in any of the transmission
links, we have the NLOS scenario. Whenever, there exists a LOS component in any of the
transmission links, its amplitude ρi is taken to be unity. It is necessary to keep in mind that
there is a direct link between the source mobile station and the destination mobile station, in
addition to the links via K mobile relays. Therefore, the total number of diversity branches
available is K + 1. The presented results in Figs. 2–8 display a good fit of the approximated
analytical and the exact simulation results.

Figure 2 demonstrates the theoretical approximation for the PDF pΞρ
(x) of Ξρ(t) described

in (17). This figure illustrates the PDF pΞρ
(x) under full-LOS, partial-LOS, and NLOS

propagation conditions considering a different number of mobile relays K. It is quite obvious
from the figure that for any value of K, the presence of LOS components increases both the
mean value and the variance of Ξρ(t). Furthermore, for the LOSK,K scenario if K = 1, the

PDF pΞρ
(x) maps to the double Rice distribution as σ2

0 → 0, whereas pΞρ
(x) reduces to the

double Rayleigh distribution for the LOS0,0 scenario. Another important result is that the
PDF pΞρ

(x) of Ξρ(t) tends to a Gaussian distribution if K increases. This observation is in
accordance with the central limit theorem [47]. A close agreement between the approximated
theoretical and the exact simulation results confirms the correctness of our approximation.

The LCR NΞρ
(r) of Ξρ(t) described by (24) is evaluated along with the exact simulation

results in Fig. 3. This figure presents the LCR NΞρ
(r) of Ξρ(t) corresponding to the LOSK,K ,

LOSK,0 (LOS0,K), and LOS0,0 scenarios considering a different number of mobile relays K in
the system. It can be observed that in general, for any value of K, at low signal levels r, the
LOS components facilitate in decreasing the LCR NΞρ

(r). However, at high signal levels r,

the presence of LOS components contributes towards an increase in NΞρ
(r). These results

also illustrate that for all the three considered propagation scenarios, at any signal level r,
(24) closely approximates the exact simulation results if K > 1. This is in contrast to the case
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Figure 2. The PDF pΞρ (x) of the received signal envelope Ξρ(t) at the output of the EG combiner for K + 1 diversity branches
under different propagation conditions.

if K = 1, where (24) holds only for high values of r. We can further deduce from these results
that by increasing K, NΞρ

(r) reduces (increases) at low (high) values of r. It is also worth

noticing that at high values of r, for the LOSK,K scenario if K = 1, as σ2
0 → 0, (24) provides

us with a very close approximation to the exact LCR of a double Rice process given in [37],
whereas it approximates well to the exact LCR of a double Rayleigh process for the LOS0,0

scenario [56].

Figure 4 displays the analytical approximate results of the ADF TΞρ−
(r) of Ξρ(t) described

by (25) along with the exact simulation results. These results clearly indicate that for all
propagation scenarios, i.e., the LOSK,K , LOSK,0 (LOS0,K), and LOS0,0 scenarios, an increase in
the number K of mobile relays results in a decrease of TΞρ−

(r) at all signal levels r. It can also
be observed in Fig. 4 that the presence of the LOS components in all the transmission links
lowers TΞρ−

(r) for all signal levels r and any number K.

The average BEP Pb of M-ary PSK modulation schemes over M2M fading channels with LOS
components and EGC described by (36) is presented in Fig. 5. In this figure, a comparison of
the average BEP Pb of quadrature PSK (QPSK), 8-PSK, as well as 16-PSK modulation schemes
is shown by taking into account K + 1 diversity branches for each modulation scheme. The
average BEP Pb curves associated with the aforementioned modulation schemes in double
Rice channels are also included in Fig. 5. Here, the average BEP Pb is evaluated for the LOSK,K

scenario, i.e., ρi = 1 ∀ i = 0, 1, 2, . . . , 2K. For all modulation schemes, if K = 1, a significant
enhancement in the diversity gain can be observed with the availability of just one extra
transmission link. See, e.g., if the direct link from the source mobile station to the destination
mobile station is not blocked by obstacles, and if there is one relay present in the system, then
it is possible to attain a diversity gain of approximately 21 dB at Pb = 10−3. Increasing the
number K of mobile relays in the system, in turn increases the number of diversity branches
and hence improves the performance. The provision of higher data rates is the characteristic
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Figure 3. The LCR NΞρ (r) of the received signal envelope Ξρ(t) at the output of the EG combiner for K + 1 diversity branches
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(r) of the received signal envelope Ξρ(t) at the output of the EG combiner for K + 1 diversity branches

under different propagation conditions.

feature of higher-order modulation schemes. These modulations are however known to be
more prone to transmission errors. This sensitivity of higher-order modulations towards
transmission errors is visible in Fig. 5 as the average BEP Pb curve associated with QPSK
modulation shifts to the right if 8-PSK or 16-PSK modulation schemes are deployed.
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An EG combiner installed at the destination mobile station makes a receiver diversity system.
In addition to the diversity gain, such systems offer an array gain as well [54]. The array gain
in fact results from coherent combining of multiple received signals. In the context of EGC,
the array gain allows the receiver diversity system in a fading channel to achieve a better
performance than a system without diversity in an AWGN channel with the same average
SNR [54]. Figure 6 includes the theoretical results of the average BEP Pb of QPSK under
full-LOS propagation conditions (i.e., the LOSK,K scenario) with increasing number K of
diversity branches. In the presented results, K ≥ 10 implies that we have at least 11 diversity
branches. Note that in Fig. 6, for K ≥ 10, the dual-hop amplify-and-forward system with
M2M fading channels has a lower error probability than a system in an AWGN channel with
the same SNR. This improved performance is due to the array gain of the EG combiner.

Figure 7 illustrates the impact of the presence of LOS components in the relay links on
the average BEP Pb of M-ary PSK modulation schemes. Keeping the number of diversity
branches constant, e.g., for K = 3, the average BEP Pb of QPSK and 16-PSK modulation
schemes is evaluated for the LOSK,K , LOSK,0 (LOS0,K), and LOS0,0 scenarios. For both QPSK
and 16-PSK modulations, there is a noticeable gain in the performance if the scenario changes
from LOS0,0 to LOSK,K . See, e.g., at Pb = 10−4, a gain of approximately 1.5 dB is achieved
when we have LOSK,0 (LOS0,K) compared to LOS0,0. A further increase of approximately
1 dB in the gain can be seen if LOSK,K conditions are available.
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Figure 6. The average BEP Pb of QPSK modulation schemes over M2M fading channels with EGC for the LOSK,K scenario.
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Finally, the outage probability Pout(γth) described by (37) is evaluated along with the
exact simulation results in Fig. 8. Under full-LOS propagation conditions with the QPSK
modulation scheme employed in our analysis, Pout(γth) is obtained for a different number
of diversity branches. The presented results show a decrease in Pout(γth), which is due to
EGC deployed at the destination mobile station, where the resulting performance advantage
is the diversity gain.

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold Level, γth

O
u
ta
ge

p
ro
b
a
b
il
it
y,

P
o
u
t
(γ

t
h
)

Theory (LOSK,K scenario, approximate solution)

Theory (LOS0,K=LOSK,0 scenario, approximate solution)

Theory (LOS0,0 scenario, approximate solution)

Simulation (exact solution)

K = 10

K = 6

K = 1

Figure 8. The outage probability Pout (γth) in M2M fading channels with EGC under different propagation conditions.

6. Conclusion

This article provides a profound study pertaining to the statistical properties of EGC
over M2M fading channels under LOS propagation conditions in relay-based networks.
In addition vital information about the performance of relay-based cooperative systems
in such channels is made available. The system under investigation is a dual-hop
amplify-and-forward relay communication system, where there exist K mobile relays
between the source mobile station and the destination mobile station. It is further assumed
that the direct link from the source mobile station to the destination mobile station is not
blocked by any obstacles. Such a configuration gives rise to K + 1 diversity branches. The
signals received from the K + 1 diversity branches are then combined at the destination
mobile station to achieve the spatial diversity gain. In order to accommodate the direct link
along with the unbalanced relay links, we have modeled the received signal envelope at the
output of the EG combiner as a sum of a classical Rice process and K double Rice processes.
Furthermore, the classical Rice process and double Rice processes are independent. Note
that these double Rice processes are independent but not necessarily identically distributed.

The statistical analysis is carried out by deriving simple and closed-form analytical
approximations for the channel statistics such as the PDF, CDF, LCR, and ADF. Here,
the Laguerre series expansion has been employed to approximate the PDF of the sum of
classical Rice and K double Rice processes. The advantage of using the Laguerre series is
that this allows to approximate the PDF of the sum process by a gamma distribution with

Dual-Hop Amplify-and-Forward Relay Systems with EGC over M2M Fading Channels Under LOS Conditions
http://dx.doi.org/10.5772/55333

217



reasonable accuracy. The CDF, LCR, and ADF of the sum process are also approximated by
exploiting the properties of a gamma distributed process. Furthermore, the presented results
demonstrate that the approximated theoretical results fit closely to the exact simulation
results. From this fact, we can conclude that the approximation approach outlined in this
study is quite useful, general, and easy to implement. In addition to studying the impact
of the number of diversity branches, we have included in our discussion the influence of
the existence of the LOS components in the transmission links on the statistical properties of
EGC over M2M channels.

The utilization of the presented statistical analysis is then demonstrated in the performance
evaluation of dual-hop multi-relay cooperative systems. In this work, the performance
assessment measures of interest are the PDF as well as the moments of the SNR, AOF, the
average BEP, and the outage probability. The PDF of the SNR is obtained from the previously
derived PDF of the sum process by a simple transformation of random variables. Starting
from the PDF of the SNR, the computation of the moments of the SNR, AOF, and the outage
probability is rather straightforward.
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