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1. Introduction

Fuzzy Cognitive Maps were initially proposed by Kosko [1–3], as an extension of cognitive
maps proposed by Axelrod [4]. FCM is a graph used for representing causal relationships
among concepts that stand for the states and variables of the system, emulating the cognitive
knowledge of experts on a specific area. FCM can be interpreted as a combination of Fuzzy
Logic and Neural Networks, because it combines the sense rules of Fuzzy Logic with the
learning of the Neural Networks. A FCM describes the behavior of a knowledge based
system in terms of concepts, where each concept represents an entity, a state, a variable,
or a characteristic of the system. The human knowledge and experience about the system
determines the type and the number of the nodes as well as the initial conditions of the FCM.

FCM has been considered with great research interest in many scientific fields, such as
political decision [5], medical decision [6, 7], industrial process control [8, 9], artificial life [10],
social systems [11], corporative decision, policy analysis [12], among others.

The knowledge of the experts firstly defines the influence of a concept on the other,
determining the causality relationships. Then, the concept values are qualitatively obtained
by linguistic terms, such as strong, weak, null, and so on. These linguistic variables are
transformed in numerical values using a defuzzification method, for instance, the center of
gravity scheme described in [2].

Hence, in general, experts develop a FCM identifying key concepts, defining the causal
relationships among the concepts, and estimating the strength of these relationships.
However, when the experts are not able to express the causal relationships or they
substantially diverge in opinion about it, data driven methods for learning FCMs may be
necessary.

© 2013 Angélico et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Particularly, this Chapter focuses on the FCM learning using three different population based
metaheuristics: particle swarm optimization (PSO), genetic algorithm (GA) and differential
evolution (DE). Two process control problems described in [8] and [9] are considered in this
work. A complete convergence analysis of the PSO, GA and DE is carried out considering
10000 realizations of each algorithm in every scenario of the studied processes.

The rest of the Chapter has the following organization: Section 2 briefly describes the FCM
modeling and the processes to be controlled. Section 3 considers the PSO, GA and the DE
approaching for FCM learning, while Section 4 shows the simulation results. Lastly, Section
5 points out the main conclusions.

2. FCM modeling in control processes

In FCMs, concepts (nodes) are utilized to represent different aspects and behavior of the
system. The system dynamics are simulated by the interaction of concepts. The concept Ci,
i = 1, 2, . . . , N is characterized by a value Ai ∈ [0, 1].

Concepts are interconnected concerning the underlying causal relationships amongst factors,
characteristics, and components that constitute the system. Each interconnection between
two concepts, Ci and Cj, has a weight, Wi,j, which is numerically represented by the strength
of the causal relationships between Ci and Cj. The sign of Wi,j indicates whether the concept
Ci causes the concept Cj or vice versa. Hence, if:







Wi,j > 0, positive causality

Wi,j < 0, negative causality

Wi,j = 0, no relation

The number of concepts and the initial weights of the FCM are determined by human
knowledge and experience. The numerical values, Ai, of each concept is a transformation of
the fuzzy values assigned by the experts. The FCM converges to a steady state (limit cycle)
according to the scheme proposed in [3]:

Ai (k + 1) = f









Ai (k) +
N

∑
j=1
j 6=i

Wji Aj (k)









, (1)

where k is the interaction index and f (·) is the sigmoid function

f (x) =
1

1 + e−λx
, (2)

that guarantees the values Ai ∈ [0, 1]. λ > 0 is a parameter representing the learning
memory. In this work, λ = 1 has been adopted.
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2.1. First control system (PROC1)

A simple chemical process frequently considered in literature [8, 13, 14], is initially selected
for illustrating the need of a FCM learning technique. Figure 1 represents the process
(PROC1) consisting of one tank and three valves that control the liquid level in the tank.
Valves V1 and V2 fill the tank with different liquids. A chemical reaction takes place into
the tank producing a new liquid that leaves the recipient by valve V3. A sensor (gauger)
measures the specific gravity of the resultant mixture.

������

�� ��

��

Figure 1. PROC1: a chemical process control problem described in [8].

When the value of the specific gravity, G, is in the range [Gmin, Gmax], the desired liquid has
been produced. The height of the liquid inside, H, must lie in the range [Hmin, Hmax]. The
controller has to keep G and H within their bounds, i.e.,

Hmin ≤ H ≤ Hmax; (3)

Gmin ≤ G ≤ Gmax. (4)

The group of experts defined a list of five concepts, Ci, i = 1, 2, . . . , 5, related to the main
physical quantities of the process [8]:

• Concept C1: volume of liquid inside the tank (depends on V1, V2, and, V3);

• Concept C2: state of V1 (closed, open or partially open);

• Concept C3: state of V2 (closed, open or partially open);

• Concept C4: state of V3 (closed, open or partially open);

• Concept C5: specific gravity of the produced mixture.

For this process, the fuzzy cognitive map in Figure 2 can be abstracted [8].
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Figure 2. Fuzzy Cognitive Map proposed in [8] for the chemical process control problem.

The experts also had a consensus regarding the range of the weights between concepts, as
presented in Equations (5a) to (5h).

−0.50 ≤ W1,2 ≤ −0.30; (5a)

−0.40 ≤ W1,3 ≤ −0.20; (5b)

0.20 ≤ W1,5 ≤ 0.40; (5c)

0.30 ≤ W2,1 ≤ 0.40; (5d)

0.40 ≤ W3,1 ≤ 0.50; (5e)

−1.0 ≤ W4,1 ≤ −0.80; (5f)

0.50 ≤ W5,2 ≤ 0.70; (5g)

0.20 ≤ W5,4 ≤ 0.40. (5h)

For this problem the following weight matrix is obtained:

W =













0 W1,2 W1,3 0 W1,5

W2,1 0 0 0 0
W3,1 0 0 0 0
W4,1 0 0 0 0

0 W5,2 0 W5,4 0













. (6)

According to [8], all the experts agreed on the range of values for W2,1, W3,1, and W4,1, and
most of them agreed on the same range for W1,2 and W1,3. However, regarding the weights
W1,5, W5,2, and W5,4, their opinions varied significantly.

Finally, the group of experts determined that the values output concepts, C1 and C5, which
are crucial for the system operation, must lie, respectively, in the following regions:

0.68 ≤ A1 ≤ 0.70; (7a)

0.78 ≤ A5 ≤ 0.85. (7b)
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2.2. Second control system (PROC2)

In [9] it is considered a system consisting of two identical tanks with one input and one
output valve each one, with the output valve of the first tank being the input valve of the
second (PROC2), as illustrated in Figure 3.

�
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�
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�
�

�
�

�
�

������

Figure 3. PROC2: a chemical process control problem described in [9].

The objective is to control the volume of liquid within the limits determined by the height
Hmin and Hmax and the temperature of the liquid in both tanks within the limits Tmin and
Tmax, such that

T
1
min ≤ T

1
≤ T

1
max; (8a)

T
2
min ≤ T

2
≤ T

2
max; (8b)

H
1
min ≤ H

1
≤ H

1
max; (8c)

H
2
min ≤ H

2
≤ H

2
max. (8d)

The temperature of the liquid in tank 1 is increased by a heater. A temperature sensor
continuously monitors the temperature in tank 1, turning the heater on or off. There is also a
temperature sensor in tank 2. When T2 decreases, the valve V2 is open and hot liquid comes
into tank 2.

Based on this process, a FCM is constructed with eight concepts:

• Concept C1: volume of liquid inside the tank 1 (depends on V1 and V2);

• Concept C2: volume of liquid inside the tank 2 (depends on V1 and V2);

• Concept C3: state of V1 (closed, open or partially open);

• Concept C4: state of V2 (closed, open or partially open);

• Concept C5: state of V3 (closed, open or partially open);

• Concept C6: Temperature of the liquid in tank 1;

Heuristic Search Applied to Fuzzy Cognitive Maps Learning
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• Concept C7: Temperature of the liquid in tank 2;

• Concept C8: Operation of the heater.

According to [9], the fuzzy cognitive map in Figure 4 can be constructed.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�	�
�

�	�
�

�	�
�

�	�
�

�	�
�

�	�
�

�	�
�

�	�
�

�	�
�

�	�
�

�	�
�

�	�
�

�	�
�

Figure 4. Fuzzy Cognitive Map proposed in [9] for the chemical process control problem.

It is assumed for PROC2 in this Chapter only causal constraints in the weights between
concepts, where concepts W4,1 and W5,2 are ∈ (−1, 0] and the others have positive causality.
The weight matrix for PROC2 is given by

W =

























0 0 W1,3 W1,4 0 0 0 0
0 0 0 W2,4 W2,5 0 0 0

W3,1 0 0 0 0 0 0 0
W4,1 W4,2 0 0 0 0 W4,7 0

0 W5,2 0 0 0 0 0 0
0 0 W6,3 0 0 0 0 W6,8

0 0 0 W7,4 0 0 0 0
0 0 0 0 0 W8,6 0 0

























. (9)

Finally, the values output concepts, C1, C2, C6 and C7, which are crucial for the system
operation, must lie, respectively, in the following regions:

0.64 ≤ A1 ≤ 0.69; (10a)

0.48 ≤ A2 ≤ 0.52; (10b)

0.63 ≤ A6 ≤ 0.67; (10c)

0.63 ≤ A7 ≤ 0.67. (10d)

Two significant weaknesses of FCMs are its critical dependence on the experts opinions and
its potential convergence to undesired states. In order to handle these impairments, learning
procedures can be incorporated, increasing the efficiency of FCMs. In this sense, heuristic
optimization approach has been deployed as an effective learning method in FCMs [15].
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3. Heuristic FCM learning

A FCM construction can be done in the following manner:

• Identification of concepts and its interconnections determining the nature (positive,
negative or null) of the causal relationships between concepts.

• Initial data acquisition by the expert opinions and/or by an equation analysis when the
mathematical system model is known.

• Submitting the data from the expert opinions to a fuzzy system which output represents
the weights of the FCM.

• Weight adaptation and optimization of the initially proposed FCM, adjusting its response
to the desired output.

• Validation of the adjusted FCM.

This section focuses on the weight adaptation (FCM learning). In [16] a very interesting
survey on FCM learning is provided. The FCM weights optimization (FCM learning) can be
classified into three different methods.

1. Hebbian learning based algorithm;

2. Heuristic optimization techniques, including genetic algorithm, particle swarm
optimization, differential evolution, simulated annealing, etc;

3. Hybrid approaches.

In the Hebbian based methodologies, the FCM weights are iteratively adapted based on a
law which depends on the concepts behavior [10], [17]. These algorithms require the experts’
knowledge for initial weight values. The differential Hebbian learning (DHL) algorithm
proposed by Dickerson and Kosko is a classic example [10]. On the other hand, heuristic
(metaheuristic) techniques tries to find a proper W matrix by minimizing a cost function
based on the error among the desired values of the output concepts and the current output
concepts’ values (13). The experts’ knowledge is not totally necessary, except for the causality
constraints, due to the physical restrictions1. These techniques are optimization tools
and generally are computationally complex. Examples of hybrid approaching considering
Hebbian learning and Heuristic optimization techniques can be found in [18], [19].

There are several works in the literature dealing with heuristic optimization learning. Most
of them are population-based algorithms. For instance, in [8] the PSO algorithm with
constriction factor is adopted; in [20] it is presented a FCM learning based on a Tabu
Search (TS) and GA combination; in [21] a variation of GA named RCGA (real codec-G.A.) is
proposed; in [22] a comparison between GA and Simulated Annealing (SA) is done; in [13]
the authors presented a GA based algorithm named Extended Great Deluge Algorithm.

The purpose of the learning is to determine the values of the FCM weights that will produce
a desired behavior of the system, which are characterized by M output concept values that

1 For instance, a valve cannot be negatively open.
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lie within desired bounds determined by the experts. Hence, the main goal is to obtain a
connection (or weight) matrix

W =
[

Wi,j

]

, i, j = 1, 2, . . . , N, (11)

that leads the FCM to a steady state with output concept values within the specified region.

Note that, with this notation, and defining A = [A1 · · · AN ]⊤, and W = W⊤ + I, with {·}⊤

meaning transposition and I identity matrix, Equation (1) can be compactly written as

A(k + 1) = f (W · A(k)) . (12)

After the updating procedure in (12), the following cost function is considered for obtaining
the optimum weight matrix W [8]:

F(W) =
M

∑
i=1

H
(

min
(

Ai
out

)

− Ai
out

) ∣

∣

∣
min

(

Ai
out

)

− Ai
out

∣

∣

∣

+
M

∑
i=1

H
(

Ai
out − max

(

Ai
out

)) ∣

∣

∣
max

(

Ai
out

)

− Ai
out

∣

∣

∣
, (13)

where H (·) is the Heaviside function, and Ai
out, i = 1, . . . , M, represents the value of the ith

output concept.

3.1. Particle Swarm Optimization

The PSO is a meta-heuristic based on the movement of a population (swarm) of individuals
(particles) randomly distributed in the search space, each one with its own position and
velocity. The position of a particle is modified by the application of velocity in order to reach
a better performance [23, 24]. In PSO, each particle is treated as a point in a W-dimensional
space2 and represents a candidate vector. The ith particle position at instant t is represented
as

xi(t) =
[

xi,1(t) xi,2(t) · · · xi,W (t)
]

. (14)

In this Chapter, each xi,1(t) represents one of the Wi,j in the tth iteration. Each particle retains
a memory of the best position it ever encountered. The best position among all particles until
the tth iteration (best global position) is represented by xbest

g , while the best position of the ith

2 W is the number of FCM connections (relationships).
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particle is represented as xbest
i . As proposed in [25], the particles are manipulated according

to the following velocity and position equations:

vi(t + 1) = ω · vi(t + 1) + φ1 · U1i

(

xbest
g (t)− xi(t)

)

+ φ2 · U2i

(

xbest
i (t)− xi(t)

)

(15)

xi(t + 1) = xi(t) + vi(t + 1), (16)

where φ1 and φ2 are two positive constants representing the individual and global
acceleration coefficients, respectively, U1i and U2i are diagonal matrices whose elements are
random variables uniformly distributed (u.d.) in the interval [0, 1], and ω is the inertial
weight that plays the role of balancing the global search (higher ω) and the local search
(smaller ω).

A typical value for φ1 and φ2 is φ1 = φ2 = 2 [24]. Regarding the inertia weight, experimental
results suggest that it is preferable to initialize ω to a large value, and gradually decrease it.

The population size P is kept constant in all iterations. In order to obtain further
diversification for the search universe, a factor Vmax is added to the PSO model, which is
responsible for limiting the velocity in the range [±Vmax], allowing the algorithm to escape
from a possible local solution.

Regarding the FCM, the ith candidate vector xi is represented by a vector formed by W FCM
weights. It is important to point out that after each particle update, restrictions must be
imposed on Wi,j according to the experts opinion, before the cost function evaluation.

3.2. Genetic Algorithm

Genetic Algorithm is an optimization and search technique based on selection mechanism
and natural evolution, following Darwin’s theory of species’ evolution, which explains the
history of life through the action of physical processes and genetic operators in populations
or species. GA allows a population composed of many individuals to evolve under specified
selection rules to a state that maximizes the “fitness” (maximizes or minimizes a cost
function). Such an algorithm became popular through the work of John Holland in the
early 1970s, and particularly his book Adaptation in Natural and Artificial Systems (1975).
The algorithm can be implemented in a binary form or in a continuous (real-valued) form.
This Chapter considers the latter case.

Initially, a set of P chromosomes (individuals) is randomly (uniformly distributed) defined,
where each chromosome, xi, i = 1, 2, · · · , P consists of a vector of variables to be optimized,
which, in this case, is formed by FCM weights, respecting the constraints. Each variable
is represented by a continuous floating-point number. The P chromosomes are evaluated
through a cost function.

T strongest chromosomes are selected for mating, generating the mating pool, using
the roulette wheel method, where the probability of choosing a given chromosome is
proportional to its fitness value. In this work, each pairing generates two offspring with
crossover. The weakest T chromosomes are changed by the T offspring from T/2 pairing.
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The crossover procedure is similar to the one presented in [26]. It begins by randomly
selecting a variable in the first pair of parents to be the crossover point

α = ⌈u · W⌉ , (17)

where u is an u.d. random variable (r.v.) in the interval [0, 1], and ⌈·⌉ is the upper integer
operator. The jth pair of parents, j = 1, 2, · · · , T/2 is defined as

dadj =
[

xd
j,1 xd

j,2 · · · xd
j,α · · · xd

j,W

]

momj =
[

xm
j,1 xm

j,2 · · · xm
j,α · · · xm

j,W

] . (18)

Then the selected variables are combined to form new variables that will appear in the
offspring

xo
j,1 = xm

j,α − β
[

xm
j,α − xd

j,α

]

;

xo
j,2 = xd

j,α + β
[

xm
j,α − xd

j,α

]

.
(19)

where β is also a r.v. u.d. in the interval [0, 1]. Finally,

offspring1 =
[

xd
j,1 xd

j,2 xd
j,α−1 · · · xo

j,1 xm
j,α+1 · · · xm

j,W

]

offspring2 =
[

xm
j,1 xm

j,2 xm
j,α−1 · · · xo

j,2 xd
j,α+1 · · · xd

j,W

]

.
(20)

In order to allow escaping from possible local minima, a mutation operation is introduced
in the resultant population, except for the strongest one (elitism). It is assumed in this
work a Gaussian mutation. If the rate of mutations is given by Pm, there will be Nm =
⌈Pm · (P − 1) · W⌉ mutations uniformly chosen among (P − 1) · W variables. If xi,w is
chosen, with w = 1, 2, · · · , W , than, after Gaussian mutation, it is substituted by

x′i,w = xi,w +N
(

0, σ2
m

)

, (21)

where N
(

0, σ2
m

)

represents a normal r.v. with zero mean and variance σ2
m.

After mutation, restrictions must be imposed on Wi,j according to the experts opinion, before
the cost function evaluation.

3.3. Differential Evolution

The Differential Evolution (DE) search has been introduced by Ken Price and Rainer
Storn [27, 28]. DE is a parallel direct search method. As in GA, a population with P elements
is randomly defined, where each W-dimension element consists of a x vector of variables to
be optimized (FCM weights in this case) respecting the constraints.
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In the classical DE, a perturbation is created by using a difference vector based mutation,

yi = xr0 + Fe· (xr1 − xr2) , i = 1, 2, · · · , P , (22)

where the real and constant factor Fe (typically ∈ [0.5, 1.0]) controls the gain of the
differential variation. The indexes r0, r1 and r2 are randomly chosen and mutually exclusive.
In this work, an alternative perturbation procedure named DE/current-to-best/1/bin is
considered [28, 29], such that

yi = xi + Fe · (xbest − xi) + Fe · (xr1 − xr2) , i = 1, 2, · · · , P , (23)

There are also other variants of the perturbation procedure [28, 29]. A uniform crossover
operation is applied in order to have diversity enhancement, which mixes parameters of the
mutation vector yi and xi, for generating the trial vector ui:

ui =

{

yi if (r ≤ χ)
xi otherwise

i = 1, 2, · · · , P , (24)

where χ is the crossover constant typically ∈ [0.8, 1.0] and r is a random variable u.d. in the
interval [0, 1). In order to prevent the case ui = xi, at least one component is taken from the
mutation vector yi.

For selecting, the algorithm uses a simple method where the trial vector ui competes against
the target vector xi, such that,

xi(t + 1) =

{

ui(t) if f (ui(t)) ≤ f (xi(t))
xi(t) otherwise

(25)

4. Simulation results

All the simulations were taken considering 104 trials for PROC1 and PROC2. It is worth
noting that PSO, GA and DE input parameters were chosen previously after exhaustive
simulation tests. As a result, optimal or quasi-optimal input parameters for the PSO, GA
and DE heuristic algorithms have been obtained.

4.1. Process PROC1

The adopted values for the input parameters of PSO, GA and DE are summarized on Table
1. DE has less parameter inputs than the other two methods, which is a relative advantage.
Four different scenarios for the process PROC1 were analyzed. The main performance results
for each scenario is described in the next subsections.

4.1.1. Scenario 1

This scenario considers all the constraints on the FCM weights shown in Equations (5a) to
(5h). As mentioned in [8] and also verified here, there is no solution in this case.
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PSO

Population P = 10, 20, 30
Acceleration Coefficients φ1 = 2, φ2 = 0.2
Inertial Weight ω = 1.2
Initial Velocity vi(0) = 0.1
Maximum Velocity Vmax = 2

GA

Population P = 10
Mating Pool T = 2 · round(P/4)
Rate of Mutation Pm = 0.2
Mutation Std. Deviation σm = 0.3

DE

Population P = 10, 20, 30
Crossover Constant χ= 0.9
DE Gain Variation Factor Fe = 0.9

Table 1. PSO, GA and DE input parameters values for PROC1.

4.1.2. Scenario 2

In this scenario, the constraints on the FCM weights W1,5, W5,2, and W5,4 have been relaxed,
since the experts’ opinions have varied significantly. In this case the values of these weights
were allowed to assume any value in the interval [0, 1] in order to keep the causality of
relationships. Tables 2, 3 and 4 present the obtained simulation results for PSO, GA and DE,
respectively.

As can be observed, in the Scenario 2, GA has a better performance than DE and PSO,
achieving convergence without failure with P = 10. PSO has the second best performance,
presenting no convergence errors in 104 independent experiments when P = 20. DE does
not achieve 100% of performance success, even for P = 30, when 63 errors occurred in 104

independent experiments. Figures 5 and 6 present the mean FCM concepts convergence in
the Scenario 2 under 104 trials. Considering the best case simulated for each algorithm (GA
with P = 10, PSO with P = 20 and DE with P = 30), DE and PSO presented similar average
convergence, being faster than GA.

PSO with P = 10

Amax 0.6882 0.8058 0.6203 0.8389 0.8186
Amin 0.6477 0.7297 0.5749 0.6590 0.7800
Aaverage 0.6840 0.7911 0.6178 0.6713 0.8148
Number of Failures: 49
Probability of Success: 0.9951

PSO with P = 20

Amax 0.6882 0.8051 0.6183 0.6967 0.8186
Amin 0.6800 0.7297 0.5750 0.6590 0.7801
Aaverage 0.6838 0.7926 0.6178 0.6730 0.8139
Number of Failures: 0
Probability of Success: 1.0

Table 2. PSO simulation results for Scenario 2, PROC1.
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GA with P = 10

Amax 0.6882 0.8051 0.6183 0.6964 0.8186
Amin 0.6800 0.7297 0.5749 0.6590 0.7800
Aaverage 0.6833 0.7726 0.6123 0.6605 0.8059
Number of Failures: 0
Probability of Success: 1.0

Table 3. GA simulation results for Scenario 2, PROC1.

DE with P = 10

Amax 0.6882 0.8062 0.6217 0.8389 0.8186
Amin 0.6243 0.5563 0.5749 0.6590 0.6590
Aaverage 0.6746 0.7685 0.6074 0.6620 0.8078
Number of Failures: 4372
Probability of Success: 0.5628

DE with P = 20

Amax 0.6882 0.8058 0.6203 0.8389 0.8186
Amin 0.6477 0.5563 0.5749 0.6590 0.7776
Aaverage 0.6810 0.7845 0.6070 0.6616 0.8089
Number of Failures: 537
Probability of Success: 0.9463

DE with P = 30

Amax 0.6882 0.8054 0.6192 0.6965 0.8186
Amin 0.6653 0.5984 0.5749 0.6590 0.7800
Aaverage 0.6819 0.7861 0.6072 0.6614 0.8089
Number of Failures: 63
Probability of Success: 0.9937

Table 4. DE simulation results for Scenario 2, PROC1.
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Figure 5. Mean convergence for (a) PSO, (b) GA and (c) DE in PROC1, Scenario 2 with P = 10.
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Figure 6. Mean convergence in PROC1, Scenario 2 for (a) PSO with P = 20, (b) DE with P = 20 and (c) DE with P = 30.

4.1.3. Scenario 3

In this Scenario, all the weights constrains were relaxed, but the causalities were kept, i.e.,
the value of the weights were fixed in the interval [0, 1] or in the interval [−1, 0), according
to the causality determined by the experts. Table 5 presents the obtained results. As can be
seen, P = 10 was enough for achieving 100% of convergence in GA and PSO. With P = 10,
DE was not able to find the proper solution in 36 trials, resulting in a probability of success
equal to 0.9964, but when P = 20, DE obtained 100% of success. Figure 7 presents the mean

convergence of the concepts in 104 independent experiments. In this scenario, DE presented
the fastest average convergence.
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Figure 7. Mean convergence for Scenario 3 in PROC1 considering (a) PSO with P = 10, (b) GA with P = 10, (c) DE with
P = 10, and (d) DE with P = 20.
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PSO with P = 10

Amax 0.7000 0.8404 0.6590 0.8404 0.8206
Amin 0.6800 0.4339 0.4339 0.6590 0.7800
Aaverage 0.6907 0.6886 0.6112 0.7333 0.8080
Number of Failures: 0
Probability of Success: 1.0

GA with P = 10

Amax 0.7000 0.8404 0.6590 0.8404 0.8206
Amin 0.6800 0.4339 0.4339 0.6590 0.7800
Aaverage 0.6906 0.6496 0.5914 0.7139 0.8027
Number of Failures: 0
Probability of Success: 1.0

DE with P = 10

Amax 0.7189 0.8404 0.6590 0.8404 0.8206
Amin 0.6590 0.4294 0.4277 0.6590 0.6590
Aaverage 0.6896 0.6560 0.5839 0.7209 0.8060
Number of Failures: 36
Probability of Success: 0.9964

DE with P = 20

Amax 0.7000 0.8404 0.6590 0.8404 0.8206
Amin 0.6800 0.4339 0.4339 0.6590 0.7800
Aaverage 0.6897 0.6557 0.5848 0.7204 0.8074
Number of Failures: 0
Probability of Success: 1.0

Table 5. GA, PSO and DE simulation results for Scenario 3, PROC1.

4.1.4. Scenario 4

In this situation, the causality and the strength of the causality were totally relaxed. PSO and
GA algorithms were able to determine proper weights for the connection matrix with P = 10,
and DE did not have success in only 4 experiments, resulting in a probability of success
equal to 0.9996. When P = 20, DE did not presented convergence errors. Table 6 presents

the obtained results, while Figure 8 presents the mean convergence of the concepts in 104

independent experiments. As in Scenario 3, DE presented the fastest average convergence,
while GA and PSO presented similar average convergence speed.

4.2. Process PROC2

For this process the value of the weights were fixed in the interval [0, 1] or in the interval
[−1, 0), according to the causality determined by the experts. The adopted input simulation
parameters for PSO, GA and DE algorithms were the same considered in PROC1, except for
the population size in PSO that was assumed P = 10 and P = 20.

Table 7 summarizes the simulation results, while Figures 9 and 10 present the mean

convergence of the concepts value considering 104 independent experiments. As can be
seen, P = 10 was enough for achieving convergence rate of 100% in GA. With P = 10,
PSO presented 30 failures and probability of success equal to 0.9970, while DE presented 897
failures and probability of success equal to 0.9103. However, with P = 20, both PSO and DE
were able to achieve 100% of success. For this process, DE has a faster average convergence
than PSO and GA, being PSO the second fastest.
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Figure 8. Mean convergence for Scenario 4 in PROC1 considering (a) PSO with P = 10, (b) GA with P = 10, (c) DE with

P = 10, and (d) DE with P = 20.
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Figure 9. Mean convergence for (a) PSO, (b) GA and (c) DE in PROC2 with P = 10.
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Figure 10. Mean convergence for (a) PSO and (b) DE in PROC2 with P = 20.
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PSO with P = 10

Amax 0.7000 0.9199 0.8206 0.8404 0.8206
Amin 0.6800 0.2129 0.4339 0.3952 0.7800
Aaverage 0.6901 0.6908 0.6767 0.6777 0.8101
Number of Failures: 0
Probability of Success: 1.0

GA with P = 10

Amax 0.7000 0.9192 0.8206 0.8404 0.8206
Amin 0.6800 0.2130 0.4339 0.3952 0.7800
Aaverage 0.6905 0.6154 0.6371 0.6306 0.8030
Number of Failures: 0
Probability of Success: 1.0

DE with P = 10

Amax 0.7166 0.9199 0.8206 0.8404 0.8229
Amin 0.6800 0.2112 0.4285 0.3948 0.7628
Aaverage 0.6901 0.6087 0.6358 0.6232 0.8084
Number of Failures: 4
Probability of Success: 0.9996

DE with P = 20

Amax 0.7000 0.9199 0.8206 0.8404 0.8206
Amin 0.6800 0.2129 0.4338 0.3952 0.7800
Aaverage 0.6902 0.6061 0.6311 0.6227 0.8102
Number of Failures: 0
Probability of Success: 1.0

Table 6. GA, PSO and DE simulation results for Scenario 4, PROC1.

5. Conclusions

There are in the literature, several models based on fuzzy cognitive maps developed and
adapted to a large range of applications. The use of learning algorithms may be necessary for
obtaining proper values for the weight matrix and reducing the dependence on the experts’
knowledge.

Within this context, this Chapter presented a comparison of three heuristic search
approaches, PSO, GA and DE, applied to FCM weight optimization in two processes control.
In all the considered cases, GA presented a performance in terms of probability of success
better or equal to the other two schemes, being PSO the second best technique in terms of
probability of success in the two considered processes.

Specially in scenario 2 of PROC 1, when there are several weight constraints, GA achieved
100% of success in 104 independent experiments with a population of 10 chromosomes. PSO
needed P = 20 particles in the population in order to reach 100% of success. DE was not
able to achieve 100% of success even for P = 30.
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PSO with P = 10

Amax 0.7040 0.6590 0.9029 0.9407 0.8134 0.7234 0.6700 0.8153
Amin 0.6400 0.4130 0.6590 0.6590 0.6590 0.6590 0.6590 0.6590
Aaverage 0.6592 0.5006 0.7079 0.7221 0.6809 0.6593 0.6592 0.6850
Number of Failures: 30
Probability of Success: 0.9970

GA with P = 10

Amax 0.6800 0.5200 0.9038 0.9409 0.7870 0.6700 0.6700 0.8153
Amin 0.6400 0.4800 0.6590 0.6590 0.6590 0.6590 0.6590 0.6590
Aaverage 0.6596 0.5014 0.7500 0.7717 0.7055 0.6596 0.6596 0.7082
Number of Failures: 0
Probability of Success: 1.0

DE with P = 10

Amax 0.7523 0.6591 0.9120 0.9477 0.8134 0.7608 0.7530 0.8271
Amin 0.5747 0.4472 0.6590 0.6590 0.6590 0.6590 0.6590 0.6590
Aaverage 0.6597 0.5046 0.7553 0.7808 0.7026 0.6632 0.6632 0.7097
Number of Failures: 897
Probability of Success: 0.9103

PSO with P = 20

Amax 0.6800 0.5200 0.9040 0.9411 0.7869 0.6700 0.6700 0.8154
Amin 0.6400 0.4800 0.6590 0.6590 0.6590 0.6590 0.6590 0.6590
Aaverage 0.6594 0.5002 0.7116 0.7267 0.6813 0.6594 0.6593 0.6865
Number of Failures: 0
Probability of Success: 1.0

DE with P = 20

Amax 0.6800 0.5200 0.9043 0.9427 0.7870 0.6700 0.6700 0.8154
Amin 0.6400 0.4800 0.6590 0.6590 0.6590 0.6590 0.6590 0.6590
Aaverage 0.6595 0.5003 0.7548 0.7827 0.7015 0.6608 0.6608 0.7124
Number of Failures: 0
Probability of Success: 1.0

Table 7. GA, PSO and DE simulation results for PROC2.

In most scenarios, DE has presented a faster convergence in comparison to PSO and GA, but
the population size needed in DE was higher than the other two methods.
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