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1. Introduction

In the last two decades, the mobile communications technologies and the Internet have grown
almost exponentially, reaching a significant numbers of subscribers around the world. The
mobile cellular service got a very large growth of users along with the increase of mobile data
services. On the other hand, the Internet provides a great opportunity for users to access the
information via fixed and/or wireless networks.

In this scenario, stands out the spread spectrum communication techniques that until the
mid-80 were restricted to military applications and is currently in a final technological
consolidation phase through the cellular mobile communication systems of third and fourth
generations used throughout the world [1].

Such multiple access-based systems use a matched filter bank to detect the interest signal,
being however unable to recover the signal in an optimal way, regardless is affected by
additive white Gaussian noise (AWGN), flat fading or selective fading channels, since the
direct sequence code division multiple access (DS/CDMA) signal is corrupted by multiple
access interference (MAI) and severely affected by the near-far effect, resulting in a system
whose capacity may remain remarkably below the channel capacity [2] if specific techniques
are not introduced to mitigate these effects, such as multiuser detection (MuD) [3], diversity
exploration [4, 5] and so forth.

Thus, one of the biggest challenges in the multiuser communication systems development
is the interference mitigation. This challenge becomes obvious to the modern and current
wireless networks like cellular networks, wireless local area network (WLAN) and wireless
metropolitan area network (WMAN), due to the high spectral efficiency need, requiring
advanced techniques for frequency reuse and interference mitigation.

The third and fourth generations of cellular mobile systems and wireless networks were
designed to support many services through the use of multirate transmission schemes,
different quality of service (QoS) requirements and multidimensional diversity (time,
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frequency and space). Thus, modern systems must accept users transmitting simultaneously
in different rates in asymmetric traffic channels (uplink and downlink may be required to
work at different rates), and also ensure the minimum specifications of QoS for each offered
service.

Hence, current industry standards for wireless networks use a combination of the following
techniques to improve the frequency spectrum efficiency: multicarrier, spread spectrum,
multiple antennas, spatial multiplexing and coding, reinforcing researches in order to
improve the capacity of these systems, considering efficient transmission schemes, multiple
diversity combination, multiuser detection methods, among others.

1.1. Multiuser detection

One way to reduce substantially the interference and increase spread spectrum system
capacity consists in modifying the detection strategy, using the information of other
interfering users signals for detection process of interest user information. This strategy
is called multiuser detection (MuD) [3, 6, 7].

In MuD strategy, active user information in the system are used together in order to better
detect each individual user, increasing the system performance and/or capacity.

From the 1986 pioneering Verdu’s work [3, 6] on optimum multiuser detector (OMuD) to
a wide variety of multiuser detectors aiming to improve the performance obtained with
the conventional detector in multiple access systems, a remarkable advance in the field has
been achieved in the last twenty years. However, given the exponential complexity of the
optimum detector, the research efforts has been focused on the development of sub-optimal
or near-optimal multiuser detectors with lower complexity.

Alternatives to OMuD include the classical linear multiuser detectors such as Decorrelator [3]
and the minimum mean square error (MMSE) [8], the nonlinear MuDs, such as interference
cancellation (IC) [9, 10] and zero forcing decision feedback (ZF-DFE) detector [11], and
heuristics-based multiuser detectors [12, 13].

However, both classical linear MMSE and Decorrelator multiuser detector algorithms
presents two drawbacks; a) for practical system scenarios, both MuD result in performance
degradation regarding OMuD; b) they need to perform a correlation matrix inversion, which
implies in a high complexity for practical wireless systems with a high number of active
users and/or systems with real-time detection in with the active number of users randomly
and quickly changes along the time.

The operation principle for the non-linear classical IC and ZF-DF multiuser detectors is the
reconstruction of MAI estimates, followed by cancellation (subtraction) for the interest user
signal. The operations of MAI reconstruction and cancellation can be repeated in a multistage
structure, resulting in more reliable signals canceling each new stage when estimates can
be obtained with relative accuracy. The complexity of these detectors increases with the
number of necessary stages for demodulation and after a certain number of stages there is
no significant performance gain due to the propagation of interference estimation error. This
limits the performance of these algorithms. Although the advantage of lower complexity
regarding the MMSE and Decorrelator, performance achieved by the non-linear subtractive
MuD detectors remain below the MMSE detector for almost all practical interest scenarios.
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1.2. Heuristics applied to communication systems

In the last decade, the literature has been collecting sub-optimal solutions proposals based
on iterative algorithms and heuristics, particularly evolutionary and local search, applied
to inherent multiple access communication systems problems, among which we could cite
the following heuristic solutions: optimal multiuser detection [12–19]; spreading sequences
selection [20, 21]; parameter estimation, particularly the channel coefficients estimation,
delay and power users [19, 22, 23]; power control problem [24, 25]; and resource allocation
optimization [26–28].

However, in recent years, the multiuser detection optimization problem in a single
DS/CDMA system have been changed for others more complex applications, such as
systems with multiple transmit and receive antennas, multirate coded systems with different
quality-of-services, and multicarrier CDMA systems.

Differently from the most results reported in the literature, this chapter considers a
multidimensional approach which aims to recover optimally (or very close to the optimal
point) all the information of all users within the same processing window, considering
multipath channels with different power-delay profiles, data rates, time or space-time coding,
multiple antenna and multicarrier. In dealing with this sort of system, it will possible to
provide various high-rate user’s services including voice, data and video under a scenario
with growing scarceness of spectrum and energy.

Moreover, to establish quality criteria that meet the acceptance requirements of the scientific
community and telecommunications industry standards, this work analyzes convergence and
performance aspects of a wide representative heuristic algorithms, considering metrics such
as stability, capacity, control and implementation aspects, as well as the algorithm complexity
in relation to conventional topologies.

However, aiming at the multidimensional optimization analysis for high performance
systems, various techniques based on heuristic algorithms are deployed in this work.
Heuristic algorithms have been applied in several optimization problems, showing excellent
results in large combination problems for practical cases. Still, there is an inherent difficulty
in selecting and setting up the algorithm steps, since correct choices will result in good
performances, and contrary, a poorly calibrated parameters may result in a disastrous
performance.

Therefore, the manipulation of several variables associated with each heuristic algorithm
requires knowledge of the problem to be optimized, experience and keen perception of
the algorithm behavior when selecting the parameters. Often, the parameters used are
appropriate only for very restrictive settings, and frequently there are no consensus on
the (sub-)optimal input parameters to be adopted or even the more conducive internal
strategies to adjust those input parameters. Thus, parameters are chosen by past accumulated
experience in dealing with other optimization problems or even through non-exhaustive trial
tests. This scenario has resulted in a somewhat distrust level of such alternatives application
in optimization problems that commonly arise in communications systems.

Thus, the motivation in pursuit of heuristic algorithms to ensure optimal performance is
the core of this chapter. To do so, it will be analyzed in a systematic way the main
meta-heuristic and hyper-heuristic algorithms deployed in wireless systems, which may
be mentioned the genetic algorithm, evolutionary programming, local search (k-optimum),
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simulated annealing, heuristic algorithm based on Tabu list and a hyper-heuristic-basis
selection.

2. System characteristics

Considering the provision of various services with high quality, we opted a
transmission/reception scheme that adds several dimensions in order to explore diversity.
Figure 1 shows the transmitter and receiver topologies deployed in this work. Hence,
lets consider the k-th user transmitter and noting that the channel coding stage is
necessary to correct the received signal in the presence of errors through the use
of redundancy (code diversity). The multirate modulation block aims to ensure the
provision of various services to users at different data rates, ensuring the possibility of
optimum resource management strategies. The time-spreading code guarantees a rejection
level of multiple access interference, and the identification of each DS/CDMA user as
well, acting as a kind of time-diversity. The frequency spreading block implements
frequency-diversity through the information transmission on different sub-carriers. Finally,
the multiple-input-multiple-output (MIMO) antennas block deploys techniques that provide
spatial-diversity, either through simple arrangements with various antennas or even by
space-time block code (STBC) or trellis code.
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Figure 1. Communication system overview with use of space, time, frequency and coding diversities.

The transmitted signal of the k-th user propagates through a channel whose model includes
attenuation of small and large scale, i.e., path loss, shadowing and multipath effects.

The k-th user signals at the receiver input are demodulated via an antenna array in order to
exploit spatial diversity. Structures can be used with several receiving antennas physically
separated by a sufficient distance to avoid overlapping signals and block-basis or trellis-basis
signal processing techniques. Subsequently, the signals are despread in frequency and time
ensuring the channel rejection and multiple access interference rejection, respectively. At this
point, it is evident the frequency- and time-diversity exploitation. Thus, the demodulated
signals are reassembled considering the k-th user transmission rates. This receptor is known
as Rake receiver. Finally, the signals are decoded by means of particular techniques, resulting
in a type of diversity code.
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2.1. Received signal in multipath MIMO channels

Considering the reverse link and assuming a set of bits transmitted (frame) consisting of I
bit for each multirate user, the resulting signal propagates through G independent Rayleigh
fading paths. Thus, the equivalent baseband received signal (assuming ideal low-pass filter)
in one of the antennas is:

rnRx (t) =
I−1
∑

i=0

K(g)

∑
k=1

G
∑

g=1

[

M
∑

m=1

m(g)

∑
j=1

A
′

k,gx
(i)

k(g) [j] s
(g)
Ck (t − jT) s

(g)
k

(

t − τ
(g)
k,ℓ − iT

)

·

·s
(g)
Fk,mcos

(

2π fmt + φ
(g)
k,m

)]

∗ h
(i)
k,g (t) + η (t)

(1)

where K(g) is the number of physical users belonging to g-th multirate group being

K = K(1) + K(2) + . . . + K(g) + . . . + K(G) the total number of active users in the physical
system, divided into g user groups of same rate, t ∈ [0, T], M represents the number of
subcarriers, the amplitude Ak,g′ is the amplitude of the received k-th user of g-th multirate

group, including the effects of path loss and shadowing channel, and assumed constant over

the I bits transmitted base rate, x
(i)

k(g) [j] ∈ {±1} is the symbol of coded information passed
to the i th symbol interval; sCk, sk and sFk,m represent the sequences of channeling, time and

frequency spread, respectively, τ
(g)
k,ℓ is the random delay, φ

(g)
k,m corresponds to the initial k-th

user; fm represents the respective subcarriers frequencies; hk,g is the impulse response of the
channel and the term η(t) is the AWGN with bilateral power spectral density equal to N0/2.

The k-th user delay of g-th multirate group takes into account the nature of the asynchronous

transmission, d
(g)
k , as well as the propagation delay, ∆

(g)
k,ℓ for k-th user, ℓ-th path, g-th multirate

group, resulting in:

τ
(g)
k,ℓ = ∆

(g)
k,ℓ + d

(g)
k (2)

The channel impulse response to the k-th user of g-th multirate group in the range of i-th bit
can be written as:

h
(i)
k,g (t) =

L

∑
ℓ=1

c
(i)
k,ℓ,gδ

(

t − ∆
(g)
k,ℓ − iT

)

(3)

where c
(i)
k,ℓ,g = β

(i)
k,ℓ,ge

jφ
(i)
k,ℓ,g indicates the complex channel coefficient for the k-th user of g-th

multirate group, ℓ-th path and δ(t) is the unit impulse function. It is assumed that the phase

of c
(i)
k,ℓ,g have an uniform distribution φ

(i)
k,ℓ,g ∈ [0, 2π) and the module channel β

(i)
k,ℓ,g represents

the small-scale fading envelope with a Rayleigh distribution.

Additionally, we considered normalized channel gain for all users, i.e., E

[

L
∑
ℓ=1

|ck,ℓ,g|
2

]

= 1

for ∀k, g, i.
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Therefore, we can rewrite the received signal in each ARx antennas replacing the eq.(3) into
eq. (1), resulting in:

rnRx (t) =
I−1
∑

i=0

K(g)

∑
k=1

G
∑

g=1

M
∑

m=1

m(g)

∑
j=1

L
∑
ℓ=1

A
′

k,g,ℓx
(i)

k(g) [j] s
(g)
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(g)
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(
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)

·

· s
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(
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(g)
k,m

)

c
(i)
k,ℓ,gδ(t − ∆

(g)
k,ℓ − iT) + ηnRx (t)

(4)

For simplicity and without generality loss, we consider ordered random delays, i.e.:

0 = τ
(1)
1,1 ≤ τ

(1)
1,2 ≤ · · · τ

(1)
1,L ≤ τ

(1)
2,1 ≤ · · · ≤ τ

(1)

K(1) ,L
≤ . . . τ

(G)

K(G) ,L
< T (5)

2.2. Conventional SIMO detection systems

Considering the system with only one transmission antenna, one can rewrite eq. (4)
considering just the nRx-th receiving antenna and m-th subcarrier as:

rnRx ,m(t) =
I−1

∑
i=0

K(g)

∑
k=1

G

∑
g=1

m(g)

∑
j=1

L

∑
ℓ=1

Ak,g,ℓ x
(i)
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(g)
Ck (t − jT) s

(g)
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(g)
k,ℓ iT) s
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Fk,m ·

· β
(i)
k,ℓ,g,m e

(ωmt+ϕ
(i)
k,ℓ,g,m) + ηnRx (t)

(6)

where ηq(t) corresponds to the Additive White Gaussian Noise (AWGN) for nRx-th receiving
antenna.

For multipath fading channels, multirate and multicarrier scheme, the receiver for each
subcarrier demodulation use the Rake receiver consisting of a bank of KD matched filters to
the multirate physical users spread sequences with path diversity order1 D ≤ L, followed by

the second despreading (channeling) aiming recovering m(g) simultaneously transmitted bits
in parallel channels. To be able achieve a perfect synchronism (maximum auto-correlation)
of spread sequence at the receiver must use delay accurate estimates for the ℓ-th path of the

k-th user of g-th multirate group, τ̂
(g)
k,ℓ . Performance is degraded proportionally when there

are errors in the delays estimates.

Thus, the m(g) matched filter outputs for the k-th physical user, g-th multirate group and
corresponding to ℓ-th multipath component, m-th subcarrier and nRx-th antenna, sampled at
the end of basic information period T of i-th interval symbol can be expressed as:

y
(i)
k,ℓ,g,nRx ,m[j] =

1√
NC

T∫

0

rnRx ,m (t) s
(g)
k

(

t − τ
(g)
k,ℓ − iT

)

s
(g)
Ck (t − jT) s

(g)
Fk,me(−ωmt)dt

= A
′

k,gTc
(i)
k,ℓ,g,m x

(i)

k(g) [j]
︸ ︷︷ ︸

(I)

+ SI
(i)
k,ℓ,g,nRx ,m

︸ ︷︷ ︸

(I I)

+ MAI
(i)
k,ℓ,g,nRx ,m

︸ ︷︷ ︸

(I I I)

+ n
(i)
k,ℓ,g,nRx ,m

︸ ︷︷ ︸

(IV)

(7)

1 If D < L, in each Rake receiver the matched filters to spread sequences are synchronized to D energy major paths.
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where j = 1 : m(g). The first term corresponds to the desired signal, the second term to the
self-interference (SI), the third to the MAI on the ℓ-th multipath component of the k-th user of
g-th multirate group, m-th subcarrier and nRx-th antenna, as well the last term corresponds
to the filtered AWGN.

In this case, the Rake receiver combines the outputs of the matched filters bank available for
each user (fingers)2 and weighted by the respective channel gains [29]. The Maximal Ratio
Combiner (MRC) combines the signals from the D correlators in coherent way:

ŷ
(i)
k,g =

D

∑
ℓ=1

ARx

∑
nRx=1

M

∑
m=1

ℜ

{

y
(i)
k,ℓ,g,nRx ,m β̂

(i)
k,ℓ,g,nRx ,me

−jφ̂
(i)
k,ℓ,g,nRx ,m

}

(8)

where ℜ{.} is the real part operator, β̂
(i)
k,ℓ,g,nRx ,m and φ̂

(i)
k,ℓ,g,nRx ,m are the magnitude and phase

estimates of the channel coefficients, respectively, for the i-th processing interval for the
k-th user, ℓ-th path, g-th multirate group, nRx-th antenna and m-th subcarrier. Again, the
performance is degraded proportionally when there are errors in the channel estimates.

Finally, the estimates for the m(g) information symbols of k-th user of g-th multirate group
are obtained through an abrupt decision rule:

x̂
(i)
k,g = sgn

(

ŷ
(i)
k,g

)

(9)

Therefore, the estimated symbol frame for all users in the range of i-th bit with DKv × 1
dimension is given by:

x̂(i) =
[

x̂
(i)
1,1 x̂

(i)
2,1 . . . x̂

(i)

K(1) ,1
. . . x̂

(i)
1,G x̂

(i)
2,G . . . x̂

(i)

K(G) ,G

]T
(10)

The performance obtained with the MRC Rake receiver will be deteriorated considerably
when the number of users sharing the same channel grow3 and/or when the interfering
users power increase.

2.3. Optimum multiuser detector

The best performance among the multiuser detectors is achieved with OMuD, where the goal
is to maximize the maximum likelihood function [3]. Given the conditional probability:

Pr

(

y(i)|x̂(i), i ∈ [0, I − 1]
)

= e

{

− 1
2σ2

∫ I−1

i=0 [y(i)−St(x̂(i))]
2
dt
}

(11)

2 In addition to multipath effects, multiple subcarriers and multiple receiving antennas.
3 Increasing the MAI, third term of eq. (7).
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where the total received signal, reconstructed from the estimated parameters and known at
the receiver is:

St

(

b̂(i)
)

=
K(g)

∑
k=1

G

∑
g=1

M

∑
m=1

m(g)

∑
j=1

ARx

∑
nRx=1

L

∑
ℓ=1

A
′

k,g,ℓ,nRx
x̂
(i)
k,gs

(g)
Ck (t − jT)s

(g)
k

(

t − τ
(g)
k,ℓ,nRx

− iT
)

·

· s
(g)
Fk,m β̂

(i)
k,ℓ,g,nRx

e
j
(

ωmt+φ̂
(i)
k,ℓ,g,nRx

)

(12)

In this context, the maximum likelihood vector that must be found by OMuD has DKv × 1
dimension, and by:

x̂ =
[

x̂(0)
T

x̂(1)
T

x̂(2)
T

. . . x̂(I−1)T
]T

(13)

Note that the minimum square difference exists in eq. (11) ensures the maximization of the
maximum likelihood function. Expanding the quadratic difference in eq. (11), based on the

output of the matched filter, vector y(i), find the maximum likelihood vector x̂ is equivalent
to selecting the bit vector B, with same size, which maximizes the Log Likelihood Function
(LLF) [3]:

Ω (B) = 2
ARx

∑
nRx=1

ℜ
{

BTCHAY
}

−BTCARACHB (14)

where each matrix must be determined for each receiving antenna and (·)H refers to the
Hermitian transpose operator.

The diagonal channel coefficients and amplitudes matrices4 for nRx-th receiving antenna of
DKv I dimension are defined, respectively, by:

C = diag
[

C(0) C(1) C(2) . . . C(I−1)
]

(15)

A = diag
[

A(0) A(1) A(2) . . . A(I−1)
]

(16)

The output vector of the matched filter (MFB), composed by I vectors y(i) with dimension
DKv I × 1 is given by:

Y =
[

y(0) y(1) y(2) . . . y(I−1)
]T

(17)

In general, the MFB output vector Y is deployed as initial guess in the LLF cost function, eq.
(14) when a heuristic multiuser detection is performed. The general rule should be ensure
the maximization of the cost function, considering the same Y for all receiving antennas.

4 To simplify the notation, hereafter we have omitted the matrix index nRx .
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Finally, the block Toeplitz tridiagonal correlation matrix R, dimension DKv I × DKv I, is
defined as [3]:

R =




R [0] RT [1] 0 · · · 0 0

R [1] R [0] RT [1] · · · 0 0

0 R [1] R [0]
. . . 0 0

...
...

. . .
. . .

. . .
...

...
...

...
. . . R [0] RT [1]

0 0 0 · · · R [1] R [0]




(18)

Therefore, the complete frame for the I estimated symbols from all Kv users can be obtained
by optimizing eq. (14), resulting in:

x̂ = arg

{
max

B∈{±1}Kv I

[Ω (B)]

}
(19)

The OMuD consists in finding the best data symbols vector in a set with all the possibilities,
i.e., it is a NP-complete combination problem [30], which the traditional algorithms are
inefficient. Most of these result in exponential complexity growth when one or more of the
following factors: number of users, frame, number of receiver antennas, number of paths,
number of subcarriers, among others increase.

Therefore, the use of heuristic methods for this class of problems shows up attractive, since it
is possible to obtain optimal solutions (or near-optimal) using reduced search spaces. Thus,
the proposed strategy in this Chapter aiming for maximize the LLF by testing different
candidates symbols vectors at each new iteration/generation of heuristic algorithms. Such
attempts seek to maximize the system average performance, approaching or even equaling
that obtained by OMuD, but with remarkable reduction in the computational complexity.

3. Heuristic algorithms

This section presents a brief review of heuristic algorithms, specifically local and evolutionary
search, describing variants and required parameters. Such variants include encoding
(mapping) problem, initialization algorithms step (parameters choice), cost function
evaluation, search space scanning step, and replacement candidates step. For the analysis,
1-opt and k-opt local search, simulated annealing, short-term and reactive Tabu search,
genetic, as well evolutionary programming algorithms have been considered in this work.

3.1. Encoding problem

The encoding for MuD problem is inherently binary, because the data vector is naturally
binary. Therefore, following the Keep it Simple (KIS) principle as much as possible, it is
not necessary to perform an encoding (mapping) of candidate solutions differently to binary
form. Thus, these candidates vectors will be directly represented by the information bits that
will be tested by the cost function, considering only polarized binary encoding, i.e., for each
candidate position of the vector Y is able to assume just only one value in the set {±1}.
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3.2. Search space definition

After the encoding step, we must define the problem search space, in which case the MuD
problem is characterized by all possible combinations bits that users can transmit. In this
case, for Kv virtual users transmiting I bits through a multipath channel with L paths and D
processing signal branches at the receiver, the total search universe, considering optimizing
the output of matched filter and signals combination from multirate users, is a binary set of
dimension:

Θ (Kv, I, D) = 2DKv I , with 1 ≤ D ≤ L. (20)

It is evident that for the proposed MuD problem, a total search universe should result smaller
than 2DKv I , since each transmitted bit must be detected in a way that results in a same
estimated bit value for all D processing branches, namely:

b̂
(i)
k,1,g = b̂

(i)
k,2,g = ... = b̂

(i)
k,D,g ∈ {+1,−1} (21)

This implies that the search universe covered by the heuristic MuD algorithm should be
independent of the number of paths, resulting in:

Θ (Kv, I) = 2Kv I (22)

As a result, the universe of possible solutions is then formed by all vectors candidates that
satisfy (21).

The other possibilities belong to the so-called forbidden universe, composing the non-tested
candidates set into a heuristic methodology. This guarantees the final solution quality in
MuD problem with multipath diversity, because it enable a correct estimate for all paths of
the same transmitted bit could be made.

3.3. Evolutionary Programming (EP) algorithms

The evolutionary heuristic algorithms methods are non-deterministic search mechanisms
based on natural selection and evolution mechanisms from Darwin’s theory [31]5. This
theory explains the life history by the physical processes action and genetic operators
in populations or species. These processes are known for reproduction, disturbance,
competition and selection.

Considering the computational implementation aspects, the parameters and strategies such
as population size, mating pool size, selection strategy, crossover type and rate, mutation
type and rate and replacement strategy should be chosen carefully by the user for each class
of optimization problem, allowing numerous plausible combinations [33–35].

5 Because [31] is a rare and difficult access reference, we consider newer editions of the Darwin’s work, for instance
[32].
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3.4. Local Search (LS) algorithms

The Local Search (LS) strategy is based on the better established existing principle for
combinatorial optimization methods: trial and error. This is a natural and simple idea,
but in fact, surprised by the success degree that this method has the most varied types of
combinatorial problems.

The only parameters to be selected corresponds to the search starting point and the
neighborhood size. The choice of starting point is usually done by intuition, because very
few problems have a guide or direction.

For neighborhood definition, it should be pointed out that small neighborhood set leads in
a low complexity algorithm, since the search space consists of few alternatives. On the other
hand, the reduced size of the neighborhood set may not provide good solutions due to local
minimum or maximum in this reduced region. Large neighborhood sets, on the other hand,
provide good solutions but bring much greater complexity, since these sets may result in
search space as large as brute force methods [36].

3.5. Simulated Annealing (SA) algorithms

The simulated annealing (SA) algorithm proposed by Kirkpatrick [37] was inspired by the
annealing process of physical systems. This was based on the algorithm originally proposed
by Metropolis [38] as a strategy for determining equilibrium states (or configurations) of
a collection of atoms at a given temperature. The basic idea comes from the statistical
thermodynamics, which is a physics branch responsible for theoretical predictions about the
behavior of macroscopic systems based on the laws that govern their atoms. Using analogies,
the SA algorithm was proposed based on the similarity between the annealing procedure
implemented by the Metropolis algorithm and combinatorial optimization processes.

Thus, the concept of the SA algorithm is associated with the principle of thermodynamics, in
which a solid heated to a very high temperature and then cooled gradually tends to solidify
to form a homogeneous structure with lowest energy [37, 39].

This way, the SA algorithm must be started with one strategy and three parameters: initial
temperature, T(0), cooling step, ǫ, size range (plateau) LSA, and acceptance probability
equation.

3.6. Tabu search

Tabu search algorithm was originally proposed in 1977 with the pioneering Glover’s work
[40] and later described in its current form in 1986 [41], being used in various knowledge
areas and fields.

The short-term Tabu search (STTS) algorithm is based on the deterministic mode of memory
operation. The memory is implemented by recording characteristics of displacement of
previously visited solutions. This is described by the Tabu list, which is formed by the recent
past search, being called the short-term memory effect. These displacement characteristics
are prohibited by Tabu list for a number of iterations. This helps prevent returns to local
solutions, promoting diversification in the search.
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The reactive Tabu search (RTS) version combines the short-term memory effect with another
memory effect to avoid the local maximum returns and ensure efficient search. This effect is
known as long-term memory, which alternates between intensification and diversification
phases, adapting the prohibition period during the search, provide that the prohibition
period takes different values for each iteration [42].

3.7. Hyperheuristic strategies

Over the past 50 years, the well-known meta-heuristic algorithms have been used as
optimization tool for a wide range of optimization problems. The ability of the meta-heuristic
algorithms to avoid local optimum-solutions offer us the ability to adapt this class of
optimization strategy to solve various problems with the robustness and easiness of
implementation, contributing to various optimization fields, mainly in those problems where
deterministic or traditional optimization methods become inefficient or highly complex.

However, it is not easy or even possible to predict which of the many existing heuristic
algorithms is the best choice for a specific optimization problem and be able to produce the
same result given the same input parameters. The difficulty of choosing is associated to the
performance unpredictability, which constitutes the major factor limiting their use by the
scientific community and industry.

Furthermore, for a large optimization problems variety, the input parameter values should
be controlled as the search evolves. In this context, recently, the idea of working with a
higher level of automation in a heuristic design have been resulted in the development of the
so-called hyper-heuristic (HH) strategy [43, 44].

Thus, the HH algorithms consist in applying a high-level methodology to control the
selection or generation of generic search strategies using a specific number of different
low-level heuristics.

It is worth noting that meta-heuristics are quality techniques to solve complex optimization
problems, but efficient implementations of these methods usually require many specific
knowledge about the problem being treated. Thus, the HH methodologies have been
proposed aiming to build robust optimization algorithms, allowing the use of meta-heuristics
methods with minor adaptations.

For HHs based on heuristics selection, one should choose the suitable number of iterations
for the HH, the selection strategy, as well as the acceptance strategy.

4. Performance metrics for heuristic algorithms evaluation

Aiming to quantify the performance of the heuristic algorithms in terms of stability and
convergence guarantee, it is necessary to know the specified limits for the tolerances
calculation, the so-called upper specification limit (USL) and lower specification limit (LSL)
[45, 46].

The USL and LSL are simply an upper and lower bounds to measure the algorithm’s
performance. Thus, as in the case of control charts, it is desired that the algorithm behaves
within these two limits. These parameters are often set by the need for quality of solutions
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found by the heuristic algorithm and may take values milder or stricter6. But this quality
analysis should consider the acceptance limits of the solution, i.e., what are the thresholds of
deviation from the desired value that can still be accepted as a solution for the optimization
problem.

4.1. Algorithm stability and capacity indexes

One of the metrics widely used to evaluate the stability and capacity of the search algorithms
is the so-called algorithm stability index (ASI), which corresponds to an ability measure of
the algorithm to produce consistent results, described by the ratio between the dispersion
of allowed solutions and the dispersion of current solution. The other metric, namely
algorithm capability index (ACI) is a measure of how far from the specified limits the solution
propitiates by the algorithm is, in terms of quality of the solutions obtained. The ASI and
ACI can be calculated as:

ASI =
(USL − LSL)

6σX̄
(23)

ACI =
(USL − X̄)

3σX̄
or ACI =

(X̄ − LSL)

3σX̄
(24)

In the literature, this methodology is also known as “Six Sigma” methodology [47]. The
ACI metric measures how close the algorithm’s solution is from its purpose, as well as the
consistency around their average performance. An algorithm may have a minimal variation,
but if it is away from the objective value for one of the specification limits, it will result
in a lower ACI value, whereas the ASI metric may still be high. On the other hand, an
algorithm could result, on average, in solutions exactly equal to the purpose, but presents
a large variation in performance. In this case, ACI is still small and ASI can still be large.
Thus, the ACI metric just will be large if and only if it reaches the vicinity of the desirable
objective value consistently and with minimal variation.

Note that for practical reasons, it has been considered a good criterion to ensure ASI > 2
and ACI > 1.33 for most of engineering applications with practical interest [46, 48].

In the next section, the stability and capacity indexes have been considered in the input
parameters optimization step of the heuristic algorithms, since the adopted benchmark
functions have well-defined values for the global minimum, as described in the following.

4.2. Input parameter optimization

Considering the quality metrics discussed previously, it was decided to hold a Decathlon
marathon type [43, 49] in order to evaluate the efficiency, stability an convergence capacity of
the proposed heuristic MuD algorithms. For this purpose, ten benchmark functions, which
correspond to the ten races of marathon, have been deployed aiming to define performance
thresholds, as well as parameters determination that provide good solutions for all heuristic
algorithms considered.

6 A usual way is to take USL = X̄ + 3σX and LSL = X̄ − 3σX , where σX is the standard deviation of the process X.
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Hence, in order to optimize the input parameters of each heuristic algorithm, ten benchmarks
(test) functions described in Table 1 have been deployed, considering functions commonly
used in the literature [34, 44, 50–52], but with different characteristics in terms of local optima
and dimensionality. In this study the first three functions of De Jong’s work [50] have been
considered, and in order to guarantee diversity in the characteristics, a set of seven additional
test functions have been chosen.

Name Definition

De Jong [50] F1 (x) =
n
∑

i=1
i · x2

i

De Jong [50] F2 (x) =
n−1
∑

i=1
100

(

xi−1 − x2
i

)2
+ (1 − xi)

2

De Jong [50] F3 (x) =
n
∑

i=1
⌊xi⌋

Michalewicz [52] F4 (x) = −
n
∑

i=1
sin (xi)

(

sin
(

ix2
i

π

))2m

Schaffer [53] F5 (x) =
(

x2
1 + x2

2

)0,25
(

sin2
(

50
(

x2
1 + x2

2

)0,1
)

+ 1
)

Ackley [54] F6 (x) = x2
1 + 2x2

2 − 0, 3 cos (3πx1)− 0, 4 cos (4πx2) + 0, 7

Rastrigin [55] F7 (x) = An +
n
∑

i=1

[

x2
i − A cos (2πxi)

]

Schwefel [56] F8 (x) = An +
n
∑

i=1

[

−xi sin
(

√

|xi|
)]

6-Hump Camelback [57] F9 (x) =
(

4 − 2, 1x2
1 +

x4
1

3

)

x2
1 + x1x2 +

(

−4 + 4x2
2

)

x2
2

Shubert [58] F10 (x) =
n
∏
i=1

(

m
∑

j=1
j cos [(j + 1) xi + j]

)

Table 1. Benchmark functions deployed for the heuristic input parameters optimization.

In order to eliminate eventual bias in the analysis, a large number of simulations have
been considered. Hence, in all numerical results presented in this work an average over
at least 1000 realization for each numerical parameter determination of each algorithm and
for each function have been carried out, aiming to determine means and respective standard
deviations, as well as for the calculation of the ASI and ACI quality measures. Thus, the
numerical results show confidence intervals that provide consistent analyzes.

As a result of these analyzes, Table 2 presents a summary for the input parameters
optimization and adopted strategies (in order to guarantee diversity on the search space) for
each (hyper)-heuristic algorithm analyzed in this work. Qindiv indicates the length of each
individual-candidate solution which of course is a function of the problem dimensionality.

4.3. Computational complexity

Table 3 presents the generic complexity of the heuristic algorithms for subsequent
determination of the heuristic multiuser detectors (MuD) complexity operating under
different telecommunications systems scenarios in addition to the presentation of
quantitative computational complexity of algorithms for application in Decathlon proof
considered in this work (F1 to F10 functions). Notation: OFC represents the number
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GA

Population Size: p = 10 ·
⌊

0.345
(

√

π (l − 1) + 2
)⌋

Mating Pool Size: T = 0.7p
Selection Strategy: p-sort
Crossover Type/Rate: Uniform / pc = 50%
Mutation Type/Rate: Gaussian / pm = 10%
Replacement Strategy: µ + λ (with µ = p)

EP-C

Population Size: p = 10 ·
⌊

0.345
(

√

π (l − 1) + 2
)⌋

Cloning Rate: Ic = 20%
Selection Strategy: p-sort
Mutation Type/Rate: Gaussian / pm = 15%
Replacement Strategy: µ + λ (with µ = p)

k-opt Neighborhood Search Choose neighborhood size (k)

SA

Initial temperature: T(0) = ln(It)
Step Size (Plateau): Lsa = 2

Cooling Step: ε =
√

2
ln(i)

Acceptance Probability: x (i) = exp
[

|∆e|
T(i)

]

− 1

STTS Prohibition Period: P = Qindiv/2

RTS
Initial Prohibition Period: P(0) = Qindiv/2
Reduction/Increase Rate: x = 50%

HH
Number of HH iteration: It(HH) = 10
Selection Strategy: Simply random
Acceptance Strategy: Naive

Table 2. A summary for the optimized input parameters and strategies adopted in all considered heuristic algorithms

of operations relevant to the cost function calculation, and Gt is the number of
iteration/generation necessary for convergence.

Flops Foremost Term

GA pGt (OFC + 11, 7Qindiv + 3 log (Qindiv)) pGtOFC

EP-C pGt (OFC + 6, 1Qindiv + 3 log (Qindiv)) pGtOFC

1-opt QindivGt (OFC + 2Qindiv + 2) QindivGtOFC

k-opt
k
∑

i=1

(

Qindiv

i

)

Gt (OFC + 2Qindiv + 2)
k
∑

i=1

(

Qindiv

i

)

GtOFC

SA QindivGt (OFC + 3Qindiv + 5) QindivGtOFC

STTS QindivGt (OFC + 3, 5Qindiv + log (Qindiv) + 6) QindivGtOFC

RTS QindivGt (OFC + 3, 5Qindiv + log (Qindiv) + 7) QindivGtOFC

HH (0, 6Qindiv + 0, 4p) GtOFC+ (0, 6Qindiv + 0, 4p) GtOFC

+0, 2QindivGt (10Qindiv + 18p + 28)

Table 3. Average complexity in terms of number of operations (Flops) and predominant term, for all considered heuristic

algorithms.
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5. Numerical results for DS/CDMA systems with multidimensional

diversity

This section discuss representative numerical results for multiuser detection obtained under
various types of diversity scenarios. First, we present results for a SIMO MC-CDMA systems,
i.e. systems in which frequency and space diversities have been deployed jointly, due to
the use of multicarrier and multiple receiving antennas. In a second step, a scenario with
code and spatial diversity using multiple receive and/or transmission antennas have been
analyzed.

The main parameters of the system and channel coefficients are presented in Table 4. In
all simulations results, random spreading sequences and slow Rayleigh channel model have
been considered. Furthermore, it was assumed that the channel parameters are perfectly
known at the receiver side, as well each subcarrier of the MC-CDMA system is subjected
to flat frequency fading. Besides, low (BPSK) and high order modulation (M-QAM) format,
LDPC and Turbo coding, as well as different spreading codes length, ranging from N = 8 to
N = 64 have been deployed in this section.

Parameters Fig.2 Fig.3 Fig.4 Fig.5 Fig. 6

# Users 20 20 1 and 32 1 and 32 64

# Antenas Tx 1 1 4 4 1 and 2

# Antenas Rx 1 to 4 1 to 5 1 4 1 and 2

Modulation BPSK BPSK M-QAM M-QAM BPSK

Spread Sequence N = 8 N = 8 N = 32 N = 32 N = 64

Subcarriers M = 4 M = 4 - - M = 64

SNR (γ) 9dB 0 to 18dB -2 to 32dB -10 to 24dB 0.5 to 5dB

Max. Doppler Freq. 100Hz 100Hz 20Hz 20Hz 30Hz

Channel - - short LDPC short LDPC Turbo
Coding - - (204,102) [59] (204,102) [59] (R = 1/2)

Channel - - Belief Belief Turbo
Decoding - - Propag. Propag. (MAP)

Space-Time - - Rate 1 Rate 1 Rate 1
Coding - - RSTBC = 1 [4] RSTBC = 1 [4] RSTBC = 1 [60]

Table 4. Adopted channel and multicarrier multiple-antenna system parameters.

Figures 2 and 3 consider systems with space and frequency diversity, in SIMO MC-CDMA
scenarios. Monte Carlo simulation results indicate that the GA, SA, RTS, STTS, EP-C and HH
multiuser detectors result in the same near-optimal performance in terms of solution quality
after convergence, but with different complexities. However, the local search algorithm (1-LS
and 3-LS) presented ACI and ASI measures below desirable thresholds and are not suitable
for applications in scenarios of multiuser detection with multidimensional diversity.

Figure 2 shows the convergence behavior as a function of the number of iterations for
all heuristic MuD algorithms considered. Note the equality of BER performance achieved
after total convergence for all heuristic techniques. Specifically for convergence evaluation,
different initial solutions were considered, while all achieving performances significantly
superior to the Conventional detector. However, the number of generations/iterations
for convergence proved to be different, which will be analyzed in details on Section 5.1
and 5.2. Note that increasing the number of receiving antennas implies in a significant
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performance improvement (due to the spatial diversity) for a medium loading system and
low signal-to-noise ratio (SNR).
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Figure 2. Convergence speed for the conventional and various heuristic algorithm detectors under SIMO MC-CDMA scenarios

with Eb/N0 = 9dB and K = 20 users.

Figure 3 shows the BER performance for SIMO MC-CDMA with different number of
receiving antennas (ARx = 1, 2, . . . 5) and medium loading system (K = 20). Accordingly, a
BER = 10−5 for a moderate number of ARx antennas and SNR has been achieved. Thus, there
is an expressive performance gain with heuristic MuD strategies regarding the Conventional
detector when the number of antennas is increased for signal-to-noise ratio in the range
[0; 18] dB.

Systems with multiple-input-multiple-output (MIMO) and space-time block code (STBC)
represent a promising solution often incorporated in commercial standards such as Wimax.
Furthermore, a better performance × complexity trade-off can be obtained through the use
of low density parity check codes (LDPC). The choice of STBC topology should take into
account performance criteria, such as coding gain, diversity gain, multiplexing gain, and
obviously the decoder complexity. However, these topics are not the focus of the this work
and, therefore, more information can be found in the references [4, 60].

The considered MIMO system is formed by ATx = 4 transmit antennas and ARx ≥ 1
receiving antennas, with 4 symbols transmitted simultaneously. Furthermore, the following
parameters have been adopted (see Table 4): ATx ARx flat fading statistically independent
channels, M−QAM modulation, quasi-orthogonal STBC (QO-STBC) scheme with rate 1 [4],
short LDPC(204,102) code, perfect channel state information knowledge at receiver, random
sequences of length N = 32 and two scenarios with loading system L = K

N
= 1

32 and 1.
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Figure 3. BER performance for heuristic algorithms. SIMO MC-CDMA system with K = 20 users.

Figure 4 depicts the BER performance versus SNR at the receiver input for different
modulation constellations with ATx = 4 and ARx = 1 antennas. As expected, the single-user
performance achieves very low BER7 under smaller SNR than that necessary with high
loading system (with K = 32 users). However, it is observed that with an increment of 2–3dB
in SNR for systems with high loading it is possible to obtain very lower BER, especially
for 4-QAM modulation. However, higher order modulations such as 256-QAM enable the
transmission of more bits per symbol period, which result in higher throughput systems
if more power/energy is available at transmitter. Furthermore, the performance loss by
increasing the loading proves be small, enabling the deployment of heuristic MuD algorithms
in coded CDMA systems.

Figure 5 compares the heuristic MuD performance in terms of BER versus SNR for high order
modulation constellations and considering ATx = 4 and ARx = 4 antennas. We observe the
same behavior shown in Figure 4. But in this case the number of receiving antennas has
been increased to ARx = 4, resulting in significant performance improvement with reduction
of ≈ 10dB SNR requirement, in order to obtain similar BERs. Again, the performance loss
under total loading system is marginal; as a result, all heuristic algorithms discussed herein
can be considered suitable for multiuser detection in coded CDMA systems. It is noteworthy
that all heuristics algorithms showed the same level of BER performance after 40 generations
for GA and EP-C, and 45 iterations for the SA, STTS, RTS and HH algorithms.

Figure 6 shows the BER performance of a multicarrier DS/CDMA (MC-CDMA) system
with various types of diversity, considering multiple-input-multiple-output (MIMO) STBC
coding, encoding and decoding turbo. This topology8 was adopted in order to represent
a transmission-reception topology with a great diversity order, making possible to obtain

7 Beyond a certain SNR value, the performance improves sharply.
8 Several other topologies can be considered for multidimensional analysis. For details, please see [61].
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Figure 4. BER performance of the heuristic decoders for QO-STBC MIMO systems with short LDPC(204,102), ATx = 4, ARx = 1
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excellent BER performance even for low SNR region. Of course, this topology is promising
for adoption as a commercial standard.

Specifically, in the performance of Figure 6, a Turbo encoding and decoding of rate 1/2,
which result in a spectral efficiency of 0.5 bps/Hz have been adopted. Again, there is a
remarkable performance gain increasing when the transmit-receive antenna array becomes
larger for both MMSE and heuristic multiuser detectors. Another important aspect to be
mentioned is the extremely low BERs for γ̄ ≤ 3 dB achieved with heuristics MuD topologies
even under 1 × 1 antenna array configuration. Increasing the antenna array to 2 × 2 and
adopting Alamouti code [60] it was possible to obtain a performance of BER ≤ 10−4 even
for γ̄ ≤ 2 dB. Thus, the performance achieved by MuD heuristics topology approaches
the single-user bound (SuB) demonstrating the huge potential applicability in commercial
communication systems and standards, specially those ones with high-performance and
reliability requirements.
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Figure 6. BER performance against SNR for a system with turbo channel coding.

Moreover, different topologies of the chosen one can be analyzed by considering, for example,
channel coding (Convolutional or LDPC codes) and spatial diversity with other settings.
However, the purpose of this section is to validate the potential of application of heuristics
in MuD scenarios with multidimensional diversity and not compare topologies and system
settings.

It is noteworthy that all heuristic MuD algorithms showed the same BER performance level
after 100 generations for GA and EP-C algorithms, and 120 iterations for the SA, STTS, RTS
and HH algorithms.
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The presented results considering multiuser detection with different level of diversity
exploitation in (non)coded telecommunication systems have demonstrated the effective
applicability of the proposed heuristics MuD techniques, due to significant improvement in
BER with reduced complexity regarding the optimal multiuser detector (OMuD). Complexity
aspects of the proposed heuristic MuDs are discussed in the next section.

5.1. Overall systems complexity

As the complexity of the algorithms in terms of number of operations has been determined,
one can determine the complexity of each telecommunication scenario considering the
complexity for the cost function calculation.

Both terms of the cost function, defined by F1 = CHAY and F2 = CARACH in eq. (14)
can be obtained before the loop optimization in each MuD heuristic algorithm. Thus, for
each candidate-solution evaluation, BTF1 and BTF2B are computed, which in terms of

operations is equivalent to (KID)2 + 4KID operations. For OMuD detector, the number
of operations grows exponentially with the number of users, i.e., O

(

2KI(KID)2
)

. It takes 2KI

bit generations of order KID, as well as 2KI cost function calculations for the simultaneous
detection of a frame consisting of I bits of K users on a system with multiuser detection
operating on fading channels.

Therefore, in order to calculate the cost function, OFC = (KID)2 + 4KID operations are
needed. It is noteworthy that 42 different scenarios have been analyzed9. Besides, scores to
define the best strategy have been considered this metric in different scenarios.

Thus, the computational complexity of each proposed heuristic MuD algorithm, in terms
of number of operations, has been obtained under different operation scenarios. Table 5
presents such complexities. Strategy with the lowest complexity using the adopted scoring
system, for each analyzed scenario has been indicated with bold numbers. It is noteworthy
that the scores were normalized considering the higher value with score of 100. For sake of
comparison, the optimal MuD complexity is presented in the last column.

Scenario GA EP-C SA STTS RTS HH OMuD

1 – Fig.2 (×106) 4,597 4,328 5,572 5,606 5,607 5,144 8, 22.1021

2 – Fig.3 (×108) 2,322 2,303 3,333 3,336 3,336 2,926 1, 52.1045

3 – Fig.4 (×109) 4,390 4,382 5,794 5,795 5,795 5,451 1, 03.1057

4 – Fig.5 (×1013) 2,569 2,569 18,877 18,878 18,878 12,483 > 10300

5 – Fig.6 (×1013) 1,028 1,027 22,277 22,278 22,278 13,860 > 10300

Score 87 100 83 72 56 85 –

Position 2nd 1st 4th 5th 6th 3rd –

Table 5. Necessary number of operations in all optimized Scenarios.

5.1.1. Computational Time

Furthermore, the complexity in terms of computational time has been determined for each
telecommunication scenario. As a result, the computational time for calculating one cost
function according each specific scenario has been quantified. We have deployed a personal

9 But not shown herein due to the lack of space. Additional results can be checked in [61].
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computer with the following configuration: Motherboard ASUS P8H67-M EVO, Intel I7-2600
with 3.4 GHz clock and 8MB cache; Memory 8GB Corsair Dominator DDR3 1333MHz and a
Video board Radeon HD6950 2GB DDR5.
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Figure 7. Average time for cost function calculation and respective polynomial approximation.

Figure 7 depicts the time to calculate a cost function as the size of the individual increases,
while Table 6 shows the average time required for optimization algorithms in each scenario
considered, as well as the respective scores and classification.

Scenario GA EP-C SA STTS RTS HH
1 – Fig.2 0,039 0,0378 0,0474 0,0477 0,0477 0,0436
2 – Fig.3 0,297 0,2892 0,7509 0,7532 0,7538 0,5948
3 – Fig.4 0,4638 0,4515 1,1704 1,1741 1,1749 0,9414
4 – Fig.5 128,126 128,001 914,891 914,876 914,906 609,049
5 – Fig.6 5,2576 5,1283 24,0933 24,1408 24,1608 18,2711
Score 88 100 73 66 56 80

Position 2nd 1st 4th 5th 6th 3rd

Table 6. Average time (in seconds) spend by the optimized heuristic algorithms under Scenarios 1 – 5.

In conclusion, again the algorithm EP-C presents the lowest complexity in terms of
computational time. Note that all heuristic algorithms result in a computational time, as
well as number of operation very close each other. Thus, we can adopt any topologies
without significant loss in terms of performance × complexity trade-off metric, validating
the deployment of heuristic MuD approach with optimized input parameters as shown in
Table 2.

5.2. Quality, stability and topology choice

For all scenarios considered, convergence curves in terms of BER have been resulted in
the same level achieved for all algorithms, but after a different number of generations or
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iterations10. In order to evaluate the stability of the algorithms after convergence, some tests
have been conducted for a large number of generations/iterations. For all algorithms, the
average performance level and number of generations/iterations for total convergence hold
under the same boundaries.

Therefore, for the multiuser detection problems presented in this work it is concluded that the
proposed heuristic algorithms are able to find the optimum solution or very near-optimum
solution with a reduced number of cost function tests, approaching the MuD performance
since an adequate and sufficient number of generations/iterations has been available. In this
context we are interest in analyze the variation of the solutions when decreasing the number
of generations/iterations; as a result, the heuristic MuD algorithms were also classified
following the criterion of the smaller deviation values of solutions.

In addition, for the complexity analysis, we chose to average between scores (number of
operations and computational time), thus avoiding an unfair analysis among optimization
strategies or possible bias.

Table 7 presents the classification for the six heuristic MuD with the adoption of equal
weight features for the final score calculation. In conclusion, under equal weight metric for
computational complexity and quality/stability of the solutions found, the following choice
criteria for MuD problem can be established:

Criterion Algorithm Choice

Best BER performance: HH
Lowest Complexity: EP-C
Performance-Complexity trade-off: HH (score: 91)

Score GA EP-C SA STTS RTS HH

Number of Operation 87 100 83 72 56 85
Computational Time 88 100 73 66 56 80

Complexity (Average) 88 100 78 69 56 83

Quality and Stability 80 67 78 64 62 100

Final Score (Average) 84 83 78 66 59 91

Final Position 2nd 3rd 4th 5th 6th 1st

Table 7. Scores for all considered heuristic algorithms applicable to wireless communication Scenarios 1 – 5.

6. Main conclusions

Several heuristic techniques applied to multiuser detection problems under different channel
and system configuration scenarios, as well as diversity dimensionality, such as time,
frequency, space and coding have been analyzed in this work. The main purpose in

10 This result was obtained when the initial inputs guess for all algorithms considered are the same, indicating that
all algorithms were able to achieve convergence after a certain number of generations/iterations, except the LS
algorithm, which did not show enough stability for adoption.
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combining different types of diversity with heuristic detection is to provide system capacity
increasing and/or reliability improvement.

Near single-user bound performance has been achieved by all MuD heuristic algorithms
analyzed in this work, considering different system and channel configurations, while offer
a dramatic complexity reduction regarding the OMuD with marginal performance loss, even
in aggressive fading channels and high loading systems conditions.

Among the analyzed detectors, the best MuD heuristic algorithm choice must take into
account that one which offer either smallest computational complexity or the best BER
performance, i.e. EP-C or HH multiuser detectors, respectively. Hence, the criteria for
topology ranking established in this work allow us to quantify the parameter optimization
level, reflecting on the quality and stability of the solutions obtained.

The heuristic input parameter optimization, as well as the proposed methodology for
the heuristic MuD topology choice represent the main contribution of this work. Under
optimized input parameters condition of all heuristic MuD algorithms, the quality and
stability analyses have been carried out deploying ten benchmark functions. The numerical
results for the MuD problem confirmed the near-optimal performance achieved by the
heuristic algorithms for a wide channel and system configurations, corroborating the
methodology adopted for the ranking topology.
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