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1. Introduction

1.1. Geometry and dynamics viewpoints to quantum search algorithms

Quantum computation has been one of the hottest interdisciplinary research areas over some
decades, where informatics, physics and mathematics are crossing with (see [1] including
an excellent historical overview and [2–4] as later publications for general references). In the
middle of 1990’s, two great discoveries are made by Shor [5] in 1994 and by Grover [6] in 1996
that roused bubbling enthusiasm to quantum computation. As one of those, Grover found in
1996 the quantum search algorithm for the linear search through unsorted lists [6, 7], whose
efficiency exceeds the theoretical bound of the linear search in classical computing: For an

unsorted list of N data, the Grover search algorithm needs only O(
√

N) trials to find the
target with high probability, while the linear search in classical computing needs O(N) trials.
Throughout this paper, the term classical computing means the computation theory based on
the conventional binary-code operations. The adjective classical here is used as an antonym
of quantum; like quantum mechanics vs classical mechanics.

Though the classical linear search is not of high complexity, the speedup by Grover’s
algorithm is exciting due to its wide applicability to other search-based problems; G-BBHT
algorithm, the quantum counting problem, the minimum value search, the collision problem
and the SAT problem, for example [8, 9]. A number of variations and extensions of the Grover
algorithm have been made (see [10–13], for example): As far as the author made a search for
academic articles in 2012 with keywords ‘Grover’, ‘quantum’ and ‘search’ by Google scholar
(accessed 5 September 2012), more than five hundred ‘hits’ are available. Many of those can
be traced from the preprint archive [14].

Among numbers of studies concerning Grover’s quantum search algorithm, a pioneering
geometric study on the algorithm is made by Miyake and Wadati in 2001 [15]: The sequence
of quantum states generated by the Grover algorithm in 2n data is shown to be on a
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geodesic in (2n+1
− 1)-dimensional sphere. Further, the reduced search sequence is given

rise to the complex projective space CP
2n
−1 through a geometric reduction, which is also

shown to be on a geodesic in CP
2n
−1. Roughly speaking, the reduction in [15] is made

through the phase-factor elimination from quantum states, so that CP
2n
−1 is thought of

as the space of rays. Note that the geodesics above are associated with the standard

metric on (2n+1
− 1)-dimensional sphere and with the Fubini-Study metric on CP

2n
−1,

respectively. The Fubini-Study metric on CP
2n
−1 is utilized also in [15] to measure the

minimum distance from each state involved in the search sequence to the submanifold
consisting of non-entangled states, which characterizes the entanglement of the states along
the search.

As expected benefits of geometric and dynamical views on quantum algorithmic studies like
[15], the following would be worth listed;

1 By revealing underlying geometry of quantum algorithms (not necessarily universal),
numbers of results in geometry are expected to be applied to make advances in quantum
computation and information.

2 On looked upon the iterations made in algorithms as (discrete) time-evolutions of states,
numbers of results in dynamical systems are expected to be applied to make advances in
quantum computation and information.

3 In view of a close connection between geometry and dynamical systems, geometric and
dynamical-systems studies on quantum algorithms may provide interesting examples of
dynamical systems.

It would be worth noting here that there exists another approach to quantum searches using
adiabatic evolution [16–18]. That approach, however, is outside the scope of this chapter since
the search dealt with in this chapter is organized on the so-called amplitude magnification
technique [8] which differs from the adiabatic evolution.

1.2. Quantum search for an ordered tuple of multi-qubits – a brief history –

Motivated by the work [15], the author studied in [19] a Grover-type search algorithm for an
ordered tuple of multi-qubits together with a geometric reduction other than the reduction
made in [15]. While the search algorithm is organized as a natural extension of Grover’s
original algorithm, the reduction of the search space made in [19] provides a nontrivial
result: On denoting the degree of multi-qubits by n and the number of multi-qubits enclosed
in each ordered tuple by ℓ, the space of 2n

× ℓ complex matrices with unit norm denoted
by M1(2

n, ℓ) is taken as the extended space of ordered tuples of multi-qubits (ESOT), where

the collection of all the ordered tuples denoted by MOT

1 (2n, ℓ) is included. The reduction is

applied to the regular part, Ṁ1(2
n, ℓ), of the ESOT, M1(2

n, ℓ), to give rise to the space denoted
by Ṗℓ of regular density matrices of degree ℓ which plays a key role in quantum information
theory. Roughly speaking, the reduction applied in [19] is made by the elimination of
‘complex rotations’ leaving the relative configuration of multi-qubit states placed in each
ordered tuples, so that the reduction is understood to be a very natural geometric projection
of Ṁ1(2

n, ℓ) to the space, Ṗℓ.

A significant result arising from the reduction is that the Riemannian metric on Ṗℓ is shown
to be derived ‘consistently’ from the standard metric on Ṁ1(2

n, ℓ), which coincides with the
SLD-Fisher metric on Ṗℓ up to a constant multiple [19]. Namely, as a Riemannian manifold,

Search Algorithms for Engineering Optimization262



M1(2
n, ℓ) is reduced to the space of regular density matrices of degree ℓ endowed with the

SLD-Fisher metric, so that Ṗℓ is referred to as the quantum information space (QIS). Put
another way, the reduction made in [19] reveals a direct nontrivial connection between the
ESOT and the QIS. The former is a stage of quantum computation and the latter the stage of
quantum information theory.

Due to the account given below, however, geometric studies were not made in [19] either on
the search sequence in the ESOT generated by the Grover-type search algorithm or on the
reduced search sequence in the QIS: Instead of geometric studies on the search sequences,
it is the gradient dynamical system associated with the negative von Neumann entropy as
the potential that is discussed in [19] on inspired by a series works of Nakamura [20–22]
on complete integrablity of algorithms arising in applied mathematics. The result on the
gradient system in [19] has drawn the author’s interest to publish [23, 24] on the gradient
systems on the QIS realizing the Karmarkar flow for linear programming and a Hebb-type
learning equation for multivariate analysis, while geometric studies on the search sequences
were left undone.

1.3. Chapter purpose, summary and organization

The purpose of this chapter is therefore to study the Grover-type search sequence for an
ordered tuple of multi-qubits from geometric and dynamical viewpoints, which has been left
since [19]. In particular, the reduced search sequence in the QIS is intensively studied from
the viewpoint of quantum information geometry.

As an extension of [15] on the original search sequence, the Grover-type search sequence in
the ESOT, M1(2

n, ℓ), is shown to be on a geodesic. As a nontrivial result on the reduced
search sequence in the QIS, the sequence is characterized in terms of an important geometric
object in quantum information geometry:

Main Theorem Through the reduction of the regular part, Ṁ1(2
n, ℓ), of the extended space of

ordered tuples of multi-qubits (ESOT) to the quantum information space (QIS), Ṗℓ, the reduced search
sequence is on a geodesic in the QIS with respect to the m-parallel transport.

Note that the m-parallel transport is the abbreviation of the mixture parallel transport [25–27],
which is characteristic of the QIS.

To those who are not familiar to differential geometry, an important remark should be made
on the term geodesic before the outline of chapter organization: One might hear that the
geodesic between a pair of points is understood to be the shortest path connecting those
points. This is true if geodesics are discussed on a Riemannian manifold endowed with the
Levi-Civita (or Riemannian) parallel transport. As a reference accessible to potential readers,
the book [28] is worth cited. Geodesics in the ESOT, M1(2

n, ℓ), discussed in this chapter are
the case. In general, however, geodesics are not characterized by shortest-path property but by
autoparallel curves which have the shortest paths only in the case of the Levi-Civita parallel
transport. What is needed to define geodesics is a parallel transport, while Riemannian
metrics are not always necessary. The m-parallel transport of the QIS is the very example of
parallel transport whose geodesics do not have the shortest-path property. As another crucial
parallel transport in the QIS, the exponential parallel transport (the e-parallel transport) is
well-known [25–27], whose geodesics do not have the shortest-path property either, though
it is not dealt with in this chapter.

The organization of this chapter is outlined in what follows. Section 2 is for the quantum
search for an ordered tuple of multi-qubits. The section starts with a brief review of the
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classical linear search in unsorted lists. The second subsection is for preliminaries to the
quantum search: Mathematics for multi-qubits and ordered tuples of them is introduced. In
the third subsection, the Grover-type quantum search algorithm is organized for an ordered
tuple of multi-qubits along with the idea of Grover [6]. Dynamical behavior of the search
sequence thus obtained is studied in the fourth subsection from the geometric viewpoint:
The search sequence in the ESOT, M1(2

n, ℓ), is shown to be on a geodesic in the ESOT.
Section 3 is devoted to a study on the reduced search sequence in the QIS from geometric
and dynamical points of view. The first subsection is a brief introduction of the QIS. The
geometric reduction of the ESOT to the QIS is made in the second subsection: To be precise,
our interest is focused on the reduction of the regular part, Ṁ1(2

n, ℓ), of the ESOT to simplify
our geometric analysis. The third subsection starts with the standard parallel transport in
the Euclidean space as a very familiar and intuitive example of the parallel transport. After
the Euclidean case, the m-parallel transport in the QIS is introduced. It is shown that the
reduced search sequence in the QIS is on a geodesic in the QIS with respect to the m-parallel
transport. Section 4 is for concluding remarks, in which a significance of the main theorem
(or Theorem 3.3) and some questions for future studies are included. A mathematical detail
of Sec. 3 is consigned to Appendices following Sec. 4. Many symbols are introduced for
geometric setting-up and analysis, which are listed in Appendix 1.

2. Quantum search for an ordered tuple of multi-qubits

2.1. Classical search: Review

The classical linear search in unsorted lists is outlined very briefly in what follows.

Let N be the number of unsorted data in a list, so that the data are labeled as d1, d2, · · · , dN .
The N is assumed to be large enough. We start with a very figurative description of the
search by taking the counter-consultation of a thick telephone book as an example; namely,
the identification of the subscriber of a given telephone number. In the telephone book, the
superscripts, j = 1, 2, · · · N, of the data, {dj}j=1,2,··· ,N , correspond to the names of subscribers
sorted alphabetically and each dj shows the telephone number of the j-th subscriber. Among
the data, there assumed to be one telephone number, say dM, that we wish to know its
subscriber. The dM is referred to as the target or the marked datum. A very naive way of
finding dM is to check the telephone number from d1 in ascending order whether or not it is
the same as the the target datum until we find dM. The label M turns out to be the subscriber
who we wish to identify. In average, this way requires N

2 trials of checking to find dM.

The linear search is described in a smarter form than above in terms of the oracle function.
In the same setting above, the oracle function, denoted by f , is defined to be the function of
{1, 2, · · · , N} to {0, 1} subject to

f (j) =

{

1 (j = M)
0 (j 6= M)

(1)

for j = 1, 2, · · · N. Namely, f (j) = 1 means the ‘hit’ while f (j) = 0 a ‘miss’. In theory, the
evaluation of f (j) is assumed to be done instantaneously, so that the evaluations does not
affect the complexity of the problem. The search is therefore made by evaluating f (j) from
j = 1 in ascending order until we have f (j) = 1. The expected number of evaluations is N

2 ,
linear in N, so that we say the classical search needs O(N) evaluations. It is well known that
the estimate O(N) is the theoretical lowest bound of the classical linear search.
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2.2. Quantum search: Preliminaries

2.2.1. Single-qubit

As known well, information necessary to classical computing is encoded into sequences of
‘0’ and ‘1’. The minimum unit carrying ‘0’ or ‘1’ is said to be a bit. A quantum analogue of a
bit is called a qubit, that takes 2-dimensional-vector form with complex-valued components.
In particular, the basis vectors, (1, 0)T and (0, 1)T , are taken to play the role of symbols
‘0’ and ‘1’ for classical computing, so that they are referred to as the computational basis
vectors. We note here that the superscript T indicates the transpose operation to vectors and
matrices henceforth. A significant difference between qubit and bit is that superposition of
the computational basis vectors is allowed in qubit while it is not so of ‘0’ and ‘1’ in bit.
Namely, superposition, α(1, 0)T + β(0, 1)T (α, β ∈ C), is allowed in qubit, so that we refer
to the space of 2-dimensional column complex vectors, denoted by C2, as the single-qubit
space. The C2 is endowed with the natural Hermitian inner product, say φ†ψ for φ, ψ ∈ C2,
where the superscript † indicates the Hermitian conjugate operation to vectors and matrices.

2.2.2. Multi-qubits

In order to express classical n-bit information in quantum computing, it is clearly necessary
to prepare 2n computational basis vectors, which span 2n-dimensional complex vector space
C2n

: For any integer x subject to 1 ≤ x ≤ 2n, let us denote by e(x) the canonical basis vector
in C2n

, whose x-th component equals 1 (x = 1, 2, · · · , 2n), while the others are naught. Then
every e(x) corresponds to the binary sequence x1x2 · · · xn (xj = 0, 1, j = 1, 2, · · · , n) with

x − 1 = ∑
n
j=1 xj2

n−j, so that the basis {e(x)}x=1,2,··· ,2n turns out to be the computational

basis. To be precise mathematically, C2n
should be understood as n-tensor product,

C2n ∼= (C2)⊗n =

n
︷ ︸︸ ︷

C2 ⊗ · · · ⊗ C2, (2)

of the single-qubit spaces (C2s). The C2n
(∼= (C2)⊗n) is called the n-qubit space (more

generally, the multi-qubit space), which usually thought of as a Hilbert space for a combined
quantum system consisting of n single-qubit systems. In the n-qubit space, any vectors with
unit length are called state vectors;

φ =
2n

∑
x=1

αxe(x) (αx ∈ C, x = 1, 2, · · · , n) with
2n

∑
x=1

|αx|
2 = 1. (3)

It is worth noting here that, in a context of quantum computing or of quantum information,
the n-qubit space, (C2)⊗n, is often assumed to be a 2n-dimensional subspace of a complex
Hilbert space (usually of infinite dimension) where a quantum dynamical system is
described.
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2.2.3. Ordered tuples of multi-qubits

We move on to introduce ordered tuples of multi-qubits: The degree of multi-qubits is set to
be n and the number of multi-qubit data enclosed in any tuple to be ℓ henceforth. Let M(2n, ℓ)
be the set of 2n × ℓ matrices, which is made into a complex Hilbert space of dimension 2n × ℓ

endowed with the Hermitian inner product

〈Φ, Φ
′〉 =

1

ℓ
trace Φ

†
Φ
′ (Φ, Φ

′ ∈ M(2n, ℓ)). (4)

The M(2n, ℓ) with 〈 , 〉 is the Hilbert space for our quantum search. The subset,

M1(2
n, ℓ) = {Φ ∈ M(2n, ℓ) | 〈Φ, Φ〉 = 1}, (5)

of M(2n, ℓ) is what we are going to dealt with henceforth. An ordered tuple of multi-qubits
is a matrix in M1(2

n, ℓ) of the form

Φ = (φ1, φ2, · · · , φℓ) with φ†
j φj = 1 (φj ∈ C2n

, j = 1, 2, · · · , ℓ). (6)

Namely, every column vector of an ordered tuple of multi-qubits stands for a n-qubit state
vector. Then the subset of M1(2

n, ℓ) defined by

MOT
1 (2n, ℓ) = {Φ = (φ1, φ2, · · · , φℓ) ∈ M1(2

n, ℓ) | φ†
j φj = 1 (j = 1, 2, · · · , ℓ)} (7)

is the space of ordered tuples of multi-qubits, so that we refer to M1(2
n, ℓ) including

MOT
1 (2n, ℓ) as the extended space of ordered tuples of multi-qubits (ESOT).

On closing this subsubsection, a remark on a vector-space structure of the ESOT, M1(2
n, ℓ),

is made: As a vector space, the ESOT allows the following isomorphisms,

M1(2
n, ℓ) ∼= C2n

⊗ Cℓ ∼=

n
︷ ︸︸ ︷

C2 ⊗ · · · ⊗ C2 ⊗Cℓ, (8)

which is usually lokked upon as a Hilbert space of the combined system consisting of n
two-level particle systems (single-qubit systems) and an ℓ-level particle system. The structure
(8) will be a clue to think about a physical realization of the present algorithm.

2.3. Quantum search for an ordered tuple

We are now in a position to present a Grover-type algorithm for an ordered tuple of
multi-qubits. Our recipe traces, in principle, Grover’s original scenario for the single-target
state search [6]. We start with the initial state denoted by A and the target state W, which
are defined to be
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A =
1√
2n







1 · · · 1
... · · ·

...
1 · · · 1






and W = (e(σ1), e(σ2), · · · , e(σℓ)), (9)

where σ is an injection of {1, 2, · · · , ℓ} into {1, 2, · · · , 2n}. On recalling that the state vector
e(x) corresponds to the binary sequence x1x2 · · · xn, the target W corresponds to the ordered
tuple of the binary sequences, σj,1σj,2 · · · σj,ℓ, associated with e(σj) (j = 1, 2, · · · , ℓ). Note that
σ is not necessarily injective in general, but, for simplicity in the succeeding section, it is
required to be an injection. Through this chapter, we further assume that n is sufficiently
larger than ℓ, so that, in W, the number ℓ of binary sequences is relatively quite smaller than
the length n of each binary sequence.

Like in many literatures on quantum computation, we apply the description without the
oracle qubit below. A treatment and a role of the oracle qubit can be seen, for example, in [1] .

The quantum search is proceeded by applying iteratively the unitary transformation

IG = (−IA) ◦ IW (10)

of M(2n, ℓ) looked upon as a Hilbert space, where IA and IW are the unitary transformations
defined to be

IA : Φ ∈ M(2n, ℓ) 7→ Φ − 2〈A, Φ〉A ∈ M(2n, ℓ), (11)

IW : Φ ∈ M(2n, ℓ) 7→ Φ − 2〈W, Φ〉W ∈ M(2n, ℓ). (12)

A very crucial remark is that, on implementation, IW will be of course not realized with the
target W (see [1] for example).

To express the action of IG to the initial state A, it is convenient to introduce the 2n × ℓ matrix,

R =

√

2n

2n − 1
A −

√

1

2n − 1
W ∈ M1(2

n, ℓ). (13)

The pair {W, R} forms an orthonormal basis of the subspace, denoted by span{W, R}, of
M(2n, ℓ) consisting of all the superpositions of the initial state A and the target W. The
action of the operator IG leaves the subspace, span{W, R}, invariant; IG(span {W, R}) =
span{W, R}. The action of IG can be therefore restricted on span{W, R} to be

IG : (W, R) 7→ (W, R)

(

cos θ − sin θ

sin θ cos θ

)

, (14)
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where θ is defined by

sin
θ

2
=

√

1

2n
, cos

θ

2
=

√

2n − 1

2n
, 0 < θ < π. (15)

On putting (10), (13) and (14) together, the k-times iteration Ik
G of IG applied to A results in

Ik
G(A) =

(

sin(k +
1

2
)θ
)

W +
(

cos(k +
1

2
)θ
)

R (k = 1, 2, 3, · · · ). (16)

Hence Ik
G(A) gets closed to the target W if (k + 1

2 )θ does to π

2 . Indeed, under the assumption

n >> 1, Eq. (15) yields θ ≃ 2
√

1
2n , so that the probability of observing the state W from

the state Ik
G(A) gets the highest (closed to one) at the iteration number nearest to π

4

√
2n − 1

2 .
Namely, like Grover’s original search algorithm, complexity of the quantum search presented
above for an ordered tuple of multi-qubits is of the order of square root of 2n, the length
of binary sequences allowed to be expressed in multi-qubits. In the case of ℓ = 1, our
search of course becomes Grover’s original ones, so that our search is thought of as a natural
generalization of Grover’s original one [6] based on the amplitude magnification technique
(see [8], for example).

On closing this subsection, a remark should be made in what follows, which would be
of importance to think of a physical implementation in future: We have organized the
Grover-type search algorithm IG as a unitary transformation of the ESOT, M1(2

n, ℓ). Since
physically acceptable tuples, however, are in the subset, MOT

1 (2n, ℓ), of the ESOT, it is worth

checking whether or not IG leaves MOT
1 (2n, ℓ) invariant. By a straightforward calculation

with (9), (13) and (14), IG indeed leaves MOT
1 (2n, ℓ) invariant. Though this fact is very basic

and simple, this supports, to an extent, a physical feasibility of the present algorithm.

2.4. Geodesic property of the search sequence

We show that the search sequence {Ik
G(A)} generated by (16) is on the geodesic starting from

the initial state A to the target state W, like in Wadati and Miyake [15] on Grover’s original
search.

2.4.1. Geometric setting-up

As is briefly mentioned of in Sec. 1, the term ‘geodesics’ can deal with a wider class of
curves in differential geometry than that in usual sense. In usual sense especially among
non-geometers, for example, one might have an experience of hearing a phrase like ‘the
shortest path between a pair of points is a geodesic’. In contrast with phrases like this,
geodesics are defined to be autoparallel curves in differential geometry. Put in another way,
we have to fix a parallel transport to discuss geodesics in the geometric framework. We
have a variety of parallel transports, among which the Levi-Civita (or Riemannian) parallel
transport can provide the shortest-path property. Note here that the Levi-Civita parallel
transport is defined as the parallel transport that leaves the Riemannian metric endowed
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with the space. The geodesics to be mentioned of in this subsection can be understood as the
familiar shortest paths.

Our discussion is made on the ESOT, M1(2
n, ℓ) defined by (5), with which the standard

Riemannian metric is endowed in the following way. To those who are not familiar to
geometry, it is recommended to think of the 2-dimensional unit-radius sphere, S2 , in place of
M1(2

n, ℓ), since M1(2
n, ℓ) is a (2n+1ℓ− 1)-dimensional analogue of S2. A Riemannian metric

of M1(2
n, ℓ) has a role of an inner product in every tangent space,

TΦM1(2
n, ℓ) = {X ∈ M(2n, ℓ) | ℜ(trace Φ

†X) = 0} (Φ ∈ M1(2
n, ℓ)), (17)

of M1(2
n, ℓ) at Φ as follows, where ℜ indicates the operation of taking the real part of

complex numbers: On recalling the intuitive case of S2, the tangent space at a point p ∈ S2 ⊂
R

3 is thought of as the collection of all the vectors normal to the radial vector p, which can
be understood as all the velocity vectors from the dynamical viewpoint. The Riemannian
metric, denoted by ((·, ·))ESOT , of M1(2

n, ℓ) is defined to give the inner product

((X, X′))ESOT
Φ

=
1

ℓ
ℜ(trace X†X′) (X, X′ ∈ TΦM1(2

n, ℓ), Φ ∈ M1(2
n, ℓ)) (18)

in each tangent space TΦM1(2
n, ℓ).

2.4.2. Geodesics

We are to give an explicit form of geodesics in a very intuitive manner as follows. Let us
recall the 2-dimensional case, in which a geodesic with the initial position p ∈ S2 ⊂ R

3 is
known well to be realized as a big circle passing through p. By the initial velocity, say v ∈ R

3,
always normal to p, the geodesic is uniquely determined as the intersection of S2 and the
plane spanned by the vectors p and v. The same story is valid for geodesics in M1(2

n, ℓ), so
that we get an explicit form,

Φ(s) =
(

cos
√
ℓs
)

Φ0 +
(

sin
√
ℓs
)

X0 (s ∈ R), (19)

of the geodesic with the initial position Φ0 ∈ M1(2
n, ℓ) and the initial vector X0 ∈

TΦ0
M1(2

n, ℓ) of unit length tangent to the geodesic. In (19), s is taken to be the length
parameter measured from the initial point Φ0. To be precise from differential geometric
viewpoint, the geodesics given by (19) are said to be associated with the Levi-Civita (or
Riemannian) parallel transport in M1(2

n, ℓ).

We are to determine a geodesic which the search sequence {Ik
G(A)} is placed on. From (13),

(16) and (19), we can construct the geodesic from the big circle passing both W and R, so that
we obtain

Ψ(s) =
(

cos
√
ℓs
)

(

√

1

2n
W +

√

2n − 1

2n
R
)

+
(

sin
√
ℓs
)

(

√

2n − 1

2n
W −

√

1

2n
R
)

=
(

cos(
√
ℓs +

θ

2
)
)

W +
(

sin(
√
ℓs +

θ

2
)
)

R (s ∈ R) (20)
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as the desired geodesic, where s is the length parameter and θ is defined by (15). Setting

the parameter sequence {sk}k=0,1,2,··· to be sk = k√
ℓ
θ, Eq. (20) with s = sk indeed provides

the search sequence {Ik
G(A)}k=0,1,2,···; Ψ(sk) = Ik

G(A) (see (16)). To summarize, we have the
following.

Theorem 2.1. The Grover-type search sequence {Ik
G(A)} given by (16) for an ordered tuple of

multi-qubits is on the geodesic curve Ψ(s) given by (20) in the ESOT, M1(2
n, ℓ).

As the closing remark of this section, it should be pointed out that in the case of ℓ = 1,
Theorem 2.1 reproduces the result of Miyake and Wadati on Grover’s original search

sequence on S2n+1−1 in [15].

3. Geometry and dynamics of the projected search sequence in the QIS

In this section, the reduced search sequence in the QIS is shown to be on a geodesic with
respect to the m-parallel transport, one of the two significant parallel transports of the QIS.
The reduced search sequence is derived from the Grover-type sequence {Ik

G(A)} along with
the reduction of the regular part of the ESOT to the QIS. The reduction method applied here
is entirely different from that in Miyake and Wadati [15].

3.1. The QIS

This subsection is devoted to a brief introduction of the quantum information space (QIS),
the space of regular density matrices endowed with the quantum SLD-Fisher metric (see also
[19] for another brief introduction and [25, 26] for a detailed one).

Let us consider the space of ℓ× ℓ density matrices

Pℓ = {ρ ∈ M(ℓ, ℓ) | ρ† = ρ, trace ρ = 1, ρ : positive semidefinite}, (21)

and its regular part

Ṗℓ = {ρ ∈ M(ℓ, ℓ) | ρ† = ρ, trace ρ = 1, ρ : positive definite}, (22)

where M(ℓ, ℓ) denotes the set of ℓ× ℓ complex matrices. The tangent space of Ṗℓ at ρ can be
described by

TρṖℓ =
{

Ξ ∈ M(ℓ, ℓ) |Ξ
† = Ξ, trace Ξ = 0

}

. (23)

In this chapter, the regular part Ṗℓ of Pℓ plays a central role, while Pℓ is usually dealt with as
the quantum information space. A plausible account for taking Ṗℓ is that we can be free from
dealing with the boundary of Pℓ which requires us an extra effort especially in differential
calculus.
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To any tangent vector Ξ ∈ TρṖℓ, the symmetric logarithmic derivate (SLD) is defined to
provide the Hermitian matrix Lρ(Ξ) ∈ M(ℓ, ℓ) subject to

1

2

{

ρLρ(Ξ) + Lρ(Ξ) ρ
}

= Ξ (Ξ ∈ TρṖℓ) . (24)

The quantum SLD-Fisher metric, denoted by ((·, ·))QF, is then defined to be

((Ξ, Ξ′))QF
ρ =

1

2
trace

[

ρ
(

Lρ(Ξ)Lρ(Ξ
′) + Lρ(Ξ

′)Lρ(Ξ)
)]

(Ξ, Ξ′ ∈ TρṖℓ) (25)

(see [25, 26]), which plays a central role in quantum information theory.

A more explicit expression of ((·, ·))QF is given in what follows. Let ρ ∈ Ṗℓ be expressed as

ρ = hΘh†, h ∈ U(l)

Θ = diag(θ1, · · · , θℓ) with trace Θ = 1, θk > 0 (k = 1, 2, · · · , ℓ),
(26)

where U(l) denotes the group of ℓ× ℓ unitary matrices,

U(l) = {h ∈ M(ℓ, ℓ) | h†h = Iℓ}, (27)

and Iℓ the identity matrix of degree-ℓ. On expressing Ξ ∈ TρṖℓ as

Ξ = hχh† (28)

with h ∈ U(l) in (26), the SLD Lρ(Ξ) to Ξ ∈ TρṖℓ takes an explicit expression [19]

(h†Lρ(Ξ)h)jk =
2

θj + θk
χjk (j, k = 1, 2, · · · , ℓ). (29)

Putting (26)-(29) into (25), we have

((Ξ, Ξ′))QF
ρ = 2

ℓ

∑
j,k=1

χjkχ′
jk

θj + θk
(30)

[19], where Ξ′ ∈ TρṖℓ is expressed as

Ξ′ = hχ′h†. (31)

The space of ℓ× ℓ regular density matrices, Ṗℓ, endowed with the quantum SLD-Fisher metric
((·, ·))QF defined above is what we are referring to as the quantum information space (QIS)
in the present chapter, which will be denoted also as the pair (Ṗℓ, ((·, ·))

QF) henceforth.
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3.2. Geometric reduction of the regular part of the ESOT to the QIS

We move to show how the regular part, denoted by Ṁ1(2
n, ℓ), of the ESOT is reduced to the

QIS through the geometric way, where Ṁ1(2
n, ℓ) is defined to be

Ṁ1(2
n, ℓ) = {Φ ∈ M1(2

n, ℓ) | rank Φ = ℓ}. (32)

A key to the reduction is the U(2n) action on M1(2
n, ℓ),

αg : Φ ∈ M1(2
n, ℓ) 7→ gΦ ∈ M1(2

n, ℓ) (g ∈ U(2n)), (33)

where U(2n) stands for the group of 2n × 2n unitary matrices,

U(2n) = {g ∈ M(2n, 2n) | g†g = I2n}, (34)

with M(2n, 2n) denoting the set of 2n × 2n complex matrices and I2n the identity matrix of
degree-2n. The U(2n) action (33) is well-defined also on Ṁ1(2

n, ℓ) since it leaves Ṁ1(2
n, ℓ)

invariant; αg(Ṁ1(2
n, ℓ)) = Ṁ1(2

n, ℓ).

The U(2n) action given above provides us with the equivalence relation ∼ both on M1(2
n, ℓ)

and on Ṁ1(2
n, ℓ);

Φ ∼ Φ
′ if and only if ∃g ∈ U(2n) s.t. αgΦ = Φ

′

(Φ, Φ
′ ∈ M, M = M1(2

n, ℓ), Ṁ1(2
n, ℓ)). (35)

The subset of M defined by

[Φ] = {Φ
′ ∈ M |Φ ∼ Φ

′} (M = M1(2
n, ℓ), Ṁ1(2

n, ℓ)) (36)

is called the equivalence class whose representative is Φ ∈ M (M = M1(2
n, ℓ), Ṁ1(2

n, ℓ)).
Note that [Φ] = [Φ′] holds true if and only if Φ ∼ Φ

′. The collection of the equivalence
classes is called the quotient space, denoted by M/∼, of M by ∼ (M = M1(2

n, ℓ), Ṁ1(2
n, ℓ)).

To describe a geometric structure of the quotient spaces, M/ ∼ (M = M1(2
n, ℓ), Ṁ1(2

n, ℓ)),
let us introduce the group of (2n − ℓ)× (2n − ℓ) unitary matrices,

U(2n − ℓ) = {κ ∈ M(2n − ℓ, 2n − ℓ) | κ
†
κ = I2n−ℓ}, (37)

with M(2n − ℓ, 2n − ℓ) denoting the set of (2n − ℓ)× (2n − ℓ) complex matrices and I2n−ℓ the
identity matrix of degree-(2n − ℓ). We have the following lemma [19].
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Lemma 3.1. The quotient space M1(2
n, ℓ)/∼ is realized as Pℓ defined by (21), where the projection

of M1(2
n, ℓ) to Pℓ is given by

π(n,l) : Φ ∈ M1(2
n, ℓ) 7→

1

ℓ
Φ

†
Φ ∈ Pℓ. (38)

Similarly, the quotient space Ṁ1(2
n, ℓ)/ ∼ is realized as Ṗℓ defined by (22). The projection is given

by π(n,l) restricted to Ṁ1(2
n, ℓ). The Ṁ1(2

n, ℓ) admits the fibered manifold structure with the fiber

U(2n)/U(2n − ℓ). Namely, the inverse image (π(n,l))−1(ρ) = {Φ ∈ Ṁ1(2
n, ℓ) |π(n,l)(Φ) = ρ} of

any ρ ∈ Ṗℓ is diffeomorphic to U(2n)/U(2n − ℓ).

Note that the fibered manifold structure of Ṁ1(2
n, ℓ) allows us to proceed differential

calculus on Ṗℓ
∼= Ṁ1(2

n, ℓ)/∼ freely, while not on Pℓ due to a collapse of the fibered structure
on the boundary.

What is an intuitive interpretation of the quotient spaces, M1(2
n, ℓ)/ ∼ and Ṁ1(2

n, ℓ)/ ∼ ?
Let us consider any pair of points Φ and Φ

′ = ∃gΦ in M (M = M1(2
n, ℓ), Ṁ1(2

n, ℓ)). Then
since g ∈ U(2n), the inner products between column vectors in Φ (see (6)) are kept invariant
under αg;

〈φ′
j, φ′

k〉 = 〈gφj, gφk〉 = 〈φj, φk〉 (j, k = 1, 2, · · · , ℓ). (39)

This implies that the relative configuration of column vectors (namely multi-qubits) is kept
invariant under the U(2n) action. Hence each of the quotient spaces of M1(2

n, ℓ) and of
Ṁ1(2

n, ℓ), is understood to be a space of relative configurations of multi-qubits [19]. We
wish to explain the relative configurations in more detail in a very simple setting-up with
n = 6 and ℓ = 6. Let us consider the set, S = {A, B, · · · , Z, a, · · · , z, 0, 1, · · · , 9, “, ”, “.”} ,
consisting of the capital Roman letters, the small ones, the arabic digits, a comma and a
period. The correspondence of the 26-computational basis vectors, e(x) (x = 1, · · · , 26 = 64)
(see subsubsec. 2.2.2), to the elements of S starts from e(1) 7→ A in ascending order. Then,
under the equivalence relation ∼ defined by (35), the word ‘Search’ is identified with ‘Vhduk’
since the latter can be obtained from the former through αg with the three-step shift matrix g.
On choosing g ∈ U(2n) to exchange the capital letters for the small ones, ‘Search’ is identified
with ‘sEARCH’.

We are now in a position to show that the QIS (Ṗℓ, ((·, ·))
QF) is a very natural outcome of

the reduction of (Ṁ1(2
n, ℓ), ((·, ·))ESOT). Note here that the Riemannian metric ((·, ·))ESOT of

M1(2
n, ℓ) naturally turns out to be a metric of Ṁ1(2

n, ℓ) under the restriction Φ ∈ Ṁ1(2
n, ℓ),

so that we apply the same symbol, ((·, ·))ESOT , to the metric of Ṁ1(2
n, ℓ). A crucial key is the

direct-sum decomposition of the tangent space,

TΦṀ1(2
n, ℓ) = {X ∈ M(2n, ℓ) | ℜ(trace Φ

†X) = 0} (Φ ∈ Ṁ1(2
n, ℓ)), (40)

of Ṁ1(2
n, ℓ) at Φ, which is associated with the fibered-manifold structure of Ṁ1(2

n, ℓ)
mentioned of in Lemma 3.1. Note that TΦṀ1(2

n, ℓ) is identical with TΦM1(2
n, ℓ) if Φ ∈

Ṁ1(2
n, ℓ).
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Let us consider the pair of subspaces, Ver(Φ) and Hor(Φ), of TΦṀ1(2
n, ℓ), which are defined

by

Ver(Φ) = {X ∈ TΦṀ1(2
n, ℓ) | X = ξΦ, ξ ∈ u(2n)} (41)

and

Hor(Φ) = {X ∈ TΦṀ1(2
n, ℓ) | ((X′, X))ESOT

Φ
= 0, X′ ∈ Ver(Φ)}. (42)

The u(2n) is the Lie algebra of U(2n) consisting of all the 2n × 2n anti-Hermitian matrices,

u(2n) = {ξ ∈ M(2n, 2n) | ξ† = −ξ}. (43)

The Ver(Φ) and Hor(Φ) are often called the vertical subspace and the horizontal subspace of
TΦṀ1(2

n, ℓ), respectively. The Ver(Φ) is understood to be the tangent space at Φ of the fiber
space,

U(2n) · Φ = {Φ
′ ∈ Ṁ1(2

n, ℓ) |Φ
′ = αg(Φ), g ∈ U(2n)}, (44)

passing Φ, and Hor(Φ) to be the subspace of TΦṀ1(2
n, ℓ) normal to Ver(Φ) with respect to

((·, ·))ESOT
Φ

. Thus the orthogonal direct-sum decomposition

TΦṀ1(2
n, ℓ) = Ver(Φ)⊕ Hor(Φ) (Φ ∈ Ṁ1(2

n, ℓ)) (45)

with respect to the inner product ((·, ·))ESOT
Φ

is allowed to the tangent space TΦṀ1(2
n, ℓ).

On using (45), the horizontal lift of any tangent vector of the QIS is given as follows: Let us

fix ρ ∈ Ṗℓ arbitrarily and any Φ ∈ Ṁ1(2
n, ℓ) subject to π(n,l)(Φ) = ρ. For any tangent vector

Ξ ∈ TρṖℓ (see (23)), the horizontal lift of Ξ at Φ is the unique tangent vector, denoted by Ξ
∗,

in TΦṀ1(2
n, ℓ) that satisfies

(π(n,l))∗Φ(Ξ
∗) = Ξ and Ξ

∗ ∈ Hor(Φ), (46)

where (π(n,l))∗Φ : TΦṀ1(2
n, ℓ) → Tπ(n,l)(Φ)Ṗℓ = TρṖℓ is the differential map of π(n,l) at Φ. For

a detail of differential maps, see Appendix 2. Recalling, further, the orthogonal direct-sum
decomposition (45), we can understand that the horizontal lift Ξ

∗ of Ξ ∈ TρṖℓ is of minimum

length among vectors, say Xs, in TΦṀ1(2
n, ℓ) subject to (π(n,l))∗Φ(X) = Ξ.

Accordingly, the horizontal lift (46) and the Riemannian metric ((·, ·))ESOT are put together
to give rise the Riemannian metric, denoted by ((·, ·))RS, of Ṗℓ, which is defined to satisfy

((Ξ, Ξ
′))RS

ρ = ((Ξ∗, Ξ
′ ∗))ESOT

Φ
with π(n,l)(Φ) = ρ (Ξ, Ξ

′ ∈ TρṖℓ, ρ ∈ Ṗℓ). (47)
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The Ξ
∗ and Ξ

′ ∗ are the horizontal lift at Φ of Ξ and Ξ
′, respectively, and the superscript RS

implies that ((·, ·))RS is the Riemannian metric of Ṗℓ looked upon as the reduced space. Note
here that the rhs of (47) is well-defined owing to the invariance,

(((αg)∗Φ(X), (αg)∗Φ(X′)))ESOT
αg(Φ) = ((X, X′))ESOT

Φ
(X, X′ ∈ TΦṀ1(2

n, ℓ), Φ ∈ Ṁ1(2
n, ℓ)), (48)

of ((·, ·))ESOT and the equivariance,

Hor(αg(Φ)) = (αg)∗Φ(Hor(Φ)) (Φ ∈ Ṁ1(2
n, ℓ)), (49)

of Hor(Φ) under the U(2n) action, where (αg)∗Φ is the differential map of αg at Φ (see (33)

and Appendix 2). In view of (47), we say that the projection π(n,l) : Ṁ1(2
n, ℓ) → Ṗℓ is a

Riemannian submersion [29].

We have the following on the coincidence of ((·, ·))RS and ((·, ·))QF [19].

Theorem 3.2. The Riemannian metric ((·, ·))RS defined by (47) to make π(n,l) the Riemannian
submersion coincides with the SLD-Fisher metric defined by (25) up to the constant multiple 4;
4((·, ·))RS = ((·, ·))QF.

On closing this subsection, a comparison between the reduction here and the one by Miyake
and Wadati is made. The reduction methods are essentially different since our reduction is
made under ‘left’ U(2n) action while ‘right’ U(1) action is dealt with in [15] The resultant
spaces, namely the reduced spaces, are of course different mutually.

3.3. Geodesic property of the reduced search sequence

We are now in a position to show that the reduced search sequence {π(n,l)(Ik
G(A))} in the

QIS is on an m-geodesic, a geodesic with respect to the m-parallel transport, of the QIS.

3.3.1. Intuitive example of parallel transports: The Euclidean case

Let us start with thinking of parallel transport in the 3-dimensional Euclidean space R3,
the conventional model space not only for basic mathematics and physics but for our
daily life. In R3, the notion of parallel seems to be a trivial one, which is usually not
presented in a differential geometric framework to those who are not familiar to differential
geometry. As minimum geometric knowledge necessary in this subsection, we introduce
below a coordinate expression of tangent vectors. As known well, R3 is endowed with the
Cartesian coordinates y = (y1, y2, y3)

T valid globally in R3. The tangent vectors at any point
p ∈ R3 can be understood to be the infinitesimal limit of displacements from p. The tangent

vector understood to be the displacement-limit limε→0(p + εe(j)) is then written as
(

∂

∂yj

)

p
,

where e(j)s are the orthonormal vectors along the j-th axis (j = 1, 2, 3). The account for

the expression
(

∂

∂yj

)

p
is that we have limε→0 F(p + εe(j)) =

(

∂F
∂yj

)

(p) for any differentiable

functions F. The parallel transport is defined to be a rule to transfer the tangent vectors
at p ∈ R3 to those at another p′ ∈ R3, which is of course have to be subject to several
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mathematical claims not gotten in detail here: The well-known parallel transport in the
conventional Euclidean space, R

3, is clearly expressed as

3

∑
j=1

vj

(

∂

∂yj

)

p

∈ TpR
3 7→

3

∑
j=1

vj

(

∂

∂yj

)

p′

∈ Tp′R
3 (vj ∈ R). (50)

An important note is that parallel transports in general differentiable manifolds (including
the familiar sphere S2) are defined in terms of curves specifying the way of point-translations
(see Appendix 3 for the case of S2). The Euclidean case (50) is hence understood to be a
curve-free case.

Once the parallel transport (50) is given to R
3, geodesics in R

3 are defined to be autoparallel
curves: Let γ(t) (t ∈ ∃[t0, t1] ∈ R) be a curve in R

3, whose tangent vector at t = τ of the curve

is given by dγ
dt (τ). The curve γ(t) is autoparallel if the tangent vector at each point is equal

to the parallel transport of the initial tangent vector dγ
dt (t0). Accordingly, every autoparallel

curve turns out to be a straight line or its segment as widely known. Geodesics in R
3

discussed here have the shortest-path property with respect to the Euclidean metric since the
parallel transport (50) leaves the metric invariant. Note that parallel transports other than
(50) can exist whose geodesics of course lose the shortest-path property with respect to the
Euclidean metric.

3.3.2. The m-parallel transport in the QIS

We move on to the m-parallel transport in the QIS. Fortunately, the m-parallel transport can

be described in a similar setting-up to that for the transport (50). Let us start with the space

of ℓ× ℓ complex matrices, M(ℓ, ℓ), that includes the QIS, Ṗℓ, as a subset. The M(ℓ, ℓ) admits

the matrix-entries as global (complex) coordinates like the Cartesian coordinates of R
3. The

tangent space TρṖℓ at ρ ∈ Ṗℓ can be identified with the set of ℓ × ℓ traceless Hermitian

matrices (see (23)), which can be dealt with in a smilar way to the Euclidean parallel transport

setting-up. Indeed, in view of the definition (22), Ṗℓ is understood to be a fragment of an

affine subspace of M(ℓ, ℓ). Hence the tangent space TΦṖℓ at every Ṗℓ admits the structure

(23), which is looked upon as a linear subspace of M(ℓ, ℓ).

According to quantum information theory [25, 26], the m-parallel transport is written in a

simple form

Ξ ∈ TρṖℓ 7→ Ξ ∈ Tρ′ Ṗℓ. (51)

The geodesic from ρ0 to ρ1 with respect to the m-parallel transport is therefore characterized

as an autoparallel curve,

ρmg(t) = (1 − t)ρ0 + tρ1 (0 ≤ t ≤ 1), (52)

which takes a very similar form to the Euclidean case. The parameter t in (52) can be chosen

arbitrarily up to affine transformations; t → at + b (a, b ∈ R).
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A very important remark should be made here. From a very naive viewpoint, the geodesic

ρmg(t) in (52) looks like ‘straight’. This is not true, however, since the QIS is not Euclidean due

to the SLD-Fisher metric ((·, ·))QF endowed in the QIS. Precisely, ρmg(t) has to be understood

to be ‘curved’ in the QIS.

3.3.3. The reduced search sequence is on a geodesic

We are at the final stage to show that the search sequence {Ik
G(A)} is reduced through π(n,l)

on an m-geodesic, a geodesic with respect to the m-transport, of the QIS. We start with

calculating the reduced sequence {π(n,l)(Ik
G(A))} explicitly. Though the initial states A for

the search sequence {Ik
G(A)} is out of the range Ṁ1(2

n, ℓ), we apply π(n,l) to {Ik
G(A)} in the

manner (38). Since we have

(W†W)jh = δjh (j, h = 1, 2, · · · , ℓ), (53)

(R†R)jh =
2n − 2 + δjh

2n − 1
(j, h = 1, 2, · · · , ℓ), (54)

(W†R)jh = (R†W)jh =
1 − δjh√

2n − 1
(j, h = 1, 2, · · · , ℓ), (55)

(A† A)jh = 1 (j, h = 1, 2, · · · , ℓ), (56)

the reduced search sequence {π(n,l)(Ik
G(A))} takes the form

π(n,l)(Ik
G(A))

=
1

ℓ

{

(

sin(k +
1

2
)θ
)

W +
(

cos(k +
1

2
)θ
)

R

}† {(

sin(k +
1

2
)θ
)

W +
(

cos(k +
1

2
)θ
)

R

}

=
1

ℓ

(

sin2(k +
1

2
)θ
)

W†W +
1

ℓ

(

cos2(k +
1

2
)θ
)

R†R

+
1

ℓ

(

cos(k +
1

2
)θ
)(

sin(k +
1

2
)θ
)

(R†W + W†R)

= (1 − τk)
(1

ℓ
A† A

)

+ τk

(1

ℓ
Iℓ

)

(k = 1, 2, · · · ) (57)

with

τk = 1 − 2n − 2

2n − 1
cos2

(

(k +
1

2
)θ
)

− 2√
2n − 1

(

cos(k +
1

2
)θ
)(

sin(k +
1

2
)θ
)

(k = 1, 2, · · · ), (58)

where Iℓ stands for the ℓ× ℓ identity matrix. The δjh in (53)-(55) indicates Kronecker’s delta

and θ is defined already to satisfy (15).
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The expression (52) and (57) are put together to inspire us to consider the m-geodesic in the

QIS of the form

ρ
G(t) = (1 − t)

(1

ℓ
A† A

)

+ t
(1

ℓ
Iℓ

)

(ε ≤ t ≤ 1) (59)

where ε is a sufficiently small positive number subject to 0 < ε < τ1 (see (58) with k = 1 for

τ1). Note here that the reduction 1
ℓ

A† A ∈ Pℓ of the initial states A ∈ M1(2
n, ℓ) turns out to

be placed as the limit point of the geodesic ρG(t) in the sense that

lim
ε→+0

ρ
G(ε) =

1

ℓ
A† A. (60)

Combining (59) with (57) and (58), we have

π
(n,l)(Ik

G(A)) = ρ
G(τk) (k = 1, 2, · · · , Kn) (61)

where Kn is the integer nearest to π
4

√
2n − 1

2 . The reduction of the initial state is placed at

the limit point of the m-geodesic ρG(t) in the sense (60). Thus we have the following outlined

as Main Theorem in Sec. 1:

Theorem 3.3. Through the reduction of the regular part, Ṁ1(2
n, ℓ), of the extended space of ordered

tuples of multi-qubits (ESOT) to the quantum information space (QIS), Ṗℓ, the reduced search

sequence {π(n,l)(Ik
G(A))}k=1,2,··· ,Kn

is on the m-geodesic ρG(t) of the QIS given by (59).

4. Concluding remarks

We have studied the Grover-type search sequence for an ordered tuple of multi-qubits. The

search sequence itself is shown to be on a geodesic with respect to the Levi-Civita parallel

transport in the ESOT. Further, the reduced search sequence in the QIS is shown to be on a

geodesic with respect to the m-parallel transport in the QIS. The m-geodesics do not have the

shortest-path property but they are very important geodesics in the QIS together with those

with respect to e-parallel transport. The geometric reduction method applied this chapter is

entirely different from the method in Miyake and Wadati [15].

A significance of this chapter is the discovery of a novel geometric pathway that connects

directly the search sequence in the ESOT with an m-geodesic in the QIS. According to a

crucial role of the m-geodesics and the e-geodesics together with their mutual duality, the

pathway will be a key to further studies on the search in the ESOT from the quantum

information geometry viewpoint. Further, since the QIS is well-known to be the stage for

describing dynamics of quantum-state ensembles of quantum systems [2, 3], the pathway

shown in this chapter will be of good use to connect the search in the ESOT with dynamics

of a certain quantum system.
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An direct application of the search in the ESOT is not yet found: However, if a problem with

a strong relation to relative ordering of data (see around Eq. (39)) exists, our search will be

worth applying to the problem.

On closing this section, three questions are posed below, which would be of interest from the

viewpoint of the expected benefits listed in Sec. 1.

1 In view of the results in this chapter, we are able to clarify that the ‘Grover search orbit’

given by a continuous-time version of (16) is an m-geodesic. A question thereby arises as

to ‘Is it possible to characterize the m-geodesics by orbits of a certain dynamical system

on M1(2
n, ℓ)?’. To this direction, a variation of the free particle system on M1(2

n, ℓ) would

be a candidate (Benefits 1 and 2).

2 Accordingly, another question would be worth posed: ‘Is it possible to characterize the

e-geodesics by orbits of a certain dynamical system on M1(2
n, ℓ)?’ (Benefits 1 and 2).

3 The celebrated fact on the duality between the m-transport and the e-transport (see [25]

and [26]) may provide us with a further question: ‘If there exists a pair of dynamical

systems on M1(2
n, ℓ) whose reduced orbits characterize the m-geodesics and e-geodesics

respectively, which kind of relation does it exist between those systems ?’ (Benefit 3).
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Appendices

Appendix 1. Glossary of symbols and notation

Acronyms

• ESOT: The abbreviation of the extended space of ordered tuples of multi-qubits,
which is denoted by M1(2

n, ℓ) (see Eq. (5)).

• QIS: The abbreviation of the quantum information space, which is realized as Ṗℓ, the
set of ℓ × ℓ positive definite Hermitian matrices with unit trace, endowed with the
quantum SLD-Fisher metric ((·, ·))QF (see Eq. (22) for Ṗℓ, and (24)-(31) for ((·, ·))QF).

• SLD: The abbreviation of the symmetric logarithmic derivative (see Eq. (24)).

Sets and spaces

• Hor(Φ): The horizontal subspace of TΦṀ1(2
n, ℓ) (see Eq. (42) with (41)).

• M(ℓ, ℓ): The set of ℓ× ℓ complex matrices.

• M(2n, ℓ): The set of 2n
× ℓ complex matrices.

• M(2n, 2n): The set of 2n
× 2n complex matrices.

• M(2n
− ℓ, 2n

− ℓ): The set of (2n
− ℓ)× (2n

− ℓ) complex matrices.
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• M1(2
n, ℓ): The subset of M(2n, ℓ) consisting of 2n × ℓ complex matrices with unit

norm referred to as the extended space of ordered tuples of multi-qubits (see Eq. (5)),
which is abbreviated to the ESOT.

• Ṁ1(2
n, ℓ): The subset of M1(2

n, ℓ) consisting of the elements of M1(2
n, ℓ) with the

maximum rank equal to ℓ (see Eq. (32)).

• MOT
1 (2n, ℓ); The subset of M1(2

n, ℓ) consisting of 2n × ℓ complex matrices whose
columns are of unit length (see Eq. (7)).

• Pℓ The set of ℓ× ℓ positive semidefinite Hermitian matrices with unit trace; the space
of ℓ× ℓ density matrices (see Eq. (21)).

• Ṗℓ: The set of ℓ× ℓ positive definite Hermitian matrices with unit trace; the space of
ℓ× ℓ regular density matrices (see Eq. (22)).

• TΦM1(2
n, ℓ): The tangent space of M1(2

n, ℓ) at Φ ∈ M1(2
n, ℓ) (see Eq. (17)).

• TΦṀ1(2
n, ℓ): The tangent space of Ṁ1(2

n, ℓ) at Φ ∈ Ṁ1(2
n, ℓ) (see Eq. (40)), which is

identical with TΦM1(2
n, ℓ) if Φ ∈ Ṁ1(2

n, ℓ).

• TρṖℓ : The tangent space of Ṗℓ at a point ρ ∈ Ṗℓ (see Eq. (23)).

• U(l): The group of ℓ× ℓ unitary matrices (see Eq. (27)).

• U(2n): The group of 2n × 2n unitary matrices (see Eq. (34)).

• u(2n): The Lie algebra of the group U(2n) (see Eq. (43)).

• U(2n − ℓ): The group of (2n − ℓ)× (2n − ℓ) unitary matrices (see Eq. (37)).

• Ver(Φ): The vertical subspace of TΦṀ1(2
n, ℓ) (see Eq. (41)).

Maps, operators and transformations

• αg: The unitary transformation of M1(2
n, ℓ) associated with g ∈ U(2n) (see Eq. (33)).

• (αg)∗Φ: The differential map of αg at Φ ∈ Ṁ1(2
n, ℓ). See also Appendix 2 for the

definition.

• IA: The unitary transformation of M1(2
n, ℓ) defined by (11).

• IG: The unitary transformation composed of −IA and IW (see Eq. (10)).

• IW : The unitary transformation of M1(2
n, ℓ) defined by (12).

• Lρ: The symmetric logarithmic derivative (SLD) (see Eqs. (24) and (29)).

• π(n,l): The projection of Ṁ1(2
n, ℓ) to Ṗℓ (the QIS) (see Eq. (38)).

• (π(n,l))∗Φ: The differential map of π(n,l) at Φ ∈ Ṁ1(2
n, ℓ). See also Appendix 2 for

the definition.

• T : The transpose operation to vectors and matrices.

• †: The Hermitian conjugate operation to vectors and matrices.

Metrics

• ((·, ·))ESOT : The Riemannian metric of the ESOT and of its regular part (see Eq. (18)).

• ((·, ·))QF: The quantum SLD-Fisher metric of the QIS (see Eqs. (25) and (30)).

• ((·, ·))RS: The Riemannian metric of the QIS other than ((·, ·))QF, that makes the

projection π(n,l) a Riemannian submersion (see Eq. (47) with (46)).
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Others

• A: The matrix expressing the initial state for the Grover-type search in the ESOT (see
Eq. (9)).

• R: The matrix with which forms an orthonormal basis of the subspace consisting of
all the superpositions of A and W (see Eq. (13)).

• W: The matrix expressing the target state (namely the marked state) for the
Grover-type search in the ESOT (see Eq. (9)).

• ∼: The equivalence relation both on M1(2
n, ℓ) and on Ṁ1(2

n, ℓ) (see Eq. (35)).

Appendix 2. Differential maps

We here give a detailed explanation of differential maps, (π(n,l))∗Φ and (αg)∗Φ. For any
X ∈ TΦM1(2

n, ℓ), we can always find a curve γ(t) (−τ < t < τ, τ > 0) on M1(2
n, ℓ) subject

to γ(0) = Φ and dγ

dt (0) = X. The differential map (π(n,l))∗,Φ is defined to be

(π(n,l))∗Φ(X) =
d

dt

∣

∣

∣

∣

t=0

π
(n,l)(γ(t)), (62)

which turns out to take the explicit form

(π(n,l))∗Φ(X) =
1

ℓ
(X†

Φ + Φ
†X). (63)

The differential map (αg)∗Φ of αg at Φ is defined in the same way: On the same setting-up
to the curve γ(t) with X ∈ TΦM1(2

n, ℓ), the (αg)∗Φ is defined by

(αg)∗Φ(X) =
d

dt

∣

∣

∣

∣

t=0

αg(γ(t)), (64)

which yields

(αg)∗Φ(X) = gX. (65)

Appendix 3. The standard parallel transport in S2

In this appendix, the standard parallel transport is concisely reviewed. In particular, we
present the fact that the transport depends on the choice of the paths connecting a pair of
points in S2. Below, S2 is realized as the set,

S2 = {y ∈ R3 | yTy = 1}, (66)

in the 3-dimensional Euclidean space R3.
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Let us fix a pair of distinct points, y0 and y1, in S2 arbitrarily, which connect by a smooth
curve γ(s), where s is the length parameter. Namely, the γ(s) satisfies

γ(0) = y0, γ(L) = y1 (L : the full curve length). (67)

Again, we remark that γ(s) takes 3-dimensional vector form. To express tangent vectors of
S2 at γ(s), we prepare the orthonormal basis {v1(s), v2(s)} of Tγ(s)S

2 subject to

v1(s) = γ̇(s), v2(s) = γ(s)× γ̇(s) (68)

where the overdot ˙ stands for the derivation by s and × the vector product operation. We
note here that the vector, γ̇(s), tangent to γ(s) is always of unit length since s is the length
parameter. This ensures that the basis {v1(s), v2(s)} is orthonormal. In terms of the basis
{v1(s), v2(s)}, any tangent vector at γ(s) can be expressed in the form of linear combination,
c1v1(s) + c2v2(s) (c1, c2 ∈ R). Accordingly, the parallel transport along the curve γ(s) is
understood to be the way of connecting {v1(L), v2(L)} at y1 = γ(L) to {v1(0), v2(0)} at
y0 = γ(0).

To express the parallel transport concisely, it is of good use to introduce the one-parameter
rotation matrix,

Γ(s) = (v0(s), v1(s), v2(s)), v0(s) = γ(s) (0 ≤ s ≤ L). (69)

On denoting by Pγ(v1(0), v2(0)) the parallel transport of (v1(0), v2(0)) along the curve γ(s),
we have

(v1(L), v2(L)) = Pγ(v1(0), v2(0))

(

cos a sin a
− sin a cos a

)

(70)

with

a = −
∫ L

0

1

2
trace (N Γ̇(s) Γ(s)T) ds, N =





0 0 0
0 0 −1
0 1 0



 . (71)

If we choose γ(s) to be a big circle or its segment, the γ(s) is autoparallel since a in (70) and
(71) vanishes, so that big circles and their segments turn out to be geodesics.
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