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1. Introduction

Modern optical communication networks are expected to meet a broad range of services
with different and variable demands of bit rate, connection (session) duration, frequency of
use, and set up time [1]. Thus, it is necessary to build flexible all-optical networks that allow
dynamic resources sharing between different users and clients in an efficient way. The all-
optical network is able to implement ultrahigh speed transmitting, routing and switching of
data in the optical domain, presenting the transparency to data formats and protocols which
increases network flexibility and functionality such that future network requirements can be
met [2]. Optical code division multiplexing access (OCDMA) based technology has attracted
a lot of interests due to its various advantages including asynchronous operation, high net‐
work flexibility, protocol transparency, simplified network control and potentially enhanced
security [3]. Therefore, recent developments and researches on OCDMA have been experi‐
enced an expansion of interest, from short-range networks, such as access networks, to high-
capacity medium/large networks.

The optical network presents two promising scenarios: the transport (backbone) networks
with optical code division multiplexing/wavelength division multiplexing (OCDM/WDM)
technology and the access network with OCDMA technology. In both, transport
OCDM/WDM and access OCDMA networks, each different code defines a specific user or
logic channel transmitted in a common channel. In a common channel, the interference that
may arise between different user codes is known as multiple access interference (MAI), and
it can limit the number of users utilizing the channel simultaneously [3]. In this work we
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have focus on hybrid OCDM/WDM systems. In this one, data signals in routing network
configuration are carried on optical code path (OCP) from a source node to a destination
node passing through nodes where the signals are optically routed and switched without re‐
generation in the electrical domain. Hence, in routing and channel (code/wavelength) as‐
signment (RCA) problem, suitable paths and channels are carefully selected among the
many possible choices for the required connections [2].

Establishing OCP with higher optical signal-to-noise plus interference ratio (SNIR) allows
reducing the number of retransmissions by higher layers, thus increasing network through‐
put. Therefore, RCA techniques that consider physical layer impairments for the establish‐
ment of an OCP, namely Quality of Transmission-Aware (QoT-aware) RCA, could be much
more practical [4-5]. For a dynamic traffic scenario the objective is to minimize the blocking
probability of the connections by routing, assigning channels, and to maintain an acceptable
level of optical power and adequate SNIR all over the network [6]. Furthermore, different
channels can travel via different optical paths and also have different levels of quality of
service (QoS) requirements. The QoS depends on SNIR, dispersion, and nonlinear effects [6].
Therefore, it is desirable to adjust network parameters in an optimal way, based on on-line
decentralized iterative algorithms to accomplish such adjustment [7].

As a result, this dynamic optimization allows an increased network flexibility and capacity
[6-7]. The SNIR optimization problem appears to be a huge challenge, since the MAI intro‐
duces the near-far problem [7]. Furthermore, if the distances between the nodes are quite
different, like in real optical networks, the signal power received from various nodes will be
significantly distinct. Thus, considering an optical node as the reference, the performance of
closer nodes is many orders of magnitude better than that of far ones. Then, an efficient
power control is needed to overcome this problem and enhance the performance and
throughput of the network; this could be achieved through the SNIR optimization [6]. In this
case, which is analogous to the CDMA cellular system, the power control (centralized or dis‐
tributed) is one of the most important issues, because it has a significant impact on both net‐
work performance and capacity. It is the most effective way to avoid the near-far problem
and to increase the SNIR [6-7].

The optical power control problem has been recently investigated in the context of access
networks aiming at solving the near-far problem [7-8] and establishing the QoS at the physi‐
cal layer [9-11]. In [7], the impact of power control on the random access protocol was inves‐
tigated. In [8], the effect of near-far problem and a detailed review of the power control were
presented including the use of distributed algorithms. On the other hand, in [9-12] the con‐
cept that users of various classes should transmit at different power levels was applied. Dis‐
tinct power levels were obtained with power attenuators [10], adjustable encoders/decoders
[11], and adjustable transmitters [12]. Furthermore, the optimal selection of the system’s pa‐
rameters such as the transmitted power and the information rate would improve their per‐
formances [9, 13-15]. In [13], optical power control and time hopping for multimedia
applications using single wavelength was proposed. The approach accommodates various
data rates using only one sequence by changing the time-hopping rate. However, in order to
implement such system an optical selector device that consists of a number of optical hard-
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limiters is needed [13]. On the other hand, in [14] a multi rate and multi power level scheme
using adaptive overlapping pulse-position modulator (OPPM) and optical power controller
was proposed. The bit rate varies depending on the number of slots in the optical OPPM
system and has the advantage that it is not required to change the code sequence depending
on the required user’s information rate. The power level can be achieved by accommodating
users with the different transmitted power. The power controller requires only power at‐
tenuator, and the difference of the power does not cause the change of the bit rate. In [15] a
hybrid power and rate control nonlinear programming algorithm for overlapped optical fast
frequency hopping (OFFH) was proposed. The multi rate transmission is achieved by over‐
lapping consecutive bits while coded using fiber Bragg grating (FBG). The intensity of the
transmitted optical signal is directly adjusted from the laser source with respect to the trans‐
mission data rate. The proposed algorithm provides a joint transmission power and overlap‐
ping coefficient allocation strategy, which has been obtained via the solution of a
constrained optimization problem, which maximizes the aggregate system throughput sub‐
ject to a peak laser transmission power constraint. In [9], a control algorithm to solve the un‐
fairness in the resource allocation strategy presented in [10] has been analyzed. Also, a
unified framework for allocating and controlling the transmission rate and power in a way
that it can be applied for any expression of the system capacity was implemented.

Besides, recently researches have showed the utilization of resource allocation and optimiza‐
tion algorithms such as Local Search, Simulated Annealing, GA, Particle Swarm optimiza‐
tion (PSO), Ant Colony optimization (ACO) and Game Theory to regulate the transmitted
power, bit rate variation and the number of active users in order to maximize the aggregate
throughput of the optical networks [16-17]. However, the complexity and unfairness in the
strategies presented are aspects to be improved. On the other hand, resource allocation has
not been largely investigated considering energy efficiency aspects. This issue has become
paramount since energy consumption is dominated by the access segment due to the large
amount of distributed network elements. The related works have showed the utilization of
resource allocation and optimization algorithms to optimization of the access network; how‐
ever, these issues have not been largely investigated considering routed OCDM/WDM net‐
works [6]. In the case of the OCP networks optimization, it is necessary to consider the use
of distributed iterative algorithms with high performance-complexity tradeoffs and the im‐
perfections of physical layer, which constitute a new research area so far, which was investi‐
gated under an analytical perspective in [6].

It is worth noting the routed OCDM/WDM networks brings a new combination of challenges
with the power control, like amplified spans, multiple links, accumulation, and self-generation
of the optical spontaneous noise power (ASE) noise, as well as the MAI generated by the OCPs.
On the other hand, the dispersive effects, such as chromatic or group velocity dispersion
(GVD) and polarization mode dispersion (PMD), are signal degradation mechanisms that sig‐
nificantly affect the overall performance of optical communication systems [6, 18-21].

In this chapter, optimization procedures based on PSO are investigated in details, aiming to
efficiently solve the optimal resource allocation for SNIR optimization of OCPs from
OCDM/WDM networks under QoS restrictions and energy efficiency constraint problem,
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considering imperfections on physical constraints. Herein, the adopted SNIR model consid‐
ers the MAI between the OCP based on 2-D codes (time/wavelength) [22, 23], ASE at cascad‐
ed amplified spans, and GVD and PMD dispersion effects.

The optimization method based on the heuristic PSO approach is attractive due to its perform‐
ance-complexity tradeoff and fairness features regarding the optimization methods that de‐
ploy matrix inversion, purely numerical procedures and other heuristic approaches [9][17].

The chapter is organized in the following manner: in Section 2 the optical transport (OCDM/
WDM) is described, while in Section 3 the SNIR optimization for the OCPs based on particle
swarm intelligence is described in order to solve the resource allocation problem. In the net‐
work optimization context, figures of merit are presented and the PSO is developed in Sec‐
tion 4, with emphasis on its input parameters optimal choice and the network performance.
Afterward, numerical results are discussed for realistic networks operation scenarios. Final‐
ly, the main conclusions are offered in Section 5.

2. Network architecture

2.1. OCDM/WDM transport network

The transport network considered in this work is formed by nodes that have optical core
routers interconnected by OCDM/WDM links with optical code paths defined by patterns of
short pulses in wavelengths, such as shown in Fig. 1. The links are composed by sequences
of span and each span consists of optical fiber and optical amplifier. The transmitting and
receiving nodes create virtual path based on the code and the total link length is given by
dij =∑

i
di

tx +∑
j

dj
rx, where di

tx is the span length from the transmitting node to the optical

router and dj
rx is the span between optical routers in the OCP route and the receiving node.

The received power at the j-th node is given byPr =astar piGampexp(−αf dij), where pi is the
transmitted power by the i-th transmitter node, αf is the fiber attenuation (km-1) and astar  is
the star coupler attenuation (linear units), and Gamp is the total gain at the route. Considering
decibel units,astar =10log(K )− 10log2(K )log10δ , where, δ is the excess loss ratio [6]. A typical
distance between optical amplifiers is about 60 km [20].

The optical core router consists of code converter routers in parallel forming a two-dimension‐
al router node [23] and each group of code converters in parallel is pre-connected to a specific
output performing routing by selecting a specific code from the incoming broadcasting traffic.
This kind of router does not require light sources or optical-electrical-optical conversion and
can be scaled by adding new modules [22]. This code is transmitted and its route in the network
is determined by a particular code sequence. For viability characteristics, we consider network
equipment, such as code-processing devices (encoders and decoders at the transmitter and re‐
ceiver), star coupler, optical routers could be made using robust, lightweight, and low-cost
technology platforms with commercial-off-the-shelf technologies [23-24]. For more details
about transport networks the references [19],[25] should be consulted.
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Figure 1. OCDM/WDM routed network architecture.

2.2. OCDMA codes

The OCDMA can be divided into a) non-coherent unipolar systems, based only on optical
power intensity modulation [20], and b) coherent bipolar systems, based on amplitude and
phase modulation [26]. As expected, the performance of coherent codes is higher than that
of non-coherent ones when analyzing the SNIR [27]. This effect occurs, because the bipolar
code is true-orthogonal, and the unipolar code is pseudo-orthogonal. However, the main
drawback to the coherent OCDMA lies in the technical implementation difficulties, concom‐
itant with the utilization of phase-shifted optical signals [20],[27]. In this work we adopt
non-coherent codes because their technological maturity and implementation easiness when
compared with coherent codes [28]. The non-coherent codes can be classified into one-di‐
mensional (1-D) and two-dimensional (2-D) codes. In the 1-D codes, the bits are subdivided
in time into many short chips with a designated chip pattern representing a user code. On
the other hand, in the 2-D codes, the bits are subdivided into individual time chips, and each
chip is assigned to an independent wavelength out of a discrete set of wavelengths. The 2-D
codes have better performance than the 1-D codes, and they can significantly enhance the
number of active users [29]. Besides, the 2-D codes have been applied only in access net‐
works [2]; in this way, recently the utilization of the 2-D codes to obtain optical code path
routed networks was proposed, which performance evaluated by simulation, considering
coding, topology, load condition, and physical impairment [2][6][20][21][22].

The 2-D codes can be represented by Nλ × NT matrices, where Nλ is the number of rows, that
is equal to the number of available wavelengths, and NT is the number of columns, that is
equal to the code length. The code length is determined by the bit period TB which is subdi‐
vided into small units namely chips, each of duration Tc = TB/ NT, as show Fig. 2(a). In each
code, there are w short pulses of different wavelength, where w is called the weight of the
code. An (Nλ × NT, w, λa, λc) code is the collection of binary Nλ × NT matrices each of code
weight w; the parameters λa and λc are nonnegative integers and represent the constraints
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on the 2-D codes autocorrelation and cross-correlation, respectively [3]. The 2-D code design
and selection is very important for good system performance and high network scalability
with low bit error rate (BER). In [3] and [28] is presented an extensive list of code construc‐
tion techniques, as well as their technological characteristics are discussed.

The OCDMA 2-D encoder creates a combination of two patterns: a wavelength-hopping pat‐
tern and a time-spreading pattern. The common technology applied for code encoders/
decoders fiber Bragg gratings (FBGs), as show Fig. 2(b). The losses associated with the en‐
coders/ decoders are given by CBragg(dB)= NλaBragg + aCirculator  [22], where aBragg  is the FBG loss
and aCirculator  is the circulator loss. The usual value of losses for these equipments are aBragg  =
0.5 dB and aCirculator  = 3dB.

1     2           Nt

1

2




N

Wavelength

TB

TC

Time

(a) (b)

Figure 2. a) Representation of optical OCDMA codes. (b) Schematic of 2-D encoders/decoders based on fiber Bragg
gratings (FBGs).

3. SNIR optimization procedures

In the present approach, the SNIR optimization is based on the definition of the minimum pow‐
er constraint (also called sensitivity level) assuring that the optical signal can be detected by all
optical devices. The maximum power constraint guarantees the minimization of nonlinear
physical impairments, because it makes the aggregate power on a link to be limited to a maxi‐
mum value. The power control in optical networks appears to be an optimization problem.

3.1. Problem description

Denoting Γi the carrier-to-interference ratio (CIR) at the required decoder input, in order to
get a certain maximum bit error rate (BER) tolerated by the i-th optical node, and defining
the K-dimensional column vector of the transmitted optical power p = [p1, p2,…, pK]T, the op‐
tical power control problem consists in finding the optical power vector p that minimizes
the cost function J (p) can be formulated as [6],[8] :
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where 1T = [1,..., 1] and Γ *is the minimum CIR to achieve a desired QoS; Gii is the attenuation
of the OCP taking into account the power loss between the nodes, according to network top‐
ology, while Gij corresponds to the attenuation factor for the interfering OCP signals at the
same route, Gamp is the total gain at the OCP, Nsp

eqis the spontaneous noise power (ASE) for
each polarization at cascaded amplified spans [29], pi is the transmitted power for the i-OCP
and pj is the transmitted power for the interfering OCP; σD is the pulse spreading due to the
combined effects of the GVD and the first-order PMD for Gaussian pulses [30]. Using matrix
notations, (1) can be written as Ι -Γ *H p ≥u, where I is the identity matrix, H is the normal‐
ized interference matrix, which elements evaluated by H ij =Gij / Giifor i ≠ j and zero for an‐

other case, thus ui =Γ *Nsp
eq / Gii, where there is a scaled version of the noise power.

Substituting inequality by equality, the optimized power vector solution through the matrix

inversion p *= Ι -Γ *H -1u could be obtained. The matrix inversion is equivalent to central‐
ized power control, i.e. the existence of a central node in power control. The central node
stores information about all physical network architecture, such as fiber length between no‐
des, amplifier position and regular update for the OCP establishment, and traffic dynamics.
These observations justify the need for on-line SNIR optimization algorithms, which have
provable convergence properties for general network configurations [6, 16, 29].

The SNIR and the carrier to interference ratio in eq. (1) are related to the factorNT / σ, i. e.,

γi ≈ (NT / σ)2Γi. The bit error probability (BER) is given by Pb(i)= erfc( γi / 2) / 2, when the
Gaussian approximation is adopted, and the signal-to-noise plus interference ratio (SNIR) at
each OCP, considering the 2-D codes, is given by [6, 8],

( )2

2

1,
2

T ii i amp D
i K

eq
amp ij j sp

j j i

N G p G

G G p N

s
g

s
= ¹

=
+å

(2)

where the average variance of the Hamming aperiodic cross-correlation amplitude is repre‐
sented by σ 2[3].
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3.2. Physical restrictions

The physical impairments are signal degradation mechanisms that significantly affect the
overall performance of optical communication systems [6]. For the data that are transmitted
through a transparent optical network, degradation effects may accumulate over a large dis‐
tance. The major linear physical impairments are group velocity dispersion (GVD), polariza‐
tion mode dispersion (PMD), and amplifier spontaneous emission (ASE) noise [24]. On the
other hand, the major nonlinear physical impairments are self phase modulation (SPM), cross-
phase modulation (XPM), and four wave mixing (FWM), stimulated Brillouin scattering (SBS),
and Raman scattering (SRS). The nonlinear physical impairments are excited with high power
level [24]. However, the maximum power constraint guarantees the minimization of nonlinear
physical impairments, because it makes the aggregate power on a link to be limited to a maxi‐
mum value [6]. In the currently technology stage, besides GVD, the main linear impairment is
the PMD, that must be considered in high capacity optical networks. Differently from GVD,
PMD is usually difficult to accurately determine and compensate due to its dynamic nature
and its fluctuations induced by external stress/strain applied to the fiber after installation [5]
[21][22]. As a result, the signals quality in an OCDM/WDM network can be quickly evaluated
by analyzing the GVD, PMD and MAI restrictions. PMD impairment establishes an upper
bound on the length of the optical segment due to fiber dispersion which causes the temporal
spreading of optical pulses. On the other hand, due to the advances in the fiber manufacturing
process with a continuous reduction of the PMD parameter, the deleterious effect of PMD will
not be an issue for 10 Gbps or lower bit rates, for future small and medium-sized networks [20]
[21]. In this context, the dominant impairment in SNIR will be given by i) ASE noise accumula‐
tion in chains of optical amplifiers for future optical networks [29] and ii) ASE, GVD and PMD
for currently stage of optical networks.

The dispersive effects, such as chromatic or group velocity dispersion (GVD) and polariza‐
tion mode dispersion (PMD) constitute degradation mechanisms of the optical signal that
significantly affect the overall performance of optical communication systems [21]. Current‐
ly, the PMD effect appears to be the only major physical impairment that must be consid‐
ered in high capacity optical networks, which can hardly be controlled due to its dynamic
and stochastic nature [5][21-22]. On the other hand, the GVD causes the temporal spreading
of optical pulses that limits the product line rate and link length [6-30]. The pulse spreading
effect due to the combined effects of the GVD and the first-order PMD for Gaussian pulses
can be calculated as [30]:

σD = {(1 +
Cpβ2dij

2τ0
2 ) + ( β2dij

2τ0
2 ) + x − ( 1

2(1 + Cp
2) × 1 +

4
3 (1 + Cp

2)x −1)}1/2
(3)

where Cp is the chirp parameter, τ0 =
TC

2 2ln2
 is the RMS pulse width, Tc is the chip period at

half maximum, β2 = −Dλ0
2 / 2πc is the GVD factor, D is the dispersion parameter, c is the

speed of light in the vacuum, x =Δτ 2 / 4τ0
2 and Δτ = DPMD dij, DPMD is the PMD parameter,
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and dij is the link length. Although there is a difference in the GVD for each wavelength, re‐
sulting from time skewing between the wavelengths, the consideration of the same GVD
value for the entire transmission window is reasonable for a small number of wavelengths,
as for the present code [27], [28]. On the other hand, this approximation is utilized to obtain
an analytical treatment of the GVD and the PMD, in the same and less complex formalism,
rather than to apply a formalism based on numerical methods [6].

The ASE (Nsp
eq) at the cascaded amplified spans is given by the model presented in Fig. 3

[29].

RXG0G1G2

NSP-0NSP-1NSP-2

P2 P1 P0

Pre-amplifier

RXG0G1G2

NSP-0NSP-1NSP-2

P2 P1 P0

Pre-amplifier

Figure 3. Cascading amplifiers.

This model considers that the receiver gets the signal from a link with cascading amplifiers,
numbered as 1, 2,.., starting from the receiver. The pre-amplifier can be contemplated as the
number 0 cascade amplifier. Let Gi be the amplifier gain, i. e. Nsp-i will be its spontaneous
emission factor. The span between the i-th and the (i − 1)-th amplifier has the attenuation Gii.
Let Pti be the mark power at the i-th amplifier input. The equivalent spontaneous emission
factor is given by [24], [29]

( ) ( )1 1 0 0 0

1 0

1 1
1

sp ii speq
sp

ii

N G G G N G
N

G G G
- -- + -

=
-

(4)

Calculating recursively the Nsp
eqfactor, one can find the noise at the cascading amplifiers. The

noise for i-th amplifier is given by Nsp−i =2nsphf (Gi −1)B0, which take into account the two
polarization mode presented in a single mode fiber [24]. Where nSP is the spontaneous emis‐
sion factor, typically around 2 − 5, h is Planck’s constant, f is the carrier frequency, Gi is the
amplifier gain and Bo is the optical bandwidth. Ideally, to reduce the ASE noise power, the
optical bandwidth can be set to a minimum of Bo = 2R, where R is the bit rate. Without loss
of generality, all employed optical amplifiers provide a uniform gain, setting the maximum
obtainable Erbium-doped fiber amplifier (EDFA) to 20 dB across the transmission window.
This is a reasonable assumption for the reduced number of wavelengths in the code trans‐
mission window (4 wavelengths), considering the optical amplifier gain profile, where the
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maximum difference of this gain is 0.4 dB for the wavelength, which is the most distant one
from the central wavelength (1550 nm), with spectral spacing of 100 GHz [6][17].

3.3. Particle swarm optimization

3.3.1. PSO description

Particle Swarm Optimization (PSO) is a population-based stochastic optimization algorithm
for global optimization that was presented first in 1995 [31]. It is based on the behavior of
social groups like fish schools or bird flocks and it differs from other well-known Evolution‐
ary Algorithms (EA). As in EA, a population of potential solutions is used to probe the
search space, but no operators, inspired by evolution procedures, are applied on the popula‐
tion to generate new promising solutions [32]. The fact which is recursively exploited is that
an improved performance can be gained by interactions between individuals, or more spe‐
cifically by imitation of successful individuals. In a PSO system, particles fly around in mul‐
tidimensional search space. During the flight, each particle adjusts its position according to
its own experience, and the experience of neighboring particles, making use of the best posi‐
tion encountered by itself and its neighbors. The swarm direction of a particle is defined by
the set of particles neighboring the particle and its history experience. Although PSO does
not rely on the survival of the fittest principle, it is often classified as an evolutionary algo‐
rithm (EA) because the update equations, which control the movement of individuals, are
similar to the evolutionary operators used in EAs.

In general, the PSO performance for resource allocation problem can guarantee fast conver‐
gence and fairness within fewer iterations regarding the genetic algorithm-based [16]. It is
well known in the literature that the PSO performance for resource allocation problem is
highly dependent on its control parameters and that recommended parameter settings from
the literature often do not lead to reliable and fast convergence behavior for the considered
optimization problem [33], [34], [35].

In the PSO process, each particle keeps track of its coordinates in the space of interest, which
are associated with the best solution (fitness) it has achieved so far. Another best value
tracked by the global version of the particle swarm optimizer is the overall best value, and
its location, obtained so far by any particle in the population. At each time iteration step, the
PSO concept consists of velocity changes of each particle toward local and global locations.
Acceleration is weighted by a random term, with separate random numbers being generated
for acceleration toward local and global locations. Let bp and vp denote a particle coordinates
(position) and its corresponding flight speed (velocity) in a search space, respectively. In this
strategy, each power-vector candidate b p t , with dimension K x 1, is used for the velocity-
vector calculation of the next iteration [33]:

v p t + 1 =  ω t ∙v p t +  C1∙U p1 t (b p
best t -  b p t ) +  C2   ∙U p2 t (bg

best t -  b p t ) (5)
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where ω t  is the inertia weight of the previous velocity in the present speed calculation, the
velocity-vector has K dimension v p t = v p1 

t v p2 
t … v pK 

t T ; the diagonal matrices U p1 t  and
U p2 t  with dimension K have their elements as random variables with uniform distribution

∼ U ∈ [0, 1], generated for the pth particle at iteration t = 1, 2,..., G; bg
best t  and b p

best t  are the
best global vector-position and the best local vector-position found until the tth  iteration, re‐
spectively; C1 and C2 are acceleration coefficients regarding the best particles and the best
global positions influences in the velocity updating, respectively. The pth  particle’s position

at the tth iteration is defined by the power candidate-vector b p t = b p1 
t b p2 

t … b pK 
t T . The

position of each particle is updated using the new velocity vector for that particle,

b p t + 1 =  b p t +  v p t + 1 ,   p =1,  …,  P (6)

where P is the population size. In order to reduce the likelihood that the particle might leave
the search universe, maximum velocity factor Vmax factor is added to the PSO model, which
will be responsible for limiting the velocity to the range ±V max . Hence, the adjustment of
velocity allows the particle to move in a continuous but constrained subspace, been simply
accomplished by:

v pk  
t =min {Vmax;max {-Vmax;  v pk  

t }},      k =1, …, K ;    p =1,  …,  P  (7)

From (7) it’s clear that if |v pk  
t | exceeds a positive constant value Vmax specified by the user,

the pth particle’ velocity of kth user is assigned to be sign(v pk  
t )Vmax, i.e. particles velocity on

each of K -dimension is clamped to a maximum magnitude Vmax. Besides, if the search space
could be defined by the bounds Pmin; Pmax , then the value of Vmax typically is set so that
Vmax =τ(Pmax -  Pmin),   where 0.1≤τ ≤1.0;  please refer to Chapter 1 within the definition of
reference [35].

In order to elaborate further about the inertia weight it can be noted that a relatively larger
value of ω is helpful for global optimum, and lesser influenced by the best global and local
positions, while a relatively smaller value for ω is helpful for convergence, i.e., smaller iner‐
tial weight encourages the local exploration as the particles are more attracted towards b p

best

and bg
best  [31, 32]. Hence, in order to achieve a balance between global and local search abili‐

ties, a linear inertia weight decreasing with the algorithm convergence evolving was adopt‐
ed, which has demonstrated good global search capability at beginning and good local
search capability latter iterations:

ω t = (ωinitial -  ω final)∙ ( G - t
G

)m
+  ω final (8)
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where ωinitial  and ω final is the initial and final weight inertia, respectively, ωinitial >ω final , G is
the maximum number of iterations, and m ∈  0.6;  1.4  is the nonlinear index [36].

3.3.2. Optical code path resource allocation optimization

The following maximization cost function could be employed as an alternative to OCP re‐
source allocation optimization [33]. This single-objective function was modified in order to
incorporate the near-far effect [37], [38]

J1(p)=max

1
K  ∑

k=1

K
Fk

th (1 -  
pk

Pmax
) +  ρ

σrp

γk ≥  γk
*,  0<  pk

l ≤  Pmax,     R l =  Rmin
l ∀k∈K l ,  and ∀ l =1,2, …, L

(9)

where L is the number of different group of information rates allowing in the system, and K l

is the number of user in the lth rate group with minimum rate given by Rmin
l . Important to

say, the second term in eq. (9) gives credit to the solutions with small standard deviation of
the normalized (by the inverse of rate factor, F l) received power distribution:

σrp
2 =var (F 1p1G11,  F 1p2G22,  …, F l pkGkk , …, F L pkGkk ) (10)

i.e. the more close the normalized received power values are with other (small variance of

normalized received power vector), the bigger contribution of the term ρ
σrp

. For single-rate

systems, F 1 = … = F l = … =  F L . It is worth to note that since the variance of the normalized
received power vector, σrp

2 , normally assumes very small values, the coefficient ρ just also

take very small values in order to the ratio ρ
σrp

 achieves a similar order of magnitude of the
first term in (9), been determined as a function of the number of users, K . Hence, the term

ρ
σrp

 has an effective influence in minimizing the near-far effect on OCDM/WDM systems,
and at the same time it has a non-zero value for all swarm particles [33]. Finally, the thresh‐
old function in (9) is simply defined as:

Fk
th =  {1,   γk ≥  γ *

0,   otherwise
(11)

where the SNIR for the k th user, γk , is given by (2). The term 1 -  
pk

Pmax
 gives credit to those

solutions with minimum power and punishes others using high power levels [33].

The PSO algorithm consists of repeated application of the updating velocity and position,
eq. (5) and (6), respectively. The pseudo-code for the single-objective continuous PSO power
allocation problem is presented in Algorithm 1.
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The quality of solution achieved by any iterative resource allocation procedure could be
measured by how close to the optimum solution is the found solution, and can be quantified
by the normalized mean squared error (NMSE) when equilibrium is reached. For power al‐
location problem, the NSE definition is given by,

NMSE t =  E 
p t -  p* 2

p* 2 (12)

where ∙ 2 denotes the squared Euclidean distance to the origin, and E ∙  the expectation
operator.
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3.3.3. Energy efficiency optimization in OCPs

Recent studies have showed the importance of the consideration of energy consumption in
optical communications design [39], considering the transmission infrastructure (transmit‐
ters, receivers, fibers and amplifiers) [40] and network infrastructure (switchers and rout‐
ers)  [41]  aspects.  Researches  in  a  global  scale  network  have  indicated  that  the  energy
consumption of the switching infrastructure is larger than the energy consumption of the
transport infrastructure [39-41]. In this context, it is necessary to improving the energy ef‐
ficiency of switching and optimizing the network design in order to reduce the quantity of
switching and overheads. The energy necessary for 1 bit transmission on each OCP can be
expressed as [40],

      ,  1,..,i i bitE p T J bit i Ké ù= ë û = (13)

where Tbit =1/R is the time to transmit one bit over the network, with R is the bit rate. In our
analysis, to determinate the energy is necessary define the individual OCPs transmitted
power (pi). The pi is obtained by power control PSO algorithm given in Algorithm 1 and may
be associated to a specific QoS, SNIR and maximum BER tolerated by the i-th optical node.
In a power control situation, each optical node adjusts its transmitter power in an attempt to
maximize the number of transmitted bits with minimum consumption of energy. This con‐
cept is formulated by the energy efficiency [42]:

( )
,      1,..,i

i
i

R g
i K

p
g

h =
×

= (14)

where g(γi)=1−BE Ri is the efficiency function, which represents the number of correct
packets received for the for the i-th node, given a SNIR γi. In the same way this concept is
used in a metric called utility that is the number of bits received per energy expended or the
relation of the throughput and power dissipation [41].

For each i-th OCP, the maximum number of transmitted bits occurs at power level for which
the partial derivative of energy efficiency function in (14) with respect to pi is zero
∂ηi / ∂ pi =0. Considering a SNIR general formula for CDMA networks, given by [6]

,   1,..,ii i
i

i i

h p
I N

i Kg
+

== (15)

where hij are the total loss in the path that connects i-th transmitter node to j-th receiver
node, I1 is the interference from the others transmitters nodes and Ni is the receiver noise.
We can obtain the derivative of energy efficiency referring to efficiency function and (15),
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(16)

From (16) we observe, for pi > 0, the necessary condition to maximize the energy efficiency is

( ) ( ) ,  ..,0 1,i
i i

i
i K

g
g

g
g g

g¶
=

¶
- = (17)

To satisfy (17) it is necessary that the received node achieves the target SNIR, namelyγi
*. In

this context, we propose the utilization of PSO power allocation algorithm in order to estab‐
lish the lower energy per bit according to the OCDM/WDM network QoS requirements.

4. Numerical results

For all simulations, it is considered the transmission over a nonzero-dispersion shifted fiber
(NFD)-ITU G.655 with fiber attenuation (α) of 0.2 dB/km, non-linear parameter (Γ) of 2
(W.km)-1, zero-dispersion wavelength (λ0) of 1550 nm, dispersion slope (S0) of 0.07 ps/
(nm2.km). The signal is placed at λ0 and its peak power is P. Note that the nonlinear length
[24] LNL= 1/(ΓP) is limited to 500 km, which is much longer than the considered fiber lengths;
besides self-phase modulation (SPM) should not seriously affect the system performance.
Furthermore, the threshold power for stimulated Brillouin scattering (SBS) is below a few
mW; as a result, SBS should also not interfere in our results. Similarly, for these considera‐
tions, the physical impairments, such as stimulated Raman scattering (SRS) should not be
relevant [24]. Typical parameter values for the noise power in all optical amplifiers were as‐
sumed [21]. So, it was adopted nSP= 2, h=6.63 × 10−34 (J/Hz), f=193.1 (THz), G=20 (dB) and
Bo=30 (GHz). Herein, it was considered an amplifier gain of 20 dB with a minimum spacing
of 60 km, DPMD=0.1ps / km, and D=15 ps/nm/km. Losses for encoder/decoder and router ar‐
chitecture of 5 dB and 20 dB, respectively, were included in the power losses model [22-24].
The parameters are code weight of 4 and code length of 101, thus the code is characterized
by (4 × 101, 4, 1,0) and the target SNIR γi

* =20dB was adopted.

4.1. PSO parameters optimization for resource allocation problem

For power resource allocation problem, simulation experiments were carried out in order to
determine the suitable values for the PSO input parameters, such as acceleration coefficients,
C1 and C2, maximal velocity factor, Vmax, weight inertia, ω, and population size, P, regarding
the power optimization problem.

The continuous optimization for resource allocation problem was investigated in [33], [34], it
indicates that after an enough number of iterations (G) for convergence, the maximization of

Optical Network Optimization Based on Particle Swarm Intelligence 15



cost function were obtained within low values for both acceleration coefficients. The Vmax

factor is then optimized. The diversity increases as the particle velocity crosses the limits es‐
tablished by ±V max . The range of Vmax determines the maximum change one particle can
take during iteration. With no influence of inertial weight (ω =1), it was obtained that the
maximum allowed velocity Vmax is best set around 10 to 20% of the dynamic range of each
particle dimension [33]. The appropriate choose of Vmax avoids particles flying out of mean‐
ingful solution space. Herein, for OCP power allocation problem, similar to the problem
solved in [33], the better performance versus complexity trade-off was obtained setting the
maximal velocity factor value as Vmax =0.2 (Pmax -  Pmin). For the inertial weight, ω, simula‐
tion results has confirmed that high values imply in fast convergence, but this means a lack
of search diversity, and the algorithm can easily be trapped in some local optimum, whereas
a small value for ω results in a slow convergence due to excessive changes around a very
small search space. In this work, it was adopted a variable ω, as described in (8), but with m
= 1, and initial and final weight inertia setting up to ωinitial  = 1 and ω final  = 0.01. Hence, the
initial and final maximal velocity excursion values were bounded through the initial and fi‐
nal linear inertia weight multiplied by Vmax, adopted as a percentage of the maximal and
minimal power difference values [33],

ωinitial ∙Vmax =0.2 (Pmax -  Pmin) ω final ∙Vmax =0.002 (Pmax -  Pmin) (18)

Finally, stopping criterion can be the maximum number of iterations G (velocity changes al‐
lowed for each particle) combined with the minimum error threshold:

| J t - J t - 1
J t

|<  ∊stop (19)

where typically ∊stop  ∈ 0.001;0.01 . Alternately, the convergence test can be evaluated
through the computation of the average percent of success, taken over T runs to achieve the
global optimum, and considering a fixed number of iterations G. A convergence test is con‐
sidered 100% successful if the following relation holds:

|J |G| - J |p*||<  �1J p* +  �2 (20)

where, J |p*| is the global optimum of the objective function under consideration, J |G| is
the optimum of the objective function obtained by the algorithm after G iterations, and ∊1 ,

∊2  are accuracy coefficients, usually in the range 10-6; 10-2 . In this study it was assumed

that T = 100 trials and ∊1 =  ∊2 =  10-2.

The parameter ρ in cost function (9), was set as a function of the number of users OCPs (K),
such that ρ = K × 10−19. This relation was adapted from [38] for the power-rate allocation
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problem through non-exhaustive search [33]. The swarm population size was set by
P= K + 2.

In power resource allocation problem for access network systems the parameters optimiza‐
tion, mainly acceleration coefficients C1 and C2, depend on the number of simultaneous
transmitted users [16], [33]. In the case of realistic OCDM/WDM routed networks, the num‐
ber of simultaneous transmitted OCPs is low, generally around or less than 10 [2], [5], [6],
[25]. Fast convergence without losing certain exploration and exploitation capabilities could
be obtained with optimization of acceleration parameters in relation to the standard values
adopted in the literature [16]. Previous works have shown that the best convergence versus
solution quality trade-off was achieved with C1 = 1 and C2 = 2 for number of codes less than
10 [16], [33]. On the other hand, the classical value adopted are C1 = C2 = 2 [32-35]. In this
context, simulation experiments were carried out in order to determine the good choice for
acceleration coefficients C1 and C2 regarding the power optimization problem. Fig. 4 illus‐
trates different solution qualities in terms of the normalized mean squared error (NMSE),
when different values for C1 combining with C2 = 2 in a system with number of OCPs equal
to 7, considering 1 span. Previous simulations have shown the non poor convergence for dif‐
ferent value of C2 [33].The lengths of OCPs are uniformly distributed between 2 and 100 km.
The NMSE values where taken as the average over T = 100 trials. Besides, the NMSE conver‐
gence values were taken after G = 800 iterations.
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Figure 4. Normalized mean squared error (NMSE) for different values for C1 combining with C2 = 2 in a system with
number of OCPs equal to 7, considering 1 span.
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Numerical results have shown the solution quality for different values of acceleration coeffi‐
cient C1 and it was found C1 = 1.8 presents the lower NMSE for the number of OCPs < 10.
Hence, the best solution quality was achieved with C1 = 1.8 and C2 = 2. Fig. 5 shows the sum
of power for the evolution through the t=1,…, 800 iterations for 7 OCPs under different ac‐
celeration value of C1 and C2 = 2, considering 1 span.
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Figure 5. Sum of power for power vector evolution through the 800 iterations for 7 OCPs under different acceleration
value of C1 and C2 = 2 for 1 spans.

The algorithm reaches convergence for C1 = 1.4, 1.6, 1.8, 2, 2.2 and 2.4, however it doesn’t
reach acceptable convergence for C1 = 1. Simulations revealed that increasing parameter C1

results in a slower convergence with approximately 320, 343, 373, 639, 659 and 713, itera‐
tions, respectively. However, NMSE for faster convergence is higher than for the slower con‐
vergence parameters with minimum value for C1 = 1.8, as indicated in Fig. 4. In this context,
the best convergence versus solution quality trade-off was achieved with C1 = 1.8 and C2 = 2
for number of OCPs of 7.

It is worth to expand this analysis to other number of OCPs that are generally between 4 and
8 OCPs. For this purpose, Fig 6 shows the NMSE for the number of OCPs regarding two
combination of acceleration coefficient: i) optimized herein (C1 = 1.8 and C2 = 2.0) and report‐
ed in the literature (C1 = 2.0 and C2 = 2.0).
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Figure 6. Normalized mean squared error (NMSE) for the number of OCPs for (C1 = 1.8 and C2 = 2.0) and (C1 = 2.0 and
C2 = 2.0), considering 1 span.

The OCPs increasing affects the solution quality. This effect is directly related to the MAI
rising which increases with the number of OCPs, i.e., the MAI effects are strongly influenced
by the increase of the active OCPs; an error occurs when cross-correlational pulses from the
(K – 1) interfering optical code paths built up to a level higher than the autocorrelation peak,
changing a bit zero to a bit one.

In conclusion, our numerical results for the power minimization problem have revealed for
low system loading that the best acceleration coefficient values lie on C1 = 1.8 and C2 = 2.0, in
terms solution quality trade-off. This result was compared with C1 = 2.0 and C2 = 2.0 previ‐
ously reported in the literature [32]-[35].

4.2. PSO optimization for OCPs

The solution quality versus convergence trade-off analysis presented in Figs. 4, 5 and 6 for
the PSO’s acceleration coefficients optimization in the case of OCDM/WDM networks with 1
span should be extended taking into account the use of more spans. The state-of-art for the
number of spans without electronic regeneration is around 4 considering the ASE effect lim‐
iting applying fibers with low PMD effects for bit rate of 10 Gbps (lower than 40 Gbps) [29].
In Fig. 7 the analysis of subsection 4.1 is extended until 8 spans, showing the influence of the
number of spans on the NMSE for 7 OCPs and the same parameters values optimized in
that subsection.
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Figure 7. NMSE for the number of spans for 7 OCPs.

The results show that NMSE decreases when the number of spans increases until 6 spans,
after  this  number  of  spans  the  NMSE alters  the  tendency  and  increases.  This  behavior
shows the limitation of PSO convergence when the ASE increases. After 6 spans the PSO
algorithm does  not  reach the total  convergence.  This  fact  occurs,  directly  by the  limita‐
tions generate with the increase of the ASE. In other sense, the transmitted power needed
to  reach  the  target  SNIR will  overcome the  maximum allowed transmitted  power.  The
average number of spans increases slightly as K  increases, as longer OCP routes become
available. This increase is, however, not very significant, and on average, the path lengths
are around four spans [22].

The convergence quality of the PSO algorithm presents variation with the increase in the
number of spans. The figure of merit utilized as tool to this analysis is the rate of conver‐
gence (RC), which can be described as the ratio of PSO solution after the t-th iteration divid‐
ed by the PSO solution after total convergence, which in this optimization context is given
by the matrix inversion solution, as discussed in Section 3.1. Recalling eq. (19), the RC can be
expressed in term of ∊stop  as:

RC t =1 - | J t - J p*
J p*

| (21)
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The reader interested in quality of solution metrics, a similar definition for RC and another
figure of merit for the PSO, namely success cost, are presented in [35].
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Figure 8. Rate of convergence versus the number of iterations for 1 until 6 spans for (a) 4 OCPs and (b) 8 OCPs.

Fig. 8 (a) and (b) shows the convergence rate of the sum of power for vector evolution
through the 800 iterations for 4 a 8 OCPs, respectively, considering 1 until 6 spans. The re‐
sults have shown that increasing span number results in a faster convergence. This fact oc‐
curs because until 6 spans the increase of the number of span increases the contribution of
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the amplifier with signal, besides for more than 6 spans the contribution of the amplifier is
for the ASE noise. On the other hand, the increase in the number of OCPs results in a slow
convergence that results from the MAI between the OCPs.

In summary, our numerical results for the power minimization problem considering differ‐
ent number of spans have revealed the viability of the PSO algorithm deployment to solve a
power allocation in OCPs with until 6 spans in order to guarantee the solution quality in
terms of NMSE. Furthermore, the numerical results revealed that increasing the number of
spans results in a faster convergence. In this context, the PSO algorithm is quite suitable to
solve a power allocation in OCPs that presents an average of 4 spans as reported in the liter‐
ature [22].

In order to evaluate the impact of physical restrictions on the OCM/WDM network, further
numerical results presented in Fig. 9 shows the sum power evolution of the PSO algorithm
with respect to the number of iterations, considering a) 4 OCPs, and b) 8 OCPs. One span
was considered as reference for bit rate of 10 Gbps taking into account two situations: i) with
only ASE effects, ii) with ASE, GVD and PMD effects.

The target SNIR established for all the nodes is equal, and if the perfect power balancing
with ideal physical layer (no physical impairments) is assumed, it could be demonstrated
that the maximum SNIR and the transmitted power are defined by the number of OCPs in
the same route. However, when the ASE, GVD and PMD effects are considered, there is a
penalty. This penalty represents the received power reduction due to temporal spreading.
Fig. 9 shows that when ASE, GVD and PMD effects are considered there is a power penalty
of 3 decades compared with the situation where only ASE is considered (fibers with low
PMD). Comparing Figs. 9(a) and 9(b), it could be noticed that the convergence velocity de‐
pends on the number of OCPs. The increase of OCPs from 4 to 8 affects the convergence ve‐
locity, from ≈200 to ≈500 iterations, respectively. This effect is directly related to the MAI
increasing, which increases with the number of OCPs. The MAI effects are strongly influ‐
enced by the increase of the active number of OCPs; as explained before, an error occurs
when cross-correlational pulses from the (K – 1) interfering optical code paths built up to a
level higher than the autocorrelation peak, changing a bit zero to a bit one. The PMD effects
degrade the performance when the link length and bit rate increase. This effect occurs be‐
cause PMD impairment establishes an upper bound on the link length, which causes the
temporal spreading of optical pulses. The upper bound for link distance depends on the
chip-rate distance product (d.R.NT ), where d is the link length, R is the bit rate, and NT is the
code length. The analysis of code parameters, MAI and PMD effects for 2D-based OCPs was
previously reported in [20].

In OCDM/WDM networks, the OCPs with various classes of QoS are obtained with trans‐
mission of different power levels. Distinct power levels are obtained with adjustable trans‐
mitters and it does not cause the change of the bit rate. The intensity of the transmitted
optical signal is directly adjusted from the laser source with respect to the target SNIR by
PSO algorithm. Table 1 shows the optimization aspects of QoS regarding different levels of
SNIR considering sum power and NMSE for 4 and 8 OCPs with 1 span.
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Figure 9. PSO sum power evolution for a) 4 OCPs; b) 8 OCPs. One span as reference, with R=10 Gbps. Two situations: i)
ASE effects, ii) ASE, GVD and PMD effects.

The results in Table I show the necessary values for transmitted power, as well as the solu‐
tion quality evaluation in terms of NMSE. The increase in the target SNIR results in the in‐
crease of the transmitted power, which is major for more OCPs. On the other hand, the
solution quality (NMSE) decreases with the increase of SNIR target, since the number of the
PSO iterations is fixed.
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4 OCPs 8 OCPs

SNIR (dB) BER
Sum power

(W)
NMSE

Sum power

(W)
NMSE

17 7.2 × 10-13 3.3 × 10-8 3.0 × 10-18 1.2 × 10-7 2.3 × 10-8

20 7.6 × 10-24 6.0 × 10-8 6.2 × 10-16 2.8 × 10-7 1.2 × 10-3

22 1.2 × 10-36 9.5 × 10-8 3.8 × 10-16 4.3 × 10-7 1.0 × 10-1

Table 1. The optimization aspects of QoS.

4.3. PSO optimization for energy efficiency in OCPs

An efficient resource allocation algorithm is needed to overcome the problem of energy effi‐

ciency and to enhance the performance and QoS of the optical network. This could be ach‐

ieved via signal-to-noise plus interference (SNIR) PSO optimization.
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Figure 10. Energy per bit sum of the OCPs as a function of the rate of convergence using PSO algorithm. Three differ‐
ent SNIRs target of 17, 20 and 22 dB; a) 4 OCPs and b) 8 OCPs.
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Fig. 10 shows the sum of energy per bit as a function of the rate of convergence of eq. (21)
for the PSO optimization with different QoS requirements represented by SNIR target of 17,
20 and 22 dB, considering a) 4 OCPs and b) 8 OCPs, i.e., same scenario presented in the pre‐
vious subsection. One can see when rate of convergence evolving, the energy per bit solu‐
tion offered by the PSO algorithm convergences to the best lower values as predicted in (17).

It can be seen from Fig. 10 the impact of the PSO power allocation optimization procedure
(in terms of transmitted energy per bit) on the energy efficiency improvement. The deploy‐
ment of PSO with 100% of rate of convergence results in an enormous saving of energy. In‐
deed, with very low number of PSO iterations, rate of convergence is poor (RC <0.03), the
transmitted energy per bit is high because the MAI are strongly influenced by near-far ef‐
fects. As expected, the increase of the active OCPs from 4 to 8, results in the increase of the
transmitted energy per bit to reach the SNIR target. Furthermore, one can analyze the varia‐
tion of saving energy for different levels of convergence rate; for instance, the variation of
saving energy regarding the rate convergence in the range RC∈ 0.5;1.0  remains in approx‐
imately from 40 to 60 % for different SNIR target and number of OCPs, as presented in Fig.
10. In this context, aiming to analyze the effect of the number of spans in the transmitted
energy per bit for 4 and 8 OCPs, Table 2 presents the sum energy per bit considering SNIR
target of 20 dB and rate of convergence of 0.5 and 1.0, for 2 and 4 spans.

4 OCPs 8 OCPs

Number of spans
Σ energy (pJ)

RC=0.5

Σ energy (pJ)

RC=1.0

Σ energy (pJ)

RC=0.5

Σ energy (pJ)

RC=1.0

2 0.0135 0.0120 0.3145 0.1100

4 1.0545 1.0108 2.2295 1.8199

Table 2. Sum energy per bit in [pJ] for SNIR target of 20 dB.

The results show the impact of the number of spans in the transmitted energy per bit for the
variation of rate convergence of 0.5 and 1. As expected, the increase in the number of spans
and the number of OCPs results in the increase of the transmitted energy per bit. Besides,
the sum energy per bit variation, regarding the RC from 0.5 to 1.0, declines with the increase
of the number of spans from 2 to 4. This results agree with the previous results illustrated in
Fig. 8, meaning the increase of the number of spans accelerate the RC.

5. Conclusions

In this chapter, optimization procedures based on particle swarm intelligence are investigat‐
ed in details, aiming to efficiently solve the optimal resource allocation for signal-to-noise
plus interference ratio (SNIR) optimization of optical code paths (OCPs) from OCDM/WDM
networks under quality of service (QoS) restrictions and energy efficiency constraint prob‐
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lem, considering imperfections on physical constraints. The SNIR model considers multiple
access interference (MAI) between the OCP based on 2-D codes (time/wavelength), amplifi‐
er spontaneous emission (ASE) at cascaded amplified spans, and group velocity dispersion
(GVD) and polarization mode dispersion (PMD) dispersion effects. The characteristic of the
particle swarm optimization (PSO) is attractive due their performance-complexity tradeoff
and fairness regarding the optimization methods that use numerical methods, matrix inver‐
sion and other heuristics. The resource allocation optimization based on PSO strategy allows
the regulation of the transmitted power and the number of active OCPs in order to maxi‐
mize the aggregate throughput of the OCDM/WDM networks considering QoS and energy
efficiency constraint. For the network optimization context, system model was described,
figures of merit were presented and a suitable model of PSO was developed, with emphasis
in the optimization of input parameters and network performance. Afterward, extensive nu‐
merical results for the optimization problem are discussed taking into account realistic net‐
works operation scenarios.

In order determine the suitable values for the PSO input parameters, such as acceleration co‐
efficients, C1 and C2, maximal velocity factor, Vmax, weight inertia, ω, and population size, P,
simulation experiments were carried out in regarding the power optimization problem for
OCDM/WDM networks. In these networks, the number of simultaneous transmitted OCPs
is low, generally around or less than 10. For our specific problem, the optimized input pa‐
rameters are different from the reported in the literature for similar problems. The numeri‐
cal results considering the number of spans have revealed the viability of the PSO algorithm
deployment in order to solve a power allocation in OCPs with until 6 spans to guarantee the
solution quality and convergence. This result is adequate considering the average of 4 spans
without electronic regeneration presented for this kind of network. Besides, the numerical
results have shown a penalty when the ASE, GVD and PMD effects are considered. This
penalty represents the received power reduction due to temporal spreading. Indeed, when
ASE, GVD and PMD effects are considered there is a power penalty of 3 decades compared
with the situation where only ASE is considered (fibers with low PMD). Finally, our numeri‐
cal results reveal considerable variation of transmitted energy for different levels of conver‐
gence rate of PSO algorithm, in which the maximum energy efficiency is reached when the
convergence of PSO algorithm is total. Interesting, even with only 10%-20% of the total PSO
convergence, the network is able to operate within a remarkable energy efficiency gain re‐
gion compared to network operation without power allocation policy.
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