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1. Introduction

Vegetation is an indispensable feature of most outdoor wireless channel environments. The
interaction between radio waves and vegetation has been researched for several decades.
Because of the complex structure of the foliage, composed of randomly oriented trunks,
branches, twigs and leaves, the involved physical process in the propagation of the radio wave
through vegetation is complex. Accurate modeling of the propagation of radio waves through
tree foliage, generally requires accurate electromagnetic description of the tree geometry,
including its branches and leaves, valid over a wide range of frequencies. Originally empirical
models were developed to describe the propagation of radio waves in the vegetation. In other
approaches this interaction is analyzed using ray-based techniques. More recently theoretical
–statistical and analytical– approaches became favorable. As it is discussed in the next section,
major disadvantage of all these models is that the final outcome is basically presented by
providing an excess attenuation to that caused by free space propagation.

1.1. Existing approaches

Empirical models have been developed to characterize the the propagation of radio waves
in the vegetation for years. Their significant advantage is their simplicity. The drawback is
that, like any other empirical model, the formulated model is strictly related to the specific
measured data set and fails to give any indication as to the physical processes involved in the
propagation within the channel. These models usually provide either the mean attenuation
of the propagation signal caused by vegetation or calculate the link budget. Parameters
in these models, e.g. frequency, incident angles, direct-path length through vegetation and
other parameters associated with the specific environment under which measurements were
performed, are usually computed through regression curves fitted to measurement data.
Among many, the modified exponential decay model suggested in [1], and the COST 235
model [2] can be mentioned. These models are expressed as equations in exponential forms
to give the specific attenuation as a function of path length and operating frequency. The
attenuation of trees as a function of vegetation depth has been shown to be more accurately
represented by dual slope attenuation functions [3]-[7]. To accommodate this dual slope, an
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empirical nonzero gradient model was developed to follow the dual gradient of the measured
attenuation curve [8]. The initial slope describes the loss experienced by the coherent
component, whereas the second slope describes the dominance of the incoherent component,
which occurs at a much reduced rate. An important disadvantage of the semi-empirical
vegetated radio channel models, common to other approaches such as radiative transfer
theory, is that their little account of the dynamic effects in the channel and no account of
the wideband effects of the vegetation medium.

Another approach in the the analysis and prediction of the vegetated radio channel is
ray-tracing [9]-[16]. These have to be carefully designed and used, taking into account the
frequency of the radio wave, the dimension of interacting objects and their distance to the
sources to fulfill the far field condition. Therefore in different frequencies the mechanisms
by which the wave propagates can vary dramatically. The scattering has been modeled
deterministically in many different ways depending on the electrical density of the vegetative
medium. At lower frequencies, where individual components of the vegetation (trunks,
branches, twigs and leaves or needles) and their separations are small by comparison with
the radio wavelength, considering the vegetation as a homogeneous dielectric slab, the
propagation has been modeled in terms of a lateral wave at treetop heights [9]. At frequencies
above 200 [MHz] or so, a single slab becomes inadequate. As the scale of the changes
in density and structure of the vegetation become greater than the order of a wavelength,
and layered representations of the vegetation should be used [10]. A full-wave analysis of
the radiowave propagating along mixed paths inside a four-layered forest model applicable
to frequencies up to 3 [GHz] was proposed in [11], [12], which consists of four isotropic
and homogeneous dielectric. The first layer is the semi-infinite free-space, whereas the
second layer represents the forest canopy. The third and fourth layers model the trunk
and the semi-infinite ground plane, respectively. As the distance between the transmitter
and the receiver is very long, the radio wave propagation through the stratified forest is
characterized by the lateral wave that mainly propagates on top of the canopy along the
air-canopy interface. For short distances, however, such a propagation is denominated by
the direct or coherent component. When the receiver is at a clearing distance from the dense
vegetated area the edge of the forest is treated as a source of diffraction [14], and the uniform
theory of diffraction (UTD) associating a double-diffracted component over the canopy and a
transmission component which includes the exact calculation of refraction angles is also used
[15].

To model the incoherent component which is the dominant propagation mechanism for
long distances inside vegetation, theoretical models, which are more complicated but more
generic and applicable to any arbitrary foliage wave propagation scenario, are used. Two
major approaches, namely the radiative transfer theory and the analytical theory, have been
pursued to develop these models [17],[18]. These two methods are closely related as they are
addressing the same problem of the wave propagation in randomly distributed particles. In
fact, the radiative transfer theory can be derived from analytical approach by applying some
approximations [17], and they have proven equivalent for the application of radar in the forest
canopies [19].

In the method of radiative transfer theory, the vegetation medium is modeled as a statistically
homogeneous random medium of scatterers which is characterized by parameters such as
the absorption cross-section per unit volume, the scatterer cross-section per unit volume
and the scattering function of the medium [20]. The scattering function (phase function) is
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characterized by a narrow forward lobe and an isotropic background. The model considers a
plane wave incident from an air half space upon the planar interface of a vegetation half space.
The basic equation of the radiative energy transfer theory is expressed in terms of the specific
intensity for which the radiative transfer theory gives the specific value at a given point within
the vegetation medium as a sum of a coherent component and an incoherent component. The
coherent component is reduced in intensity due to absorption and scattering of the incident
wave, and the incoherent component due to the scattered wave. Each scatterer is assumed
to have a directional scattering profile, or phase function. As the constituents of the tree are
relatively large compared to the wavelength at micro- and millimeter wave frequencies, the
scattering function is assumed to consist of a strongly scattering forward lobe, which can be
assumed to be Gaussian with an isotropic background level. The radiative transfer theory
predicts the dual slope nature of the measured attenuation versus vegetation depth curves
and provides a physical interpretation. The equation based on the radiative transfer theory
allows the prediction of the attenuation curves in which the received signal is reduced linearly
by scattering and absorption of the incident signal. As the receiver is moved deeper into
the vegetation, and the direct coherent component is reduced further still, the isotropically
scattered component becomes significant. Due to the increase of scattering volume as we
move deeper into the medium, the scattering signal level tends to be maintained, leading
in turn to an attenuation rate which is significantly reduced at these depths. The model
however requires four input parameters namely the ratio of the forward scattered power to
the total scattered power, the beam-width of the phase function, the combined absorption and
scattering coefficient, and the albedo. These are extracted from path-loss measurement data
so that the approach makes itself a semi-empirical model in essence. Direct computation of
these parameters, such as the albedo and the phase function, is very difficult, because the
vertical profile of the foliage is inhomogeneous, i.e. the distinction exists between the trunk
layer and the crown layer, whereas the radiative transfer approach is generally applied to
a homogeneous medium. In order to overcome this limitation, an improved version of the
discrete radiative transfer is proposed for isolated vegetation specimens [21],[22]. However
this requires discretization of the foliage into small cells which is numerically intractable for
large propagation distances.

The alternative approach in the problem of wave propagation in randomly distributed
particles is the analytical approach [17]. This is usually in the format of Foldy-Lax
solution for point scatterers [18],[23], which has been widely used to estimate the signal
attenuation in the the foliage [24]-[32]. In this approach the Born approximation is applied
to account only the first term in the equation as considering higher terms can complicate
the computations prohibitively [18]. It predicts the exponential decay of the radio field
corresponding to the linear foliage path-loss (in dB) versus the wave propagation distance.
In [24]-[30], the inhomogeneous forest structure was represented by using a realistic-looking
fractal tree model. The statistics of the received field are then obtained through a Monte
Carlo technique which generates random forest structures according to prescribed statistical
botanical features, such as tree height, branch and leaf orientation angles, and tree locations.
Another approach is to model leaves as flat circular lossy dielectric discs, and branches as
finitely long circular lossy dielectric cylinders [31],[32]. The disadvantage of the analytical
approach stems from the fact that Born approximation accounts only for single scattering,
which has been shown to overestimate the foliage path-loss at high frequencies or over
long distance propagation where the multiple-scattering effects become important [28],[29].
Another concern with this method is the required computation time. Computing foliage
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path-loss over long distances in a forested environment can be prohibitively time-consuming
even with the single-scattering model. This difficulty can be circumvented by treating the
forest as a statistically homogeneous medium along the direction of wave propagation and
only analyzing the wave propagation behaviors in a typical block of forest, which can then
be reused for all forest blocks [30]. Furthermore a main concern in Born approximation is
its validity is restricted to scatterers with a dielectric permittivity close to unity and that the
effect of multiple scattering from the discrete scatterers are not negligible [33]. To overcome
these limitations the Feynman diagrams are converted to the set of expanded green functions
presented in integral operator form is suggested as an alternative to Born approximation
[33],[34].

To benefit from the ray-tracing and theoretical approaches at the same time, the model
proposed in [35] combines the effects of three individual propagation modes, i.e. diffraction
from the side and top of the foliage, ground reflection and direct (through vegetation)
propagation. In this approach the extent of the vegetation is modeled as rectangular
hexahedrons (boxes). The loss experienced by the diffracted waves over the vegetation as
well as those around the vegetation are treated as double isolated knife-edge diffraction.
If the ground reflection is passed through vegetation, the path loss due to propagation
through vegetation is added to the reflection loss. The values for the permittivity and
conductance of the ground are obtained from ITU-R recommendations [36]. For the direct
through vegetation propagation component the radiative transfer approach is adopted and
the necessary parameters for specific geometries, species and frequencies are measured and
provided in tables [35]. This model was adopted by ITU-R and later works published as
recommendations of ITU-R have improved the tables of parameters for some kind of trees
[37].

While the above mentioned models mostly ignore the channel dynamics over time,
narrowband analysis of the wind effect on an isolated tree in the anechoic chamber is reported
in [38]-[40].

1.2. Directional analysis of the vegetation radio channel

Either if the interaction between radio signal and foliage is modeled based on diffraction
theories and ray-tracing, radiative transfer theory, analytical theory, statistical, or empirical
approaches, it is usually aimed to provide an excess attenuation to that caused by free space
propagation. On the other hand, as these models are strongly dependent on measurements
for their evaluation and modifications, a considerable number of experiments have been
accomplished to analyze the foliage influence on the propagation channel as well as to
evaluate the proposed models. The ultimate target in most of these experiments however is to
measure the attenuation of the radio wave caused by the vegetation. The problem is that even
though such a result proves useful for specific purposes, it provides only limited knowledge
about the interactions in the channel. On the other hand, the assumption of homogeneous
media of randomly distributed scattering points is widely used in analytical and statistical
approaches, an assumption to be examined yet. Obviously with a high-resolution spatial
analysis of the vegetation radio channel, the existing methods and their assumptions can be
further evaluated and if necessary modified. Moreover, such an analysis can be used in design
and performance analysis of modern wireless systems equipped with multiple-antenna
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technologies to improve the capacity. Never the less, and in spite of such significant benefits,
such measurements and analyses are rarely reported due to practical limitations.

Few recent reports address –indirectly in most cases– the spatial characteristics of the radio
channel in vegetation. The delay power spectrum of the received signal through a single
isolated tree for different angle-of-incidents is evaluated for a wideband signal in [41]. The
spatial correlation of a multiple antenna system operated in the forest is evaluated in [42]. The
scattering effect of the foliage in suburban scenarios is examined by directive antennas [43],
and delay spread of the received signal as a result of scattering by trees was observed [44]. In
a recent publication, the delay and angular spread of the wireless channel for the application
in positioning of mobile users is reported [45].

In this chapter the directional radio channel in dense vegetation is investigated. An
experimental approach is necessary because of the complexity of the underlying phenomena.
The methodology used for this purpose, is the directional analysis of a carefully captured
measurement data. First the measurement campaign and setup parameters as well as the
signal model are introduced in section 2, and then two analysis methods for the measured
data are discussed. In the first approach, the experimental data is analyzed by calculating
the received signal dispersion in delay and azimuth-of-arrival of the propagated waves
which is done using a Capon beam-forming technique [46]. One advantage of such analysis
is that no presumption on the distribution of the dispersed signal was necessary. In the
second approach, a high-resolution parameter estimation technique was adopted to acquire a
more accurate knowledge of the channel, particularly to identify the involving propagation
mechanisms. Results of the analysis by each method, including the multipath cluster
identification and propagation mechanism determination are presented in section 3. Section 4
provides discussions on the findings of the chapter, the analysis and results, and argues how
the directional analysis, aiming at the identification of dominant propagation mechanisms in
the channel, can meaningfully improve the insight toward the problem. Section 5 sums up
important conclusions of the chapter.

2. Method

2.1. Experimental investigation

As it was expressed, to clarify the influence of the vegetation on the radio channel, and
specifically to re-examine those fundamental assumptions usually presumed in such studies
we had to gather a set of experimental data with necessary resolution in delay and spatial
domains. For this propose a dense vegetated area was chosen in the southern Kanagawa,
Japan. A schematic of the measurement scenario is illustrated in Fig. 1 where the height
of the base-station antenna could be altered and the mobile-station antenna height is fixed.
The employed channel sounder is a double-directional sounder at the center frequency of
2.22 [GHz]. The sounder specifications and the measurement set-up parameters are found
in Table 1. At the transmitter a sleeve and a slot antenna are used to send the vertically
and horizontally polarized signal in different time slots. The cylindrical array antenna at
the receiver switches the vertical and horizontal patch antenna feeds, 96 elements for each
polarizations. The transmitter antennas are mounted on a measurement bucket capable to
elevate up to 15 [m]. Measurements were performed on the 4, 6, 9, 12 and 15 [m] of the
transmitter antenna heights. The receiver antenna array is installed on the roof-top of a
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fc 2.22 [GHz]

Tx signal OFDM, 2048 FFT points

Number of subcarrier 897

Tx signal bandwidth 50 MHz

Tx power 30 [dBm]

Tx antenna sleeve, slot (different time slots)

Tx antenna height 15, 12, 9, 6, 4 [m]

Rx antenna Cylindrical array (4 ring stacked)
96 elements V/H

Rx antenna height 3.5 [m] (installed on the van’s roof-top)

Tx-Rx separation 100 [m]

Tallest trees height 10 [m]

Table 1. Specifications of Experiment

Vegetation Area

100 m

1
0

 m

Tx

Rx

Figure 1. Measurement scenario.

measurement van which carries the receiver system. The van is parked deep in the vegetation
area with a transmitter to receiver horizontal distance of about 100 [m]. Here we only report
the static channel that is the measurement van has been parked during the measurement. The
tallest trees are mostly Japanese cedar whereas in lower layers of the vegetation several kinds
of trees are found as it can be seen in Fig. 2. No significant scattering other than trees is
observable around the receiver.

With such a measurement setup we are able to achieve a more accurate analysis of the
radio channel. Two different analysis methods are introduced in next sections and then the
interpretations are compared.

2.2. Analysis approaches

A major part of the reported experiments regarding the interaction of radio with vegetations
targeting the spatial analysis use directional antennas or an array antenna with beam-forming
scheme. A good reason for this is the simplicity of such measurements, compared to more
complicated ones concluding in high-resolution analysis. An important but less obvious
reason is that since in case of propagation through vegetation we know little about the
distribution of effective scatterers, beam-forming as a robust approach seems the appropriate
candidate for the analysis. This is expressed in contrast to the model based estimation
methods although the resolution of the beam-forming is inferior. In this section two methods
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Figure 2. Different types of trees in the foliage.

for the analysis of the measurement data are presented. First we introduce a Capon
beam-former to analyze and provide the spread of the received radio signals. In the next
step a high-resolution SAGE algorithm is introduced for the analysis of the multidimensional
measurement data.

2.2.1. Signal model

Assuming multipath in the channel, the signal observed at the output of the receiver array can
be represented in vector notation as [48]

Y(t)
.
= [Y1(t), · · · , YNr

(t)]T

=
L

∑
l=1

s(t;θl) +

√

N0

2
w(t), (1)

where Y(t) is the Nr dimensional vector of received signals at the receiver array with Nr

antenna elements and s(t;θl) is the contribution of the lth multipath to the received signal,
again a vector with Nr elements and it is assumed that L multipath are successfully received
by the receiver. The Nr dimensional complex, temporally and spatially white noise is denoted
by w(t) and N0 is a positive constant.

The parametric characteristic of the lth propagation wave is described by vector θl which is
represented for the current directional and polarimetric measurement as

θl
.
= [Ωrl , τl , Al ]. (2)

Here the subscript ’l ’ indicates the correspondence to the lth path and the parameters are
angle-of-arrival Ωrl = [ϕrl , ϑrl ] with ϕrl indicating the azimuth-of-arrival for the propagation
wave calculated in degrees, counter clockwise with its origin along the direction of receiver
toward the transmitter, and ϑrl being the elevation-of-arrival of the propagation wave
computed in degrees from the horizon with increasing values upward, so called coelevation.
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Other parameters are excess-delay τl and complex magnitude Al is the vector to represent the
weights for the co- and cross-polarization components according to

Al
.
=

[

αvl

αhl

]

. (3)

It is observed that due to the static measurement scenario Doppler-frequency of the
propagation multipath is not considered, otherwise its value is expected to be zero or
negligible. The contribution of the lth multipath to the received signal can therefore be
expressed in vector notation as

s(t;θl)
.
= [s1(t;θl), · · · , sNr

(t;θl)]
T

= Cr(Ωrl)Alu(t − τl). (4)

The matrix Cr(Ω) in (4) is defined as Cr(Ω)
.
= [crv(Ω), crh(Ω)] (v and h subscripts indicate

V- and H-polarizations) where the Nr dimensional-vector receiver array radiation pattern for
the propagation wave impinging from direction Ωrl = [ϕrl , ϑrl ] at the receiver is denoted as
crpr (Ωrl) and is defined as

crpr(Ω)
.
= [ fnr,pr(Ω) exp{j2πλ−1

Ω · rnr)}; nr = 1, · · · , Nr]
T, (5)

for the receiver polarization pr ∈ {v, h} and fnr,pr(Ω) denotes the radiation pattern for the
nrth element of the array. The transmitted signal at any arbitrary time instance t is an impulse
train in the frequency domain which is obtained as

u(t) =
B

∑
b=−B

δ( fc + b fs), (6)

where fc is the center frequency of the sounding signal, fs is the DFT frequency shift and the
signal bandwidth is therefore equal to (2B + 1) fs. The energy of the signal is assumed as P. A
delayed version of such a signal is represented as

u(t − τ) = e−j2π fsτ u(t). (7)

Thus the signal model (4) can be represented as

s(t;θl) = e−j2π fsτl Cr(Ωrl) Al u(t). (8)

It is assumed that each snapshot of the sounding signal is transmitted during Ts (sounding
signal duration), in I consecutive intervals each longer than transmitted signal duration.

2.2.2. Beam-forming

Capon beam-former, or minimum variance distortionless response (MVDR) beam-former, is
proved optimum for estimating an unknown random plane-wave signal, being received in the
presence of noise, to provide a minimum variance unbiased estimate [49]. This is equivalent
to passing the signal through a distortionless filter which minimizes the output variance.
A significant advantage of this algorithm when used in the parameter estimation context
is that the provided spatial spectral estimate does not rely on any underlying signal model
[49]. The approach employed in this section was previously used to estimate the azimuth of
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the distributed source components in [50]. Following the same method, the first and second
moments of the azimuth-of-arrival and excess-delay spread of the received radio waves are
calculated.

We consider the directional but stationary scenario where the L multipath are received in Dm

received signal clusters at each measurement m (at each specific transmitter antenna height)
as

Ym(t) =
Dm

∑
d=1

∑
l∈Cm,d

s(t;θl) +

√

N0

2
w(t), m = 1, · · · , M , (9)

where Cm,d is the set of multipath in dth cluster of mth measurement. It is observed that
the definition of cluster is dependent to the resolution of the analysis scheme. Hence in the
next section where high-resolution algorithm is used, a distinct definition for the multipath
cluster is employed. Furthermore, in the beam-forming analysis of the signal we neglect the
elevation-of-arrival ϑr of the received signal because of low resolution of the analysis in this
dimension and therefore the propagation in azimuth plane only is considered. In the current
analysis although the resolution is not enough to separate multipath, but the delay spread is
already available by performing the inverse discrete Fourier transform on the measured data
samples with the resolution τres = ((2B + 1) fs)

−1 and the azimuth-power spectrum at each
delay is computed by a Capon beam-forming due to its better resolution in comparison to the
conventional approach. The Capon spectrum is obtained as [49]:

Pm(ϕr, τk)

∣

∣

∣

∣

pt pr

=
1

cH
rpr

(ϕr, 0) R−1
Ympt

(τk) crpr (ϕr, 0)
, (10)

where RYmpt
is the received signal covariance matrix for the measurement m and transmitter

antenna polarization of pt, crpr (ϕr, 0) is the receiver array response in the azimuth plane for
the polarization pr and τk = (k − 1)τres is a specific delay within the range. Figure 3 presents
a sample of computed delay-azimuth-power spectrum for the transmitter antenna height of
15 [m] (m = 1), where the transmitted signal and the receiving antenna feeds are in vertical
polarization (pt pr = vv). The figure indicates –and it is the case for most measured data
in this campaign– that the radio signal is received as a cluster of multipath with probably
a Gaussian or von-Mises spread in the azimuth, and an exponential spread along the delay.
We therefore modify the signal model to Dm = 1 for all values of m and drop the index d
in the beam-forming data analysis. In the analysis the normalized spectrum Ṗm(ϕr, τ) to the
minimum value of the spectrum within a support around the considered multipath cluster is
used which is calculated for each measurement m at polarization combination pt pr. The size of
the support shall be selected large enough to include the diffuse components but not so large
to have any multipath from other clusters in. It is noticed however that in a beam-forming
approach the array antenna response could not be de-embedded from the measured data.
Another disadvantage is low spatial resolution resulting in the single cluster presumption.

2.2.3. High-resolution parameter estimation

A space-alternative generalized EM algorithm (SAGE) was employed to estimate the vector of
parameters θl for each propagation wave within the resolution of the system [51]. Observation
of the estimated paths indicates a large cross polarization ratio in most cases and therefore
the results presented here does not discuss the cross polarization of the multipath. Thus
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Figure 3. delay-azimuth-power spectrum of the received waves for transmitter antenna height of 15 m,
VV case.

the subscript indicating the polarization of the complex magnitude αpr l , i.e. pr ∈ {v, h}, is
dropped in further discussions.

Several tens of multipath are detected at each measurement points, while this number could
reach well beyond 100 in a couple of measurements. The array calibration indicates that array
response for extreme elevation-of-arrival values is highly unreliable. Hence we have neglected
those estimated multipath impinging with too high or too low elevation-of-arrival, i.e. we
consider the acceptable range of elevation-of-arrival as ϑrl ∈ (−75◦, 75◦).

3. Analysis

3.1. Moments of radio wave spread –beam-forming

Having the delay-azimuth-power spectrum of the measured data computed we can obtain
the mean values ϕ̄m and τ̄m, and the standard deviations σϕm and στm for each measurement
m simply as:

ϕ̄m(τk) =
∑ϕr∈Φ ϕrṖm(ϕr, τk)

∑ϕr∈Φ Ṗm(ϕr, τk)
, (11)

σϕm (τk) =

(

∑ϕr∈Φ(ϕr − ϕ̄r)2 Ṗm(ϕr, τk)

∑ϕr∈Φ Ṗm(ϕr, τk)

)1/2

, (12)

τ̄m(ϕrq) =
∑τ∈Ξ τk Ṗm(ϕrq, τ)

∑τ∈Ξ Ṗm(ϕrq, τ)
, (13)

στm (ϕrq) =

(

∑τ∈Ξ(τ − τ̄)2Ṗm(ϕrq, τ)

∑τ∈Ξ Ṗm(ϕrq, τ)

)1/2

, (14)

where Ξ = {0, τres, · · · , Ts} , Φ = {−ϕmax, · · · ,−ϕres, 0, ϕres, · · · , ϕmax}, with ϕres being the
sampling resolution of the beam-forming.

The mean and standard deviation values of the excess-delay and azimuth-of-arrival for
the direct path, ϕ̄m|τk=0, τ̄m|ϕq=0, στm |ϕq=0, σϕm |τk=0, are obtained for all combinations of
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m htm pt pr ϕ̄m [ ◦] σϕm [ ◦] τ̄m[ns] στm [ns]

1 15 VV 0.6 16.6 1.8 3.6

1 15 HV 5.6 17.6 3.7 7.9

1 15 VH 1.2 10.3 1.1 0.7

1 15 HH 1.3 9.0 1.0 0.4

2 12 VV 13.8 13.8 8.7 13.2

2 12 HV 13.6 22.3 19.9 15.7

2 12 VH 17.8 13.8 8.6 13.8

2 12 HH 1.8 12.4 1.7 3.3

3 9 VV -0.3 10.8 1.1 0.5

3 9 HV 10.6 6.7 1.2 2.0

3 9 VH 8.7 13.1 2.3 5.9

3 9 HH 5.0 8.4 1.0 0.3

3 6 VV 7.0 9.0 1.0 0.3

4 6 HV -0.8 5.7 1.0 0.2

4 6 VH 11.2 9.6 1.4 3.5

4 6 HH -5.7 6.6 1.3 0.6

5 4 VV 0.4 10.4 1.0 0.3

5 4 HV 3.0 17.5 1.6 1.5

5 4 VH 5.7 22.1 1.2 1.4

5 4 HH -0.7 5.1 1.0 0.1

Table 2. Radio Signal Spread Estimated Moments

transmitter antenna height htm and transmitter-receiver polarizations pt pr are presented in
Table 2. Considering the delay resolution of the measurement, 20 [ns], the small values
for the standard deviation of excess-delay στ agrees with the previously reported results.
This is because the dispersion is caused due to scatterings by leaves and branches along the
propagation path.

To get a sense of azimuth standard deviations it is necessary to obtain the azimuth resolution
for the current analysis. Figure 4 shows the Capon spectrum for a single path measured in the
anechoic chamber. While the Rayleigh resolution is slightly larger than the theoretical value
11.5◦ it shall not be confused with the resolution of the standard deviation. The computed
standard deviation for the Capon spectrum of Fig. 4 is σϕ = 4.8◦. This means any deviation
larger than this value is caused by the dispersion of the radio wave while propagating through
foliage.
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Figure 4. Capon spectrum of a single path in the azimuth.

3.2. Multipath cluster identification –high-resolution analysis

A simple manual cluster identification algorithm was applied to the estimated multipath. As
the purpose is to identify dominant propagation mechanisms, only those clusters conveying
significant power are discussed. Each cluster carries a total power calculated as

gm,c = ∑
l∈Cm,c

gl ,
m = 1, · · · , M

c = 1, · · · , C
, (15)

where gl = |αl |
2 is the estimated path-gain, M indicates the number of measurements, C is the

number of identified clusters and Cm,c represents the set of estimated mutilpath in cth cluster
of measurement m . The mean and standard deviation of the estimated parameters for each
cluster can be obtained as

x̄m,c =
∑l∈Cm,c

gl xl

gm,c
,

m = 1, · · · , M

c = 1, · · · , C
, (16)

σxm,c =

(

∑l∈Cm,c
(xl − x̄m,c)gl

gm,c

)1/2

,
m = 1, · · · , M

c = 1, · · · , C
. (17)

Here x is a substitute variable for the estimated path parameters except for the path
magnitude, i.e. x ∈ {τ, ϕr, ϑr}.

Table 3 displays most significant clusters identified for each measurement. In this table
different number of clusters are presented for each measurement with the specifications of the
measurement such as the measurement index m, transmitter antenna height htm, polarizations
of transmit and received signal pt pr and receive signal noise level σ2

n; as well the specifications
of the clusters are exhibited as the index of the cluster for each measurement c, number
of multipath in the cluster Lm,c, cluster’s associated power gm,c followed the average and
standard deviation of excess-delay, azimuth- and elevation-of arrival of the cluster.

One observation is that significant clusters are of mixed polarization combinations, that is the
channel acts random interactions with the radio wave in terms of polarization. Also notable
is that there could be found almost no significant cluster associated with back scattering.
Moreover it is observed that for the measurement number 2 with the transmit antenna height
of ht2 = 12 [m] the received signal is weaker compared to other measurements. Hence
the number of estimated multipath as well as identified clusters are smaller. In the next
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subsection these strictly identified clusters are grouped to recognize what we call propagation
mechanisms.

3.3. Propagation mechanisms –high-resolution analysis

With the strict classification of multipath in the previous section we have derived clusters in
the Table 3 which can not be so informative when it comes to the propagation mechanism
analysis. In this section those clusters are further arranged in groups of related clusters
to provide a better knowledge of the channel. Here we are specifically interested in
clusters with close mean angle-of-arrival (ϕ̄m,c, ϑ̄m,c) to identify propagation mechanisms
in the channel. It is observed that clusters with different excess-delays could exist in the
same group, hence those clusters belonging to the same group may not represent identical
propagation mechanism in the strict sense, e.g. both multiple-scattering and single-scattering
multipath could be included in the same group, but as long as we are interested in the final
interaction of the propagation wave in the channel the current approach suits. As an example
consider clusters C1,1, C1,4, C1,5, clearly their close mean angle-of-arrival values hint their last
interaction to the channel coming from the same source. By rearrangement of the clusters in
such groups within each measurement, we further examined any existing link between these
groups among all measurements and found the following classes of received multipath:

A. The foliage close to the receiver in the direction of transmitter scatters a great amount of
radio energy. The clusters with a mean azimuth-of-arrival value in the interval ϕ̄m,c ∈
(−6◦, 10◦) and with a slight positive elevation-of-arrival belong to this class. This class
includes clusters C1,1, C1,4, C1,5, C2,2, C3,1, C3,2, C3,4, C3,6, C4,1, C4,2, C4,4, C4,7, C4,8, C4,11,
C5,1, C5,3, C5,5, C5,15.

B. Scattering from the foliage close to the receiver and with azimuth-of-arrival values in the
interval ϕ̄m,c ∈ (17◦ , 30◦) and with slight positive values of elevation-of-arrival can be
associated to this class. Clusters in this class are C1,2, C1,3, C1,6, C1,8, C1,9, C2,1, C2,3, C3,3,
C3,5, C3,7, C4,3, C4,9, C4,10, C5,6, C5,9, C5,10.

C. Third class of identified clusters represents the foliage located in the azimuth-of-arrival
in the interval ϕ̄m,c ∈ (−40◦,−16◦) and again with slight positive values of
elevation-of-arrival. This class of clusters include C1,11, C3,9, C4,5, C4,6, C5,2, C5,7, C5,14.

Few clusters remain unclassified conveying minor radio energy compared to these three
classes of clusters. It is important to remember that this classification was done among
different measurements particularly in terms of transmitter antenna heights. Figure 5
schematically illustrates top view of the radio channel and three major classes of identified
clusters. It can be said that major propagation mechanisms in this channel are associated
with one of these classes. Class A represents the forward scattering component. Even though
there is no line-of-sight from the foliage to the transmitter in any of the measurements, this
class introduces the most powerful propagation mechanism in the channel. The radio signal
finds its way through the leaves and in between tree trunks to reach to this foliage and be
rescattered toward the receiver. It is observed that strongest clusters in all measurements,
except measurement 2, are put in this class.

To describe the scatterings from classes B and C it is noticed that even though the
measurement area is densely vegetated, the density of foliage is not homogeneous
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m htm pt pr σ2
n [dB] c Lm,c gm,c [dB] τ̄m,c [ns] στm,c [ns] ϕ̄m,c [◦] σϕm,c [

◦] ϑ̄m,c [◦] σϑm,c [
◦]

1 15 VV 3.6 1 12 73.8 20 13.1 -3 3.9 26 12.2

1 15 VV 3.6 2 6 49.3 20 10.4 27 6.1 9 9.9

1 15 HH 3.9 3 2 48.7 20 4.9 23 0.0 1 0.0

1 15 HV 3.8 4 1 48.1 0 0.0 -6 0.0 26 0.0

1 15 VH 3.6 5 3 45.6 20 12.7 -1 1.4 12 2.5

1 15 VV 3.6 6 1 38.3 60 0.0 28 0.0 3 0.0

1 15 HH 3.9 7 1 37.4 40 0.0 -139 0.0 1 0.0

1 15 VH 3.6 8 3 34.4 40 10.0 27 5.0 6 10.3

1 15 HV 3.8 9 2 34.3 0 9.8 24 0.5 13 7.8

2 12 VV 2.6 1 5 50.4 40 10.0 17 7.9 2 3.8

2 12 VV 2.6 2 1 32.4 0 0.0 -1 0.0 19 0.0

2 12 HV 2.7 3 2 27.5 20 4.5 19 6.3 1 0.0

3 9 HV 2.4 1 11 65.0 20 9.6 -3 6.8 6 9.0

3 9 VH 2.5 2 2 57.8 20 0.0 5 6.7 11 0.0

3 9 HV 2.4 3 4 55.9 40 11.8 23 5.6 3 0.8

3 9 VH 2.5 4 3 45.5 40 8.7 10 0.9 11 0.0

3 9 HV 2.4 5 2 43.7 0 4.6 23 2.3 7 9.6

3 9 HV 2.4 6 5 45.5 60 7.8 1 3.8 2 5.2

3 9 HV 2.4 7 2 34.6 80 5.0 21 1.0 1 0.0

3 9 HV 2.4 8 2 34.5 60 8.5 -60 5.1 3 0.0

4 6 HH 2.6 1 7 70.6 20 8.3 -2 4.6 8 6.5

4 6 VV 2.4 2 4 64.5 0 8.8 8 7.5 3 1.5

4 6 HH 2.6 3 4 60.2 40 7.5 19 5.5 2 3.1

4 6 HV 2.4 4 3 54.2 20 8.5 -6 3.4 1 0.5

4 6 VV 2.4 5 2 49.4 0 7.6 -16 5.3 10 9.8

4 6 VV 2.4 6 5 48.0 40 14.2 -40 7.7 1 5.2

4 6 HH 2.6 7 3 42.9 100 5.0 -2 1.3 11 0.0

4 6 VV 2.4 8 3 42.5 60 5.0 5 2.6 1 0.0

4 6 VH 2.4 9 2 42.5 0 4.6 19 0.5 5 0.0

4 6 HH 2.6 10 1 41.0 20 0.0 30 0.0 5 0.0

4 6 HH 2.6 11 4 40.8 60 9.1 0 5.6 11 0.0

5 4 VV 2.8 1 10 77.3 20 8.0 0 5.1 9 3.6

5 4 VV 2.8 2 4 57.6 20 4.8 -29 2.0 30 7.4

5 4 HV 2.6 3 6 57.5 20 4.6 1 8.6 29 5.9

5 4 VV 2.8 4 3 54.2 20 0.0 -101 2.7 32 1.7

Table 3. Identified Clusters
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m htm pt pr σ2
n [dB] c Lm,c gm,c [dB] τ̄m,c [ns] στm,c [ns] ϕ̄m,c [◦] σϕm,c [

◦] ϑ̄m,c [◦] σϑm,c [
◦]

5 4 HH 2.7 5 2 53.8 40 0.0 1 3.7 13 4.5

5 4 VV 2.8 6 3 50.4 20 8.7 27 3.2 9 2.5

5 4 HH 2.7 7 3 46.5 40 9.5 -28 5.6 20 4.2

5 4 VV 2.8 8 3 43.8 20 0.0 145 7.4 5 2.0

5 4 HH 2.7 9 3 40.2 40 9.3 34 5.8 9 3.4

5 4 VV 2.8 10 2 38.8 80 9.3 20 0.9 5 1.4

5 4 VV 2.8 11 2 36.8 20 0.0 98 5.9 7 0.5

5 4 VV 2.8 12 3 36.6 20 8.7 46 3.1 33 9.8

5 4 HH 2.7 13 1 35.4 60 0.0 3 0.0 -40 0.0

5 4 HV 2.6 14 2 35.2 20 7.7 -18 0.8 28 8.4

5 4 VH 2.8 15 3 34.3 20 9.7 0 4.6 17 4.5

5 4 VV 2.8 16 2 33.9 40 0.0 -98 4.4 29 4.4

Table 3. Identified Clusters (Continued).

RxTx
1

2

3

Figure 5. Schematic top view of the radio channel and three major classes of received multipath. No
line-of-sight exists between transmitter and antenna and these classes.

everywhere. This produces airy spaces within the dense vegetation which act similar to
canyons to conduct radio signals. Figure 6 displays such spaces in the vegetation viewed
from the measurement 4 transmitter antenna position, ht4 = 6 [m]. When these guided
signals arrive to one or more foliage with line-of-sight toward the receiver they make strong
clusters of received propagation waves. It seems this is what happens in case of multipath
classes B and C. Notable is that strong clusters from measurements with higher transmit
antenna contribute to class B whereas those from measurements with lower antenna height,
e.g. measurement 5, appear strongly in class C.

Again it is reminded that there is not any line-of-sight from the transmitter to the foliages
associated with any of classes, however the configuration of foliage within the vegetation area
causes the radio signal to be nonuniformly received in format of clusters. The significant point
in the classification process is that clusters from every transmitter height, and from a variety
of polarization combinations are taking part in each multipath class. The interpretation can be
that even if the interactions of multipath to the vegetation is of random nature and number,
when it comes to the angle-of-arrival the receiving radio signal can be from a deterministic
selected number of directions.
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Figure 6. Airy spaces within dense vegetated area. Viewed from transmitter antenna location at ht4 = 6
[m].

4. Discussion

Typical measurements for the analysis of the interaction between radio waves and vegetation,
as well to evaluate the existing models, generally target only the field attenuation along
distance. Moreover, measurement schemes and facilities usually do not acquire enough
resolution to support an accurate analysis of the active mechanisms and basically provide
limited insight into the physical phenomena which in reality is complex. There are nearly
universal assumptions, e.g. vegetation as a homogeneous media of randomly distributed
scatterers, used in most corresponding studies which have never been evaluated. In
this chapter the directional radio channel in dense vegetation is investigated through the
analysis of appropriate measurement data. Two different analysis methods are used for the
comparison of results.

First the dispersions in delay and azimuth-of-arrival of the received waves are derived by
using a beam-forming. Investigating the mean delay values in the Table 2 shows that in
some cases components other than the direct path have been involved in the analysis. The
interpretation of some large spreads in azimuth and the distance of the mean azimuth values
from zero shall be related to this fact. The main conclusion of the analysis however is to
confirm the received signal spatial spread due to interaction with foliage, and to provide
rough estimates of this spread. It is observed that even though the beam-forming approach
is robust, easy to implement and does not require any presumption regarding the received
signal, its spatial resolution proves limited. Hence the received signal energy through
different propagation mechanisms can not be accurately separated. Moreover the array
antenna response is included in the channel and can not be de-embedded.

For the propagation mechanisms to be distinguished, high resolution parameter estimation
of the measured data is necessary. The well known SAGE algorithm is used to identify
received propagation multipath, which are then grouped in clusters using a simple clustering
algorithm. Specifically looking at the measured receiving radio signal with high resolution
in angular domain, three major classes of received multipath associated with separate
final scattering foliage are identified. Thus contrary to the widely assumed homogeneous
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random scattering media it was observed that the radio waves in the vegetated channel are
received from distinct directions in clusters of multipath. The identified classes of multipath
correspond to two significant propagation mechanisms other than forward scattering by
the foliage obstructing the line-of-sight –normally used as the main mechanism in different
approaches. It seems airy spaces in the vegetated area can have crucial influence in directing
the radio signal toward specific directions, to be redirected to the receiver by a foliage with
the line-of-sight toward the receiver.

The significant point is that by beam-forming analysis of the measurement data it is not
possible to identify those propagation mechanisms, although limited insight regarding
the spatial spread of the direct received path achieved. Thus appropriate measurements
assisted with high-resolution data analysis can meaningfully change our understanding of
the vegetation wireless channel and substantially modify corresponding models.

It is now well known that in most practical wireless channels the diffuse scattering plays a
considerable role in terms of carrying the radio energy [52],[53]. In comparison to the specular
component, the estimation and modeling of which is rather straightforward, the estimation
and modeling of the diffuse component can be rather complicated. Nevertheless, due to
the random shape and direction of trees and branches in any foliage, it is expected that a
major part of energy is transferred by means of diffuse component. Further high-resolution
investigation and modeling of the radio channel including the diffuse component is left as a
future task.

5. Conclusion

In this chapter the radio channel in dense vegetation is investigated through the directional
analysis of carefully gathered measurement data. By looking at the measured receiving radio
signal with high resolution in angular domain, three major classes of received multipath
associated with separate final scattering foliage are identified. The identified classes
of multipath correspond to two significant propagation mechanisms other than forward
scattering by the foliage obstructing the line-of-sight which is normally considered as the main
mechanism in such channels. The airy spaces in the vegetated area is probably accounted for
directing the radio signal toward specific directions. These are redirected toward the receiver
by a foliage in its line-of-sight. Thus contrary to the widely assumed homogeneous random
scattering media it was observed that the radio waves in the vegetated channel are received
from distinct directions in clusters of multipath. Results of the high-resolution analysis are
in contrast to the beam-forming analysis of the measured data which is also presented in
the chapter for comparison. This proves that state-of-the-art measurements assisted with
high-resolution analysis can modify our understanding and modelings of the phenomena.
Moreover to fully analyze and understand these channels, the diffuse component also has to
be estimated and modeled which is left as a future task.
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