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Sequential Design of Optimum Sized 

 and Geometric Tolerances 
 

 

M. F. Huang and Y. R. Zhong  

 

1. Introduction 

Tolerancing has great impact on the cost and quality of a product. Dimensional 

and geometric tolerancing are designed to ensure that products meet both de-

signed functionality and minimum cost. The task of dimensioning and toler-

ancing in process planning stage is to determine the working dimensions and 

tolerances of the machined parts by given blueprint (B/P) specifications.  

A lot of research work has been carried out in dimensioning and tolerancing. 

In earlier studies, optimal solutions to tolerance charts have been developed to 

meet B/P specifications. Most researches concentrated on dimensioning and 

tolerancing with optimal objectives to maximize the total working tolerances 

based on the constraints of tolerance accumulation and machining accuracy. 

Linear or nonlinear programming models have been applied to obtain the op-

timal tolerances (Ngoi, 1992; Ngoi & Ong, 1993; Ji, 1993a; Ji, 1993b; Wei & Lee, 

1995; Lee & Wei, 1998; Ngoi & Cheong, 1998a; Lee et al., 1999; Chang et al., 

2000; Huang et al., 2002; Chen et al., 2003; Gao & Huang, 2003; Huang et al., 

2005). Optimal methods have also been presented to allocate B/P tolerances in 

product design using tolerance chart in process planning (Ngoi & Cheong, 

1998; Ngoi & Ong, 1999; Swift et al., 1999) but the generation of dimensional 

and tolerance chains being one of the most important problems. In one-

dimensional (1D) cases, the apparent path tracing and tree approach were 

commonly used to tolerance chart for manual treatment (Ngoi & Ong, 1993; Ji, 

1993a; Ji, 1993b; Wang & Ozsoy, 1993; Ngoi & Cheong, 1998b). Automatic gen-

eration of dimensional chains in assembly based on the data structure has been 

presented (Treacy et al., 1991; Wang & Ozsoy, 1993). Using an Expert System, 

assembly tolerances analysis and allocation have been implemented by appro-

priate algorithm in CAD system (Ramani et al., 1998). An intelligent dimen-

sioning method for mechanical parts based on feature extraction was also in-

troduced (Chen et al., 2001). This method could generate the dimensions of 
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mechanical parts for two-dimensional (2D) drawing from three-dimensional 

(3D) models. Recently, more valuable and attractive approaches to deal with 

dimensional and geometric tolerances have been developed (He & Gibson, 

1992; Ngoi & Tan, 1995; Ngoi & Seow, 1996). He and Gibbon in 1992 made a 

significant development in geometric tolerance charting and they presented 

useful concepts to treat geometric dimensions and tolerances simultaneously. 

A computerized trace method has been extended to determine the relation-

ships between geometrical tolerances and related manufacturing dimensions 

and tolerances. A new method for treating geometrical tolerances in tolerance 

chart has been presented (Ngoi & Tan, 1995; Ngoi & Seow, 1996; Tseng & 

Kung, 1999). The method identified the geometrics that exhibited characteris-

tics similar to linear dimensions. These geometrics were first treated as equiva-

lent dimensions and tolerances and then applied to tolerance chart directly. 

Tolerance zones have been utilized to analyze tolerance accumulation includ-

ing geometric tolerances. The formulae for bonus and shift tolerances due to 

position callout have been presented (Ngoi, et al., 1999; Ngoi et al., 2000). In 

complex 2D cases when both angular and geometric tolerances are concerned, 

graphic method has been used to implement tolerances allocation (Huang et 

al., 2002; Zhao, 1987). In conventional tolerancing, fixed working dimensions 

and tolerances were designed in process planning phrase. Though this method 

was suitable for mass production in automatic lines, it had limitations to pro-

duce low-volume and high-value-added parts such as those found in aircraft, 

nuclear, or precision instrument manufacturing industry (Fraticelli et al., 1997). 

To increase the acceptable rate of a machined part, a method named sequential 

tolerance control (STC) for design and manufacturing has been presented 

(Fraticelli et al., 1997; Fraticelli et al., 1999; Wheeler et al., 1999; Cavalier & Le-

htihet, 2000; Mcgarvey et al., 2001). This method essentially used real-time 

measurement information of the complete operations to dynamically re-

calculate the working dimensions and feasible tolerances for remaining opera-

tions. Using acquired measurement information, tool-wear effect compensa-

tion under STC has been realized (Fraticelli et al., 1999). An implicit enumera-

tion approach to select an optimum subset of technological processes to 

execute a process planning under STC strategy has been presented (Wheeler et 

al., 1999). When measurements and working dimension adjustments would be 

taken to facilitate machining process and reduce manufacturing cost has also 

been investigated (Mcgarvey et al., 2001). 

In spite of the achievement mentioned above, some issues still need further re-

search. The previous researches focused on 1D dimensioning and tolerancing. 
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Though simple 2D drawings were concerned, they could be converted into 1D 

dimensioning and tolerancing in two different directions, i.e. in axial and dia-

metrical directions or in axis OX and OY directions (He & Gibson, 1992; Ngoi 

& Tan, 1995; Ngoi & Seow, 1996; Tseng & Kung, 1999). When incline features of 

3D parts are machined, complicated dimensioning and tolerancing will occur 

since angular tolerance will be included in tolerance chains. In addition, the re-

lationships between orientational and angular tolerances need further investi-

gation. Though STC strategy is able to enhance the working tolerances and ac-

ceptance rate of manufactured parts (Fraticelli et al., 1997; Cavalier & Lehtihet, 

2000), how to extend this method to complex 3D manufacturing is still a new 

problem when sized, angular, and orientational tolerances are included simul-

taneously.  

Based on the basic principle of STC introduced by Fraticelli et al (Fraticelli et 

al., 1997), the purpose of this paper is to extend the new methodology to deal 

with 2D sized, angular, and orientational tolerances of 3D parts. The proposed 

approach essentially utilizes STC strategies to dynamically recalculate the 

working dimensions and tolerances for remaining operations. This approach 

ensures that the working tolerances of a processed part are optimal while satis-

fying all the functional requirements and constraints of process capabilities. A 

special relevant graphic (SRG) and vector equation are utilized to formulate 

the dimensional chains. Tolerance zones are used to express the composite tol-

erance chains that include sized and angular tolerances to perform tolerances 

design. With orientational tolerances converted into equivalent sized or angu-

lar tolerances, the composite tolerance chains are formulated. Sequential opti-

mal models are presented to obtain optimal working dimensions and toler-

ances for remaining operations. The working tolerances are amplified 

gradually and manufacturing capabilities are enhanced.  

This paper is structured as follows. A new method for presenting the dimen-

sional chains from given process planning is discussed in section 2. In section 

3, a method for presenting the composite tolerance chains is discussed. In sec-

tion 4, the optimal mathematical models for sequential tolerances design of 3D 

processed tolerances are discussed. Section 5 gives a practical example. Finally, 

section 6 concludes this study.  
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2. Automatic generation of process tolerance chains with SRG 

When a n-operation part is processed by m machine tools in a particular direc-

tion, such as axial direction, the apparent path tracing or tree approach meth-

ods are usually used to generate the dimensional and tolerance chains for 

manual treatment (Ngoi & Ong, 1993; Ji, 1993a; Ji, 1993b; Ngoi & Cheong, 

1998). If geometric tolerances are involved, only four out of total fourteen 

geometric tolerance specifications, which exhibit the characteristics similar to 

linear dimensions, are treated as equivalent dimensions and tolerances and 

then applied directly to tolerance chart. These four specifications are position, 

symmetry, concentricity, and profile of a line (surface) (He & Gibson, 1992; 

Ngoi & Tan, 1995; Ngoi & Seow, 1996; Tseng & Kung, 1999). In 1D case, the fol-

lowing dimensional and tolerance chains must be satisfied (Ji, 1993b):  
 

[ ]{ } { }
[ ]{ } { }DX TTB

CXA

≤

=
 (1) 

 

Where A = [aij] is a m×n coefficient matrix, aij = 1 and −1 for an increasing and 

decreasing constituent link of udi, respectively. aij = 0 for otherwise. X = [u1, 

u2,…, un]T is a n×1 vector of the mean working dimensions. C = [ud1, ud2,…, udm]T 

is a m×1vector of mean values of B/P dimensions. B = [bij] is a m×n coefficient 

matrix. bij = 1 for an increasing and decreasing constituent link of udi. bij = 0 for 

otherwise. TX = [Tu1, Tu2,…, Tun]T is a n×1 vector of the working tolerances. TD = 

[Td1, Td2,…, Tdm]T is a m×1vector of B/P tolerances.  

When a complex part is machined, typically a number of operations are in-

volved. Each B/P tolerance is usually expressed as a number of pertinent proc-

ess tolerances. In previous researches, tremendous efforts have been contrib-

uted to 1D dimensional tolerances. Geometric tolerances as well as the 

interactions between them have not been investigated extensively when com-

plex 3D parts are manufactured. When we machine a complex 3D part, two 

dimensions components are included to determine the position of a processed 

feature in 2D drawing in the given view plane. For example, for the part 

shown in Figure 1 (Zhao, 1987), the position of pin-hole Φ15.009±0.009 in the 

plane XOY is determined by coordinate dimensions and tolerances −25±½TN’x 

and 28±½TN’y. Similarly the position of incline plane B is determined by LN’E 

±½TN’E and 60°±½Tα1, where LN’E and TN’E be nominal distance and its tolerance 

from the axis of pin-hole to incline plane, respectively. α=60° and Tα1 be nomi-
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nal angle and its tolerance formed by axis OX and the normal line of incline 

plane, respectively. 

The series of orderly processing operations of a part is generalized as the set Ap 

= {Op1, Op2, …, Opn}, i = 1, 2, …, n is the number of machining operations includ-

ing turning, milling, boring, and grinding etc. The set of working dimensions 

and tolerances in the view plane is denoted as Ψ = {u1±½T1, u2±½T2, …, 

u2n±½T2n}, where ui±½Ti, i = 1, 2, …, 2n are the working dimension and toler-

ance components assigned to the part. Since the working dimensions include 

sized and angular dimensions, the corresponding tolerance can be sized or an-

gular ones. The constraint set of B/P dimensions and tolerances is denoted as 

Dst = {ud1±½Td1, ud2±½Td2, …, ud2m±½Td2m}, i = 1, 2, …, 2m denotes 2m B/P sized 

and angular dimensions and tolerances of the part. The set of B/P orientational 

tolerances is denoted as TG = {TG1, TG2, …, TGk}, i = 1, 2, …, k are B/P geometric 

tolerances. In order to establish the required tolerance equations between B/P 

and pertinent working tolerances, dimensional chains must be derived from 

process planning to represent the relations between B/P and working dimen-

sions.  

In order to discuss further this issue, we introduce a practical example shown 

in Figure 1(Zhao, 1987). For simplicity, only the finishing operations are taken 

into account. The inclined hole (Φ25.0105 ± 0.0105) and inclined plane (B) of 

the example have high positional precision requirements. Thus the finish op-

erations on incline hole and incline plane are executed with jig boring and 

grinding machine, respectively. Point D denotes the intersection of the axis of 

cylinder Φ89.974±0.011 with horizontal plane W. Point C is the intersection of 

the axis of incline hole with plane W. Let coordinates origin O lie at the inter-

section point of the axis of cylinder Φ89.974±0.011 with plane A. Axis OX lies 

in plane A and is parallel with plane S. Axis OY is perpendicular to plane A. 

Axis OZ is perpendicular to plane S. The functional requirements of this part 

are as such: The distance from point C to D is xCd = 8±0.07. The functional dis-

tance between plane A and W is yCd = 25.075±0.075. The functional distance be-

tween incline plane B and point C is LCFd = 54±0.12. The other requirements are 

shown in Figure 1. Because functional dimension xCd and LCFd cannot be meas-

ured directly, the finish machining processes involved are assigned as bellows:  
 

1. Set plane A to vertical position to guarantee that plane S is parallel with 

horizontal plane. Choose plane A and axial line of the shaft Φ89.974±0.011 

as references. Move the table of jig boring machine to due position and 

process the pin hole Φ15.009 ± 0.009 and ensure that the coordinates and 
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tolerances of axial line of the pin hole as xN’ ± TN’x/2 = −25± T N’x/2, yN’ ± 

TN’y/2 = 28± TN’y/2.  

2. When a measurement pin is plugged into the pin hole, it is desire that par-

allelism between axial line of the pin to plane A be not more than TN�y 

and perpendicularity of axial line of the pin to plane S along OX axis be 

not more than TN⊥x. 

3. Take a measurement of the related complete sized dimensions xN’, yN’, 

and yC.  

4. Turn plane A to horizontal direction in the table of jig boring machine. 

Then plane A is rotated an angle of 30°. Ensure that the distance between 

axial line of the pin to that of incline hole is LNB± TLNB/2. Where LNB is 

nominal dimension of the distance form axial line of the pin to that of in-

cline hole. TNB is the tolerance of LNB. Bore incline hole Φ25.0105 ± 0.0105 

and ensure that its axial line and that of Φ89.974±0.011 is in the same 

plane. The angle of axial line of incline hole is α1 = 60° and its tolerance 

Tα1 is directly controlled. 

5. Take a measurement of the related complete sized dimension LNB.  
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Figure 1. The 2D mechanical drawing of a 3D machined part 
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6. Grind incline plane B in grinding machine and guarantee that the distance 

between axial line of the pin to incline plane B with following dimensions 

and tolerances: LNE ± TNE /2 and 30° ± Tα2/2. Where LNE and TNE is nominal 

dimension and tolerance of the distance from axial line of the pin to incline 

plane B, respectively. α2 = 30° and Tα2 are nominal angle value and toler-

ance of inline plane B to OX axis, respectively.  

 

In term of the above process processing, it is necessary that incline hole and in-

cline plane of the example work piece are thus be processed economically 

within their dimension and tolerance ranges. The problem needs to be solved 

is: Establish pertinent dimensional chains in terms of the above manufacturing 

procedures, give the optimal model to the tolerance allocation problem, and 

find the optimal solutions. The finish machining process plan is generalized in 

table 1. 

 

 

No Operation Reference(s) Processing       

feature 

Coordinates/ 

dimensions 

tolerance 

05 Boring Plane A and axis 

of Φ89.974±0.011  

Hole N’ 

Φ15.009±0.009 

xN’ = −25 

yN’ = 28 

TN’x 

TN’y  

10 Pinning No Hole N’ xN = −25 

yN = 28 

TN⊥x 

TN∥y 

15 Measure the complete sized dimensions xN, yN, and yC 

20 Boring Plane A and axis 

of Φ89.974±0.011  

Incline hole 

Φ25.0105±0.0105 

LNB 

α1 = 60° 

TNB 

Tα1 

25 Measure the complete sized dimensions LNB 

30 Grinding Plane A and axis 

of Φ89.974±0.011  

Incline plane B LNE 

α2 = 60° 

TNE 

Tα2 

Table 1. Finishing process plan of the part (Huang et al., 2002) 

 
Unlike previous 1D case in conventional tolerance chart, the methods for gen-

erating dimensional chains are two-dimensional related. In other words, be-

cause every feature in the view plane has two dimension components, each 

link of a dimensional chain should contain two dimension components. There-

fore we can use vector equation to present dimensional chains in the given 2D 

view plane.  
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In Figure 2, when incline hole is bored, the position of point C is indirectly ob-

tained by controlling the position of pin, the distance from pin axis to that of 

incline hole, and angle α formed by axis OX and the axis of incline hole. Line 

segment NE is perpendicular to incline plane and point E is the intersection. 

Point F is the intersection of the axis of incline hole with incline plane. The line 

segment NB is perpendicular to the axis of incline hole and point B is the inter-

section.  

To generate process tolerance chains correctly, we make use of a special rele-

vant graph (SRG), which can be constructed directly from the process planning 

of the component, to express the interconnection and interdependence of the 

processed elements in their dimensions and tolerances in a more comprehen-

sive way. In SRG, there are two kinds of nodes, one for the relevant elements of 

the component and another for their dimensions and tolerances. By searching 

through the SRG and coupled with the unique algorithm, dimension and tol-

erance chains needed relevant to the sequences of the processing plans are 

generated automatically. 

Consider the pertinent point O, N, B, C, E, and F shown in Figure 2, the SRG 

model is constructed directly form the processing plan as show in Figure 3, 

where the dimension nodes and the element nodes are used. Dimension nodes 

are used to describe the dimensions relative to two pertinent elements of the 

work piece. Element nodes, however, are used to present the geometric ele-

ments of the work piece. The geometric elements refer to a point, a center line, 

or a plane of the work piece. In the graphical representation of the work piece 

under consideration, a block represents a dimensional node, while a circle cor-

responds to an element. The block drawn by slender lines is a component di-

mension node and the block drawn by dotted lines is a resultant one. Because 

two pertinent dimensions and tolerances must be included to determine the 

position and variation ranges of an element to origin O or the relative position 

to its pertinent reference(s), it is reasonable to introduce two dimension nodes 

to represent its two relative dimensions and tolerance components for an ele-

ment. The link lines between dimension and element node indicate the inter-

connection and interdependence among them.  

The process tolerance chains can be automatic generated through searching of 

the SRG coupled with the unique algorithm. The procedure is generalized as 

follows. 

1. For each two selected resultant dimensions, choose any one of the ele-

ments relevant to them as the starting element node. Find two correspon-
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ding pertinent component dimension nodes linked to it and get to another 

element node(s). Verify if these two component dimension nodes are lin-

ked to the same element node. If this is true, the ending element node ob-

tained is used again as the starting element node and repeat the above 

process. Otherwise get two different element nodes. The two different e-

lement nodes obtained are used respectively again as the starting element 

node and repeat the above process until intersection element node is ac-

quired. The searching direction is chosen to go along the SRG in a loop 

with the ending element node coming back to the starting element node, 

while the searching routes without duplicating the same element and di-

mension node more than once. 

2. Every dimension chain can only contain two resultant dimensions and the 

minimum numbers of relative dimensions, otherwise, give up this loop 

and go to step (1). 

3. Every resultant dimension is placed on the left side of equation and the 

other relative dimensions are placed on the right side. With these steps, it 

is easily to find that the four points O, N, B, and C and the five points O, 

N, E, F and C shown in Figure 1 and Figure 2 compose respectively a pla-

nar dimensional chain.  
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Figure 2. The vector relations between pertinent features 



 Manufacturing the Future: Concepts, Technologies & Visions 614

When incline hole is machined, the vector equation of the position of point C 

is:  
 

BCNBONOC ++=  (2)

 

Where OC  is position vector of point C, ON is position vector of point N, 

NB andBC are relative vector from point N to point B and from point B to 

point C, respectively. When Equation (2) is expressed as algebraic equations, 

we have 
 

CdBCNBN

CdBCNBN

yLLy

xLLx

=−−

=−+
oo

oo

30cos30sin

30sin30cos
 

(3)

 

Where xN and yN are coordinate component of the axis of the pin. LNB and LBC 

are nominal length between point N and B, point B and C, respectively. xCd and 

yCd are the B/P coordinates of point C.  
 

Similarly, when incline plane is machined, the distance from point F to point C 

is indirectly obtained by controlling the position of pin, the distance from pin 

axis to incline plane, and the angle α formed by axis OX and the normal line of 

incline plane. The vector equation is:  
 

OCEFNEONCF −++=  (4)

 

WhereCF is relative vector from point C to point F, NE andEF are relative vec-

tor from point N to point E, and from point E to point F, respectively. It is easy 

to find in Figure 2 that the length of line segment LEF is equal to the length of 

line segment LNB, i.e. LEF = LNB. Also, when we represent Equation (4) into alge-

braic equations, we get 
 

NBEFCFd

CEFNEN

LLL

yLLy
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−−+

   where,30cos

30sin30cos

o

oo

 (5)

 

Where LNE is nominal length between point N and E. xC and yC are the coordi-

nates of point C. LCFd is the B/p length between point C and point F.  
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Figure 3. The SRG model of the work piece relevant to the processing plan 

 

4. With resultant dimension chains established, the relative tolerance chain is 

generated in the graphic way that the resultant tolerance zone should en-

velope all of the pertinent component tolerance zones and it is also envel-

oped by design tolerance zone. 

 

The algebraic dimensional chains related to Equation 2 and 4 are:  
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3. Tolerance zones and tolerances accumulation 

The shapes of tolerance zones in the view plane vary with the dimensions and 

tolerances specified to the feature. Several cases are given in Figure 4 to illus-

trate this issue in the view plane XOY. The different shape of parallelogram 

shown in Figure 4(a)-(c) corresponds to a particular tolerance zone of point A 

which is controlled by two different dimensions and tolerances. The tolerance 

zone is center at point A and its position is controlled by LOA±½TOA and Y±½TY, 

X±½TX and Y±½TY, and LOA±½TOA and 60°±½Tα, respectively. Figure 4 (d)-(e) 

corresponds to two different cases of tolerance accumulations. 

Figure 4(d) shows the tolerance accumulation case when one-base-point is re-

lated. This case is defined when the two dimension and tolerance components 

of a feature are related to only one reference feature (base point). Assume that 

parallelogram 1 is tolerance zone of base point A and parallelogram 2 is toler-

ance zone of point B relative to base point A. Resultant tolerance zone of point 

B is obtained by adding up the above two tolerance zones geometrically. So we 

can move parallelogram 2 parallelly along the outline of parallelogram 1 and 

the zone enveloped by outmost contour of parallelogram 2 forms the resultant 

tolerance zone of point B. If B/P dimensions and tolerances of point B are 

specified as XB±½TBX and YB±½TBY, for acceptable point B, B/P tolerance zone 

(drawn by dotted lines and measured by Tx and Ty) must envelop resultant 

tolerance (see right hand side in Figure 4 (d)).  

Figure 4(e) shows another case of tolerance accumulation when two-base-point 

is related. This case is defined when two dimension and tolerance components 

of a feature are related respectively to two different reference features (two 

base points). If the smaller parallelogram centers at point C is tolerance zone of 

point C relative to its two base points i.e. point A and B. The parallelogram 

center at point A and B are tolerance zone of base point A and B, respectively. 

Resultant tolerance zone of point C is obtained as such. First, extract tolerance 

zone of point C which is resultant tolerance zone of point A and B (denote as 1-

2-3-4). So draw two parallel lines perpendicular to line segment AC and let the 

distance between them be the tolerance magnitude of base point A in the direc-

tion of line segment AC. Similarly, draw another two parallel lines perpendicu-

lar to line segment BC and let the distance between them be the tolerance 

magnitude of base point B in the direction of ling segment BC. The zone 

formed by these four lines will construct a bigger parallelogram 1-2-3-4 which 

centers at point C. It is the resultant tolerance zone of point C resulting from its 

two-base-point tolerance zones. Then, move the smaller parallelogram center 
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at point C parallelly along the outline of parallelogram 1-2-3-4. The zone en-

veloped by outmost contour of the smaller parallelogram forms resultant tol-

erance zone of point C. If B/P tolerance zone of point C is a rectangle (drawn 

by dotted lines), the rectangle must envelop resultant tolerance zone when 

point C is acceptable.  

Tolerance accumulation and the relationships between different sorts of toler-

ance specifications must be solved in presenting composite tolerance chains. 

For given orientational tolerances shown in Figure 1, tolerance accumulation 

process is dependent upon the characteristic attributes they exhibit.  
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Figure 4. Tolerance zone and its stack-up in view plane XOY 

 

In Figure 1, the tolerance zone of angularity of incline hole relative to plane A 

(datum A) is represented by rectangle area with shadow lines shown in Figure 

5(a). Assume that the axis of incline hole has ideal geometric shape and angu-

larity tolerance can be assured by controlling the tolerance of angle α formed 

by axis OX and the axis of incline hole. The expression is: 
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21 ×= ∠

FM

d
L

T
Tα  (7)

Where Tαd1 is equivalent design angular tolerance determined by tolerance T∠, 

which is angularity tolerance of the axis of incline hole relative to plane A. LFM 

is nominal length of incline hole.  

Similarly, in Figure 1 the tolerance zone of perpendicularity of incline plane 

relative to the axis of incline hole (datum C) is represent by rectangle area with 

shadow lines shown in Figure 5(b). Assume that incline plane has ideal geo-

metric shape, angularity tolerance can be assured by controlling the tolerance 

of angle α formed by axis OX and normal line of incline plane. The expression 

is: 
 

22 ×= ⊥

GH

d
L

T
Tα  (8)

 

Where Tαd2 is equivalent design angular tolerance determined by T⊥, which is 

perpendicularity tolerance of the incline plane relative to the axis of incline 

hole. LGH is nominal length of incline plane.  

Furthermore, according to the functional role of pin, when it is plugged into 

pin-hole, the following equations should be satisfied:  
 

⎩
⎨
⎧

+=

+= ⊥

yNyNNy

xNxNNx

TTT

TTT

∥'

'
 (7)

 

Where TNx and TNy is composite tolerance component of pin axis, respectively. 

TN’x and TN’y is tolerance component of the axis of pin-hole, respectively. TN⊥x 

and TN∥y is perpendicularity of pin axis to plane S in the direction of axis OX 

and parallelism between pin axis and plane A, respectively.  

With above discussion, for Equation 2, the tolerance zone of each vector and 

their accumulation is shown in Figure 6. Where zone 1-2-3-4 is the tolerance 

zone of pin axis. Zone 5-6-7-8 is the tolerance zone of point B relative to pin 

axis. Zone 9-10-11-12 is the tolerance zone of point C relative to its two base 

points i.e. origin O and point B. Where LBCTα1 is the tolerance component per-

pendicular to line segment BC and TCy is another tolerance component in the 

direction of axis OY. 
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Figure 5. Relationships between angular tolerance and orientational tolerances 
 

Using the above tolerance accumulation principle discussed in Figure 4(e), the 

final resultant tolerance zone of point C is obtained through following steps. 

First, find tolerance zone of point C resulting from its two-base-point tolerance 

zones and denote as £, which is acquired by adding up its two base point tol-

erance zones in two due directions. For base point B, its tolerance zone is ob-

tained by adding up the zone 1-2-3-4 and 5-6-7-8 geometrically. Because the di-

rection of tolerance component of point C relative to point B is perpendicular 

to line segment BC (also along line segment NB) and its magnitude is LBCTα1, 

the tolerance magnitude of point B in this direction is expressed as:  
 

NBNB TTT += ⊥⊥  
(10)

 

Where TB⊥ is tolerance component of point B in the direction perpendicular to 

line segment BC. TN⊥ is the tolerance of pin axis in the direction perpendicular 

to line segment BC. TNB is the tolerance of LNB, which is mean dimension of the 

distance form pin axis to that of incline hole.  

On the other hand, another component of £ is in the direction of axial OY. Be-

cause the origin is fixed, the distance of £ in the direction of axial OY is nil. So £ 

is finally obtained as a horizontal line segment mn shown in the right down 

side in Figure 6. The length of line segment mn is:  
 

o

o

30cos
30 NB

NyNxmn

T
tgTTL ++=  (11)

Zone 13-14-15-16 is resultant tolerance of point C and finally acquired by mov-
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ing parallelly zone 9-10-11-12 along line segment mn. B/P tolerance zone ĉ-Ċ-

ċ-Č (drawn by dotted lines) should envelop zone 13-14-15-16 (right up side 

in Figure 6). The algebraic equations are:  
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≤+
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++

CydCy

CxdCy
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NyNx

TT
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o 30
30cos

30 1α

 

(12)

 

Where TCxd = 0.140mm and TCyd = 0.150mm are two components of B/P tolerance 

of point C. For Equation 4, tolerance zone of each vector and their tolerance ac-

cumulation is shown in Figure 7. Zone 1-2-3-4 and 13-14-15-16 have been dis-

cussed above. Zone 17-18-19-20 is tolerance zone of point E relative to pin axis, 

zone 21-22-23-24 is tolerance zone of point F relative to point E, and zoneč-Ď-

ď-Đ (drawn by dotted lines) is B/P tolerance zone of point F relative to point 

C. Resultant tolerance zone is the one of point F relative to point C. It includes 

four components: zone 1-2-3-4, 17-18-19-20, 21-22-23-24, and 13-14-15-16. It is 

necessary that B/P tolerance zone contain its resultant tolerance zone for an ac-

ceptable part. 
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Figure 6.  Original tolerance accumulation between point O, N, B, and C 

When we change graphic representation into algebraic form, we can only con-

siderer the tolerance component in the direction of line segment FC. For the 
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acceptable parts, the resultant tolerance component should be less than or 

equal to its B/P tolerance component. The algebraic equation is:  
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Where TCFd = 0.240mm is B/P tolerance of LCFd.  

4. 3 D sequential tolerance design  

In process planning, each machining operation is specified with an appropri-

ate tolerance based on the constraints of B/P specification and process capabil-

ity. In conventional dimensioning and tolerancing, all working dimensions and 

process tolerances are fixed. This method, however, is suitable for mass, batch, 

and automated production. A new method termed STC for production of 

complex, low-volume, and high-value-added parts was introduced (Fraticelli 

et al., 1997; Fraticelli et al., 1999; Wheeler et al., 1999; Cavalier & Lehtihet, 2000; 

Mcgarvey et al., 2001; Huang & Zhong, (in press)). The method essentially 

used real-time measurement information at any completion stage of opera-

tions to exploit available space inside the dynamic feasible zone and recalcu-

late the working dimensions and tolerances for remaining operations. It has 

been proved that this method can enhance the process tolerances for remain-

ing operations and increase the acceptable rate of manufacturing.  

The above researches, however, did not include geometric tolerances and were 

confined to 1D problem. This paper aims to extend STC method to 3D space 

when angular and orientational tolerances are also involved. The method es-

sentially utilizes the measurement data of sized dimensions at appropriate 

completion stage of operations to evaluate the working dimensions and toler-

ances for remaining operations based on the process capabilities. Let actual 

working dimension and deviation be set M = {ui*, ∆ui, j=1, … , 2n }, where ui* is 

acquired measurement value of working dimension ui, ∆ui = ui* − ui is actual de-

viation of working dimension ui*. The original dimensional and process toler-

ance chains are respectively expressed in the following matrix form.  
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CXA
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=
 (14)

 

Where A = [aij] is a 2m×2n coefficient matrix, X = [u1, u2,…, u2n]T is a 2n×1 vector 

of mean working dimensions, C = [ud1, ud2,…, ud2m]T is a 2m×1vector of mean 

values of B/P dimensions, B = [bij] is a 2m×2n coefficient matrix, TX = [Tu1, Tu2,…, 

Tu2n]T is a 2n×1 vector of working tolerances, and TD = [Td1, Td2,…, Td2m]T is a 

2m×1vector of B/P tolerances.  

When incline features are included, aij is the function of a number of pertinent 

working dimensions. While jdiij uub ∂∂= / is determined by the way tolerance 

accumulates. For generalized description, assume that each operation associ-

ates with two components of different dimensions and tolerances in given 

view plane.  

The generalized algorithm of 3D sequential tolerance design is expressed as 

following steps.  

 

Step 1: 

The original optimal tolerance design is implemented at this step. Sized, angu-

lar, and orientational tolerances are included in composite tolerance chains. 

Orientational tolerances are first converted into equivalent sized or angular 

tolerance in terms of their characteristic attributes. The composite tolerance 

chains are established using the methods discussed in section 3. The original 

optimal model is: 
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Where 
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T (1)ui:  Original working tolerance component of dimension ui 

kui:  Weight factor of tolerance Tui, which is dependent upon the capacity of 

 machining and the manufacturing cost of  operation. kui is determined 

 by the experience of a process planner.  

λui:  Path selected coefficient of dimension ui. When ui is selected, λui = 1, 

 otherwise λui = 0. 

T(1)uimin,  

T(1)uimax:  Lower and upper bound of original tolerance Tui, respectively. 

 

When above original optimal model is solved, original working dimensions 

and optimal working tolerances are obtained. The operations of first stage are 

performed based on above original working dimensions and tolerances. Then 

pertinent sized dimensions are measured. Assume that u1, u2, …, and uk are k 

measured sized dimensions. u1*, u2*, …, and uk* are corresponding actual meas-

ured values. The actual deviations are obtained as ∆uk* = uk* −uk, i=1, 2, …, k. If 

actual dimensions u1*, u2*, …, and uk*are within their permissible ranges, they 

are substituted into Equation 18. The working dimensions and tolerances for 

next operation step can be determined.  

For dimensions u1, u2, …, and uk, with their actual values measured, their toler-

ances Tu1, Tu2, …, and Tuk do not include in the tolerance chains for remaining 

operations. Thus the numbers of constituent tolerance links are reduced by k 

components, the working tolerances reassigned to remaining operations in-

crease. The bounds of working tolerance of remaining operations can be re-

adjusted for the purpose of ease machining.  

The working dimensions and tolerances for operations of the next stage are de-

termined by following sequential optimal model. 

 

 

 



 Manufacturing the Future: Concepts, Technologies & Visions 624

Step 2:  
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T (2)ui:  Second step working tolerance component of dimension ui 

T(2)uimin,  

T(2)uimax:  Lower and upper bound of tolerance Tui for second step operations, re

 spectively. 

 

 

When above optimal model is solved, the working dimensions and tolerances 

for operations of the second stage are obtained. Similarly, after operations of 

the second stage have been performed, their actual pertinent sized dimensions 

are measured and substituted into mean dimension chains to determine the 

working dimensions and tolerances for operations of the third stage.  
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Step 3:  

 

Assume that q operations have been successfully performed. The actual perti-

nent sized dimensions have been measured and substituted into their mean 

dimensional chains. The third order optimal model is expressed as follows: 
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T (3)ui:  Third step working tolerance component of dimension ui 

T(3)uimin, 

T(3)uimax: Lower and upper bound of tolerance Tui for third step operations, re

 spectively. 
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The above procedure is repeated until the last operation has been performed.    

Because constituent tolerance component of obtained actual sized dimensions 

are excluded from remaining tolerance chains while B/P tolerances remains 

unchanged, the proposed approach gradually enhances working tolerances of 

remaining operations. The final solutions of sequential tolerances are given as:  
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5. A case study  

A practical example (Zhao, 1987) but with modifications shown in Figure 1 is 

introduced to illustrate the proposed method. The process plan of the finish 

operations is given in Table 1.  
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Figure 7. Original tolerance accumulation between point O, N, E, F, and C 

5.1. Establishment of dimensional and tolerance chains 

With the procedures discussed in section 2 and 3, dimensional and tolerance 

chains of this example part are given by formulation (6), (12), and (13), respec-

tively.  
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5.2. Additional angular tolerance chains 

According to the given process planning, the finish operations are executed 

with different machine tools. The accuracy of rotation working tables of ma-

chine tools provides the assurance of orientational tolerance express by per-

pendicularity and angularity tolerance. For jig boring machine, it is required 

that:   
 

(rad) 0025.0 2
32

04.0
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FM

d
L

T
TT αα  (28)

 

Where Tα1 is angular tolerance of rotation working tables of jig boring ma-

chine. Tαd1 is equivalent design angular tolerance determined by T∠. LFM = 32 is 

nominal length of incline hole. T∠ = 0.04 is angularity tolerance of the axis of 

incline hole relative to plane A.  

 

We can control the rotation error of rotation working table of grinding ma-

chine to ensure the perpendicularity tolerance. It is expressed as:  
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Where TαN is resultant angular tolerance of Tα1 and Tα2. Tα2 is angular tolerance 

of rotation working tables of grinding machine. LGH = 71.9 is nominal length of 

incline plane. T⊥ = 0.025 is perpendicularity tolerance of incline plane B relative 

to the axis of incline hole. Tαd2 is the equivalent design angular tolerance de-

termined by T⊥. It is obvious that if formulation (29) is satisfied, formulation 

(28) is also satisfied.  

5.3. Additional process capability constraints 

Assume that jig boring and grinding machine have the same accuracy for their 

rotation working tables. The accuracy in axis OX and OY is the same. TN⊥x and 

TN∥y have the same functional role. Thus we have 
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∥
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 (30)

To ensure that the machined parts meet its designed functionality and mini-

mum manufacturing cost, the original constraints of finishing processes are 

formulated in Table 2.  

 
Operation Tolerance lower bound upper bound Weight 

Boring  TN’x 10 25 k1 = 1 

Boring TN’y 10 25 k2 = 1 

Pinning  TN⊥x 7 10 k3 = 1 

Pinning TN∥y 7 10 k4 = 1 

Boring TNB 30 75 k5 = 1.4 

Boring Tα1 70′′ 90′′ k6 = 1.4 

Grinding TNE 30 75 k7 = 1.4 

Grinding Tα2 70′′ 90′′ k8 = 1.4 

Turning TCy 15 40  k9 = 1 

Table 2. Original working tolerance bounds (µm) and weights  

5.4. Optimized sequential tolerance design procedure  

In terms of the process planning developed for finish operations, related toler-

ances must be specified before any machining operation was executed. The op-

timization model is: 
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NBEF LL = , k1 = k2 = k3 = k4 = k9 = 1, k5 = k6 = k7 = k8 = 1.4, xN’ = −25, yN’ = 28, xCd = 8, 

yCd = −25, LCFd = 54, TCxd = 0.140, TCyd = 0.150, and TCFd = 0.240.  
 

The solution of the model is: 
 

[ ] [ ]TT

NEBCNB LLL
  )1()1()1( 600.24400.29078.55=  
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According to the specified process planning, the pin-hole is bored in terms of 

dimensions and tolerances xN’ = −25±0.021 and yN’ = 28±0.021. After the first op-

eration is executed, the pin is plugged into the pin-hole. Provided that its ac-

tual geometric deviation be within their tolerance range, that is TN⊥x = 0.010, 

and TN∥y = 0.010. When coordinates of the pin and actual distance yC are meas-

ured, assume that the acquired values are xN* = −25.020, yN* = 28.020, and yC* = − 

25.140. Thus the actual deviation is ∆N’x = xN*− xN’ = − 25.020 − 25 = − 0.020, ∆N’y = 

yN*− yN’ = 28.020 − 28 = − 0.020, and ∆Cy = yC*− yC = − 25.140 − 25.075 = − 0.650. It 

is obvious that ∆N’x, ∆N’y, and ∆Cy are within their tolerance ranges so the opera-

tions of next stage can be carried out. Because xN, yN, and TCy are measured, TNx, 

TNy, and TCy will not be included in the tolerance chains for remaining opera-

tions. Since TN⊥x and TN∥y are included in values xN* and yN*, they will not be in-

cluded in the tolerance chains for remaining operations either. The optimal tol-

erances for next operation will be determined by following optimization 

model.  
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Figure 8.  Tolerance accumulation for machining the inclined hole 
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The incline hole will be processed according to the dimensions and tolerances 

55.106 ± 0.056 and 60° ± 0.00017. The tolerance accumulation for machining the 

inclined hole is shown in Figure 8. After incline hole has been processed, LNB is 

measured. Let acquired value be L*NB = 55.150. The corresponding actual devia-

tion ∆ NB = L*NB − LNB = 0.044 is within its tolerance range and next operations 

can be performed. The next step is establishment of the following optimal 

model: 
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This solution is for final operation i.e. machining the inclined plane. The toler-

ance accumulation for machining the inclined plane is shown in Figure 9.  
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Figure 9. Tolerance accumulation for machining the inclined plane 
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It is not difficult to find that the working tolerances have been gradually am-

plified. Table 3 shows the comparison results between conventional tolerance 

control (CTC) and proposed sequential tolerance control (STC). Table 4 shows 

the variations in their pertinent process working dimensions.  

 

 )1(

'xNT
)1(

' yNT  )1(

xNT ⊥
)1(

yNT ∥
)2(

NBT  )3(

NET  )3(

1αT (rad) )3(

2αT (rad) )1(

CyT  

STD 21 21 10 10 111 215  0.00034 0.00034 40 

CTD 20* 20* 10* 10* 46 72 0.00035 0.00035 40 

Ratio 1.05 1.05 1.00 1.00 2.41 2.99 0.97 0.97 1.00 

In- 

crease 

+5% +5% 0 0 +141% +199% -3% -3% 0 

Table 3.  Tolerance of the CTC and the proposed STC (µm). Note: The values with the 

sign“*”were directly given by experience in terms of the process capacities (Zhao, 

1987). 
 

 

Method N’x N’y LNB LNE α1 α2 yC 

STC -25 +28 55.106 24.457 60° 60° -25.075 

CTC -25 +28 55.078 24.600 60° 60° -25.075 

Table 4.  Working dimension of the CTC and the proposed STC (mm) 

5.5. Comparative analysis of the proposed method  

In order to analyze the effects of proposed method, comparative study is also 

given. The impact the weight factors have on optimal working tolerance is 

identified with the same model. Let k1 = k2 = k3 = k4 = k9 = 1, k5 = k6 = k7 = k8 = ω. 

The solutions of original model when ω = 1, 1.4, 1.5, 2, 4 are shown in table 5. It 

can be seen from table 5 that when weight ω increases, )1(

'xNT , )1(

' yNT , )1(

xNT ⊥ , )1(

yNT ∥ , 

and )1(

CyT decrease, )1(

NBT and )1(

NET increase, while )1(

1αT  and )1(

2αT  remain unchanged.  

 
Case )1(

'xNT  )1(

' yNT  )1(

xNT ⊥  )1(

yNT ∥  )1(

NBT  )1(

NET  )1(

1αT (rad) )1(

2αT (rad) )1(

CyT  

ω = 1 21 21 10 10 50 75  0.00034 0.00034  40 

ω = 1.4 21 21 10 10 50 75  0.00034 0.00034  40 

ω = 1.5 10 10 7 7 68 75  0.00034 0.00034  40 

ω = 2 10 10 7 7 70 75  0.00034 0.00034  35 

ω = 4 10 10 7 7 75 75  0.00034 0.00034  26 

Table 5.  Tolerance of the original model with different weights (µm) 
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6. Closing remarks and Conclusions  

This paper presents a new graphic representation methodology for generating 

dimensional and tolerance chains in complex 2D drawing from 3D parts used 

in sequential optimal tolerance design when sized, angular, and geometric 

specifications are included simultaneously. This was overlooked and did not 

give due attention in previous literatures due to its complexity. Since geomet-

ric tolerances are also of vital importance to the functional requirements and 

manufacturing cost, they are necessary to be included in tolerance chains. The 

proposed approach copes with 3D sequential dimensioning and tolerancing by 

dynamic design of the working dimensions and tolerances at any completion 

stage of operations. The practical example shows that the proposed method 

can gradually amplify the working tolerances for remaining operations and 

raise the acceptance rate of the processed parts.  
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