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1. Introduction 

The interaction between waves and structures is a very important subject of the coastal 

engineering. Many numerical models have been developed over recent decades to analyze 

these types of cases, which involve phenomena that combine reflection, shoaling, refraction, 

diffraction, breaking and wave-wave interaction. These non-linear effects provide harmonic 

generation, including energy transferences with high complexity. 

Models based on the Laplace equation assume the potential flow, in which the movement is 

irrotational and the flow is incompressible. Models based on the boundary element 

technique [1,2,3] and spectral methods [4,5] are some examples. This theory applies neither 

to viscous flows nor to situations in which there are flow separations, vortex generations 

and turbulences. 

Other models, called depth-integrated models [6], based on a Boussinesq-type equation for 

variable depth, consider polynomial approximations for the vertical velocity distribution 

and vertical integration in the resulting equations at a certain depth. The simplified 

hypotheses, that include slight non linearity and dispersion, limit the applicability of this 

type of models to shallow and intermediate waters. Several researches have been developed 

to extend the applicability of these equations, including high order terms, to deeper water 

and strong non linearity cases in the last decades. Wave propagation phenomena, such as 

breaking, bottom friction and run-up, have also been included in these extended Boussinesq 

equation [7,8,9,10,11,12,13,14]. The accuracy of these type of models has recently been 

improved by the implementation of the multi-layer concept, in which the water column is 

divided into layers and a velocity profile is adopted to each one [15,16]. Although the 

accuracy has been improved significantly, the simplified hypotheses, related to the vertical 
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integration along each layer, limit the use of these models to depths without strong 

variations.      

Many efforts have been carried out to develop non hydrostatic models to prevent the 

difficulties of the Boussinesq models [17]. The non hydrostatic models capture the free 

surface movement using a function on the horizontal plane, requiring lower vertical 

discretization by comparison with those that use classic methods to describe the free surface. 

In some of these models, the pressure and velocity fields are decomposed by hydrostatic 

and non-hydrostatic pressure to improve their efficiency. 

The numerical solution of the fully Navier-Stokes equations to determine the tridimensional 

velocity and pressure fields and the free surface position demands high computational cost, 

due to the large horizontal scale of many coastal engineering problems. However, in cases in 

which there are flow separation, vortex shedding and turbulence, these models provide 

more real results. There are several methods to capture the free surface movements, such as 

the arbitrary lagrangian eulerian (ALE) [22,46], the marked and cell [25], the volume of fluid 

[26,27] and the level-set methods [28]. 

This text describes a code (in Fortran 90 language) that integrates the Navier-Stokes 

equations using a fractional method to simulate 3D incompressible flow problems with free 

surface, named FLUINCO [29]. The model employs a semi implicit two-step Taylor Galerkin 

method to discretize the Navier-Stokes equations in time and space; uses the ALE method 

and a mesh velocity distribution technique to deal with free surface movement. 

To show the applicability of the code, two study cases are analyzed: the wave propagation 

over a submerged horizontal cylinder and submerged trapezoidal breakwaters. In Section 2, 

the numerical model is described. Section 3 presents study cases, their results and 

discussion. Finally, Section 4 concludes the analysis.  

2. Numerical model 

2.1. Governing equations 

The algorithm is based on the continuity equation, given by: 
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and momentum equations, that are represented by the following equations according to the 

ALE formulation: 
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where  is the specific mass, p is the pressure, vi iU  ,  v v vj i j iij
f U  , vi are the 

velocity components, wi the reference system velocity components and ij is the viscous 

stress tensor (i,j.=1,2,3). 
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2.2. Semi-implicit two-step Taylor-Galerkin method 

Basically, the algorithm consists of the following steps [30]: 

a. Calculate non-corrected velocity at t/2, obtained by time discretization of Eq. (2), 

where the pressure term is at t instant, according to Eq. (3). 
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where gi are the gravity acceleration components. 

b. Update the pressure p at t+t, obtained by time discretization of Eq. (1), given by the 

Poisson equation: 
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where 
1n n

p p p
   and i = 1,2,3. 

c. Correct the velocity at t+t/2, adding the pressure variation term from t to t+t/2, 

according to the equation: 

 1/21/2

4
nn

i i
i

pt
U U

x

 
 


    (i =1,2,3),        (5) 

d. Calculate the velocity at t+t using variables updated in the previous steps as follows: 
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2.3. Space discretization 

The classical Galerkin weighted residual method is applied to the space discretization by 

using a tetrahedron element. In the variables at t+t/2 instant, a constant shape function PE 

is used, and in the variables at t and t+t, a linear shape function N is employed. By 

applying this procedure to Eq. (3), (4), (5) and (6), the following expressions in the matrix 

form are obtained [29]: 
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where variables with upper bars at n and n+1 instants indicate nodal values, while those at 

n+1/2 instant represent constant values in the element. The matrices and vectors from Eq. (7) 

to (10) are volume and surface integrals that can be seen in detail in [30]. 

Equation (8) is solved using the conjugated gradient method with diagonal pre-conditioning 

[31]. In Eq. (10), the consistent mass matrix is substituted by the lumped mass matrix, and 

then this equation is solved iteratively. 

The scheme is conditionally stable and the local stability condition for the element E is given 

by  

 E Et h u         (11) 

where hE is the characteristic element size,  is the safety factor and u is the fluid 

velocity.  

2.4. Mesh movement 

The free surface is the interface between two fluids, water and air, where atmospheric 

pressure is considered constant (generally the reference value is null). In this interface, the 

kinematic free surface boundary condition (KFSBC) is imposed. By using the ALE 

formulation, it is expressed as: 
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  (12)                          

where  is the free surface elevation, ( )
3vs  is the vertical fluid velocity component and ( )vs

i  

(i=1,2) are the horizontal fluid velocity components in the free surface. The eulerian 

formulation is used in the x1 and x2 directions (horizontal plane) while the ALE formulation 

is employed in the x3 or vertical direction. 

The time discretization of KFSBC is carried out in the same way as the one for the 

momentum equations as presented before. After applying expansion in Taylor series, the 

expressions for  at n+1/2 (first step) and n+1 (second step) instants are obtained: 
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Linear triangular elements coincident with the face of the tetrahedral elements on the free 

surface are used to the space discretization by applying the Galerkin method. 

The mesh velocity vertical component w3 is computed to diminish element distortions, 

keeping prescribed velocities on moving (free surface) and stationary (bottom) boundary 

surfaces. The mesh movement algorithm adopted in this paper uses a smoothing procedure 

for the velocities based on these boundary surfaces. The updating of the mesh velocity at 

point i of the finite element domain is based on the mesh velocity of the points j that belong 

to the boundary surfaces, and is expressed in the following way [32]: 
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where ns is the total number of points belonging to the boundary surfaces and aij are the 

influence coefficients between the point i inside the domain and the point j on the boundary 

surface given by the following expression: 
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with dij being the distance between points i and j. In other words, aij represents the weight 

that every point j on the boundary surface has on the value of the mesh velocity at points i 

inside the domain. When dij is low, aij has a high value, favouring the influence of points i, 

located closer to the boundary surface containing point j. 

The free surface elevation, the mesh velocity and the vertical coordinate are updated 

according to the following steps: 

1. Calculate n+1/2 and 1/2n
iU
 , Eq. (13) and  Eq. (3), respectively. 

2. Calculate p , Eq. (4). 

3. Calculate 1/2n
iU
 , Eq. (3). 

4. Calculate 1n
iU
 , Eq. (6). 

5. Calculate n+1, Eq. (14). 

6. Update the mesh velocity w3 and the vertical coordinate x3: 

 Calculate the mesh velocity in the free surface at t + Δt: 
1( )

3
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 Calculate the mesh velocity in the interior of the domain at n+1 e n+1/2 by using Eq. 

(13) and 
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 Update the vertical coordinates in the interior of the domain: 

1/2
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2
n n n t

x x
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  , 1 1/2
3 3 3    tw
n n n

x x
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2.5. Wave generation and radiation conditions 

The wave generation is considered imposing the free surface elevation and the fluid velocity 

components to each time step directly, considering the linear wave equations [33]. 

The Flather’s radiation condition [34] is used to deal with open boundaries. In this method, 

the Sommerfeld condition to free surface elevation is combined with one-dimensional 

version of the continuity equation. Then, the normal velocity of the boundary can be 

expressed by: 

 
g

u
h

  ,       (17) 

where g is the gravity acceleration and h is the depth. 

3. Study cases 

3.1. Submerged cylinder 

The interaction among regular waves and submerged circular cylinders, with their axes 

parallel to the crests of the incident waves, has been studied analytically, 

experimentally and numerically by many authors.  The presence of an obstacle near the 

free surface may cause reflected and modified transmitted waves. These phenomena 

depend on the characteristics of the incident wave, the obstacle geometry and the depth. 

Many studies of this interaction are available to provide a good example to validate 

numerical codes. 

The first study was developed by [35] and, after that, by [36]. Considering a linear behavior, 

these authors showed that (a) the cylinder does not reflect any energy, regardless of its ray, 

depth or wave frequency; (b) the transmitted waves are out of phase, but their amplitudes 

are the same. Chaplin [37] studied the nonlinear forces and characteristics of the reflected 

and transmitted waves experimentally. He showed that the reflection is negligible up to the 

third order. This author and Schonberg and Chaplin [38] presented many experimental and 

numerical studies concerning the nonlinear interaction among waves and submerged 

cylinders. A detailed review of analyses for this case can be found in Paixão Conde et al. 

[39]. 

This case considers a 5.2 m long and 0.425 m deep channel with a submerged cylinder of r = 

0.025m positioned 1.60 m from the wave generator (Figure 1). The cylinder center is 0.075 m 

(3r) from the free surface. The frequency wave is f = 1.4Hz; its amplitude is a = 0.0119 m and 

its wavelength is L=0.796 m, characterizing a deep water case.  
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Figure 1. Geometry of the horizontal cylinder case. 

Table 1 shows the period, the frequency and the wavelength for the fundamental frequency 

and its 2nd, 3rd and 4th harmonics, according to the linear wave theory. 

 

 Fundamental 2nd harmonic 3rd harmonic 4th harmonic 

T (s) 0.7143 0.3571 0.2381 0.1786 

f(Hz) 1.4 2.8 4.2 5.6 

L(m) 0.796 0.199 0.0885 0.0498 

Table 1. Period, frequency and wavelength of the fundamental frequency and its 2nd, 3rd and 4th 

harmonics in the horizontal cylinder case. 

The mesh, with 173900 nodes and 515623 elements, has one layer of elements in the 

transversal direction. The average element size on the cylinder boundary is 0.0015.m (105 

divisions in the circumference). The element size diminishes from the ends to the region 

near the cylinder and from the bottom to the free surface. The element sizes on the end 

where the wave generator is located and on the opposite end are 0.015 m (53 points per 

fundamental wavelength) and 0.02 m (40 points per fundamental wavelength), respectively. 

On the bottom, 0.0015m is also used.  

The initial conditions are: null velocity components in all domain and hydrostatic pressure 

(null on the free surface). The wave is generated by imposing the surface elevation and the 

velocity components. The non-slip condition is imposed to the bottom and to the cylinder 

wall. The time step is 0.0002s, which satisfies the Courant condition. 

Figure 2 shows the free surface elevation obtained by the code and experimental tests, 

where xc is the horizontal coordinate of the cylinder center. In general, there is agreement 

between numerical and experimental results [39]. We can notice the free surface disturbance 

downstream the cylinder. When (x-xc)/L is above 1.7, the numerical results are smoother 

than the experimental ones, showing the necessity of a refinement in this region. 

Figure 3 shows a comparison among numerical and experimental results in terms of free 

surface elevation on four gauges located at (x-xc)/L equal to  -0.503, 0.0692, 0.509 and 1.264 

(there is only a numerical result on the first gauge). We can observe the similarity among 

numerical and experimental results. 

Figure 4 shows the streamlines and the velocity modulus distribution at the same instant 

used in Figure 2. Recirculation and separation cannot be observed at downstream. Due to 

the oscillatory flow behavior, there is no time for recirculation productions. We can notice 



 

Wave Propagation Theories and Applications 318 

the flow acceleration near the cylinder due to the boundary layer effect. The viscous effects 

have only local influence, without modifying the velocity field far from it. 

 

Figure 2. Free surface elevation in the submerged cylinder case (Numerical  ; Experimental ■). 

 

Figure 3. Free surface elevations on the gauges located at (x-xc)/L equal to -0.503, 0.0692, 0.509 and 

1.264 in the horizontal cylinder case (Numerical  ; Experimental ●). 

In Figures 5 and 6, velocity component profiles, u and v, on the same gauge positions are 

presented. These profiles were constructed at the same instant as that used in Figure 2. 

According to the linear theory, the maximum value for both horizontal and vertical 

components is equal to 0.105 m/s. For horizontal components, these values occur on the crest 

and the trough, while for vertical ones, these values occur on upward and downward zero-

crossings. When one component is the maximum, another is null, because the phase 

difference is 90 degrees. 

Gauge 1 ((x-xc)/L = -0.503) is located upstream, near the wave crest; no significant 

disturbance in u and v profiles is observed. The horizontal velocity component is positive 

and its maximum value is similar to the theoretical value in the crest. The wave trough 

passes by gauge 2; the vertical velocity component presents low values and the horizontal 
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velocity component has negative values, reaching the maximum absolute value close to the 

theoretical ones (0.105 m/s). Gauge 3 is located near the first crest upstream, resulting in 

high horizontal component values. Finally, gauge 4 is on a region between the trough and 

upward zero-crossing. Both component profiles are negative and the vertical component 

magnitude shows how close the gauge is to upward zero-crossing. 

The non-slip boundary condition on the bottom does not change the general behavior of the 

wave propagation, because this case is considered a deep water one. 

 

 

Figure 4. Streamlines and velocity modulus at the instant in which the free-surface elevation was 

captured (Figure 2) in the horizontal cylinder case. 

 

 

Figure 5. Horizontal velocity components at the same instant used in Figure 2 along the depth on 

gauges located at (x-xc)/L equal to -0.503, 0.0692, 0.509 and 1.264 in the horizontal cylinder case. 

Figure 7 shows the frequency spectra for these four gauges distributed along the channel. In 

all cases, the energy is concentrated on the fundamental frequency and its harmonic waves. 

On gauge 1, the fundamental frequency presents most energy and the second harmonic 

shows a little value. On gauges 2 and 4, located upstream, significant energy up to the third 

harmonic appears, similar to the experimental results.  
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Figure 6. Vertical velocity components at the same instant used in Figure 2 along the depth on gauges 

located at (x-xc)/L equal to -0.503, 0.0692, 0.509 and 1.264 in the horizontal cylinder case. 

 

 

Figure 7. Frequency spectra on gauges located at (x-xc)/L equal to -0.503, 0.0692, 0.509 e 1.264 in the 

horizontal cylinder case. 

3.2. Submerged trapezoidal breakwaters 

Whatever the numerical model characteristics, the simulation of wave propagation over 

submerged breakwaters are important tests to validate wave propagation models. In these 

cases, the harmonic generation [40,41] and the vortex formation, depending on the geometry 

[42], also occur. When waves propagate in deep waters over a submerged obstacle, part of 

the wave energy is transferred from the primary wave component to their harmonics, 

contributing to increase non linearity. Harmonic generation phenomena that occur when 

waves propagate over obstacles, such as natural reefs, were studied theoretically [6], 

experimentally [43,44,45] and numerically [46,23,17,47,48,45,49,50]. In some situations, the 

correct simulation of the flow can only be figured out considering the viscosity effects [51]. 

Huang and Dong [42] studied the interaction between solitary waves and rectangular 

submerged breakwaters using a model based on 2D Navier-Stokes equations and concluded 

that the flow around the breakwater is laminar, without turbulence. The experimental 

studies carried out by Ting and Kim [51] and Zhuang and Lee [52] show that velocity 

fluctuations do not exist around the breakwater. 
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Two different configurations of the trapezoidal breakwaters, with different level of non-

linearity, are used to test the behaviour of the numerical model. In the first case, the 

downstream and upstream slopes are 1:20 and 1:10, respectively [44]. In the second one, 

both slopes are 1:2 [45], where the non-linear effects are more significant. 

3.2.1. Breakwater with slopes 1:20 and 1:10  

Figure 8 shows the channel and the submerged breakwater geometries, and the position of 

the gauges. The channel is 23m in length, 0.4m and 0.1m are the maximum and the 

minimum depths, respectively. In the channel entrance, a monochromatic wave is generated 

with a period of 2.02s and an amplitude of 0.01m. 

Table 2 presents some parameters for this case study, in which H is the wave length, h is the 

depth, k=2/L is the wave number and Ur.=.gHT2/h2 is the Ursell number, where T is the 

wave period. H/h, even on the platform, has small values in comparison with breaking limit 

of approximately 0.8 [33]. The case involves intermediate water for the channel 

(0.314.<.kh.<.3.142) and shallow water for the platform (kh < 0.314). Ursell numbers show 

that the non-linear effects on the platform are more intensive. 

 

Figure 8. Channel geometry for the 1:20 and 1:10 breakwater 

 H/h kh Ur

Channel (h = 0.4m) 0.050 0.674 5.0 

Platform (h = 0.1m) 0.259 0.318 103.6 

Table 2. Wave parameters for the 1:20 and 1:10 breakwater  

Table 3 presents periods, frequencies and wavelengths concerning the fundamental frequency 

and the harmonic components that occur along the wave propagation. The wavelength was 

estimated according to the dispersion equation of the linear theory. These values are references 

to determine discretizations in time and space to be used in the modeling. 

 

 Fundamental 2nd harmonic 3rd harmonic 4th harmonic 

Period (s) 2.02 1.01 0.67 0.50 

Frequency (Hz) 0.50 1.00 1.50 2.00 

Wavelength (m) 3.73 1.46 0.70 0.39 

Table 3. Period, frequency and wavelength concerning the fundamental frequency, and 2nd, 3rd and 4th 

harmonics for the 1:20 and 1:10 breakwater 
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FLUINCO used a mesh with 88700 elements and 37296 nodes. Twenty layers of elements 

were used in vertical direction, where small elements are located near the bottom and the 

free surface. Along the channel, the element sizes vary from x.=.0.08m in the boundary to 

x.=.0.025m around the platform. In the transversal direction, only one layer of elements is 

used, because the behavior of the flow is bi-dimensional. In the entrance of the domain, the 

wave generation condition is imposed while at the end the radiation condition is imposed. 

The velocity components are null on the bottom and the KFSBC is imposed in the free 

surface. The velocity component perpendicular to the surface is null for lateral walls 

(symmetry condition). As an initial condition, the velocity field is null and the pressure one 

is hydrostatic. The time step is 0.003s, a fact that satisfies the Courant stability condition. 

Figure 9 shows the free surface elevations in gauge 3, located downstream the breakwater 

(x=5.7m); in gauge 6, on the platform (x=13.5m); in gauge 8, in the middle of the upstream 

slope (x=15.7m); and in gauge 11, on the upstream and far from the breakwater (x=23m). 

Results obtained by numerical model are compared with the experimental ones presented 

by Dingemans [44]. 

In general, there is good agreement between numerical results and experimental ones in 

gauges 3 and 6. In gauge 6, FLUINCO presents slightly smooth surface deformation. In 

gauges 8 and 11, corresponding to downstream, the nonlinear effects are more significant. 

The deformations in gauge 8 are well represented by FLUINCO; although the results get 

closer to the experimental ones in some regions, there are difficulties in representing the 

deformations related to higher harmonics, possibly due to the lack of an appropriate 

discretization to capture the nonlinear phenomena. 

 

Figure 9. Free surface elevation of the 1:20 and 1:10 breakwater 

Figure 10 shows the frequency spectra obtained by the model in the gauges and a 

comparison with the experimental results. The differences found in the free surface 
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elevation are confirmed in Figure 10, which shows differences in the intensity of harmonic 

components, mainly in gauges located at the end of the channel. The numerical model 

adequately simulate the position of the peaks of the fundamental frequency and the 

harmonic components throughout the domain. However, there are some differences in the 

amplitude of these peaks, especially in gauges 8 and 11. 

Figure 11 presents the streamlines around the upstream slope of the breakwater in eleven 

instants completing one wave period obtained by FLUINCO. We can observe that the flow 

separation and the vortex do not exist at all instants, due to the mild inclination of the 

upstream slope. 

 

 

 

 

 

 

 

 
 

 

 
 

 

Figure 10. Numerical and experimental frequency spectrum in the gauges of the breakwater 1:20 and 

1:10 
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Figure 11. Streamlines of the 1:20 and 1:10 breakwater 

3.2.2. Breakwater with slopes 1:2  

In this case, the length of the channel is 35m and the maximum and the minimum depths are 

0.5m and 0.15m, respectively (See Figure 13). In the entrance of the channel, a 

monochromatic wave is generated with a period of 2.68s, related to a wavelength of 5.66m 

in the channel, and an amplitude of 0.025m.  This problem is case 6 studied by Ohyama et al. 
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[45] who analyzed six different types of waves experimentally. Table 4 shows some 

parameters that characterize the problem, calculated according to the linear theory. The 

Ursell number on the platform is 210, indicating the strong non-linearity in this region. 

Parameter H/h shows that breaking does not even occur on the platform. 

 

Figure 12. Geometry of the channel for the 1:2 breakwater 

 

 H/h kh Ur 

Channel (h = 0.5m) 0.100 0.555 14.1 

Platform (h = 0.15m) 0.355 0.294 210.0 

Table 4. Wave parameters for the 1:2 breakwater 

Table 5 shows periods, frequencies and wavelengths concerning the fundamental frequency 

and the harmonic components that occur along the wave propagation. 

A mesh with 120200 elements and 50526 nodes was used for FLUINCO in this simulation. 

The element sizes along the channel vary between dx=0.08m at the ends and dx=0.01m on 

the platform. The boundary and the initial conditions are similar to the ones in the previous 

case, and 0.002s was the time step. 

 

 Fundamental 2nd harmonic 3rd harmonic 4th harmonic 

Period (s) 2.68 1.34 0.89 0.67 

Frequency (Hz) 0.373 0.746 1.124 1.493 

Wavelength (m) 5.66 2.42 1.22 0.70 

Table 5. Period, frequency and wavelength related to the fundamental frequency, and 2nd, 3rd, and 4th 

harmonics for the 1:2 breakwaters 

Figure 13 shows the free surface elevations in gauges 3 and 5 (gauge positions are indicated 

in Figure 5). Numerical results are compared with the experimental ones presented by 

Ohyama et al. [45]. The FLUINCO model represents the surface deformation recorded in 

gauge 3 well. The deformations of gauge 5 indicate that the nonlinearity increases. In this 

case, FLUINCO captures the variation of the surface elevation more accurately. 

Figure 14 shows frequency spectra obtained in gauges 3 and 5. The fundamental and the 

harmonic waves are well represented by the models, but their amplitudes differ. The 

FLUINCO results are closer for the two gauges. 
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Figure 13. Free surface elevation for the 1:2 breakwater in gauges 3 and 5. 

 

 

Figure 14. 1:2 Breakwater  case. Frequency spectra in gauges 3 and 5. 

Streamlines during one wave period obtained by FLUINCO are presented in Figure 15. 

Unlike the previous case, a vortex, located between the upstream slope and the bottom, 

occurred during part of the wave period. 
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Figure 15. Streamlines of the 1:2 breakwater 

4. Conclusions 

In this text, we showed a model, named FLUINCO, capable of simulating flows on free 

surface. It is based on the semi-implicit two-step Taylor- Galerkin method to integrate 

Navier-Stokes equations in time and space. An ALE formulation is employed to describe the 

free surface movement. The methodology was validated in two study cases: the wave 

propagation over a submerged horizontal cylinder and submerged trapezoidal breakwaters. 

Both study cases showed the application of a Navier-Stokes based code, which considers 

accurately vertical flow effects, in the wave-submerged structure interaction problems. 

In the case of the submerged horizontal cylinder, the free surface elevations and the velocity 

profiles obtained by the model were similar to experimental ones [39]. The numerical results 

presented a slight free surface deformation downstream, possibly because of the lack of 

refinement that caused numerical diffusion. In this case, the viscous effects influenced the 

flow behavior locally whereas the viscosity was not important far from the cylinder. The 

non-slip condition on the bottom did not modify the wave propagation significantly because 

it is a deep water case. 

In the case of trapezoidal breakwater, two analyses were carried out for different upstream and 

downstream slopes. The first analysis deals with upstream and downstream slopes of 1:20 and 

1:10, respectively. The results obtained by the model were compared with Dingemans’ 

experimental data [44]. A comparison of the surface elevations and the energy spectrum for some 

gauges along the channel showed that the model provided good results. Although the FLUINCO 

results have been somewhat smoothed, they were closer to the experimental ones, including the 

ones in the gauges placed downstream, where nonlinear effects are more significant. Streamlines 

over a wave period showed that there was no flow separation in this case. 
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The second analysis consists of two 1:2 breakwater slopes; it showed a strong influence of 

nonlinear effects on the results of the surface elevation and the energy spectrum. The numerical 

results were compared with experimental ones presented by Ohyama et al [45]. The vertical 

velocity field obtained by FLUINCO showed that a vortex of non-turbulent origin was formed in 

the flow. The model obtained results closer to the experimental ones, including the ones 

downstream of the breakwater, where the nonlinearity effects are more significant. Both 

breakwater analyses showed that FLUINCO captures the nonlinear effects of the flow accurately, 

due to the fact that this model considers the influence of the vertical circulation in the flow. 
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